
Computer and Information Science; Vol. 17, No. 1; 2024

ISSN 1913-8989 E-ISSN 1913-8997

Published by Canadian Center of Science and Education

18

A Model for Total Cost Determination in Open-Source Software

Ownership: Case of Kenyan Universities’ Learning Management

System

Duncan Kereu Kodhek1, John Wachira Kamau1, & Faith Mueni Musyoka2

1 School of Computing and Information Technology, Mount Kenya University, Thika

2 Department of computing and Information Technology, University of Embu, Embu

Correspondence: Duncan Kereu Kodhek, School of Computing and Information Technology, Mount Kenya

University, Thika, Kenya. E-mail: duncankereukodhek@gmail.com

Received: January 25, 2024 Accepted: March 1, 2024 Online Published: March 8, 2024

doi:10.5539/cis.v17n1p18 URL: https://doi.org/10.5539/cis.v17n1p18

Abstract

The adoption of open-source products is slowly increasing; the increase, however, is slower than expected,

considering that most open-source products are freely available. Researchers and scholars have attributed the

adoption levels to, among other things, a lack of know-how of the total cost of ownership of the open-source

software. Thus, it is crucial for the cost of owning the software to be developed. While an ongoing endeavor to

develop a model to determine the total cost of ownership of open-source software, the models have proved to be

less accurate and do not capture essential elements. Moreover, there has been a rising call for organizations to

adopt open-source software to lower the software costs incurred on proprietary software. If the cost of owning

open-source software were known, it would be beneficial as several organizations and institutions could adopt it

readily. The data was collected from Universities in Kiambu and Embu Counties. Linear regression analysis was

done to help develop the model, and a mathematical model was developed. The proposed model was: total cost

of open-source software ownership = direct + +indirect + hidden costs. To validate the model, it was subjected to

expert validation. The model will be an outstanding contribution to information technology as it will make it

possible to come up with the total cost of owning open-source software.

Keywords: adoption, open-source software, total cost ownership

1. Introduction

The definition of open-source software is given as software available for one to use either freely or at a small fee.

However, the source code is freely available for modification and alteration (Wiley, 2014). A successful

demonstration of open-source software is the now widely used Moodle Learning management system. There are

other older open-source products, such as the famous operating system -Linux.

The open-source products have found themselves in the hands of institutions such as Universities in Learning

management systems such as Sakai and Moodle to save an extra coin. Open-source software is believed to carry

several advantages compared to its counterpart proprietary software, whose primary drive is profits

(Mthethwa-Kunene & Maphosa, 2020). The advantages of open-source software include saving on costs as it is

acquired freely. The other advantage is enormous community support since several people have the source code

and thus propose changes and improvements to the original product. Thus, due to the above advantages,

institutions, companies, and governments are calling for switching to open-source software to slash costs

(Asamoah, 2019).

Despite the adoption to cut costs, organizations are skeptical about the actual cost of open-source software.

Several organizations have halted the quest to adopt the open-source product. The reason for this is the lack of a

way to determine the total cost of this software (Bista, 2023). The Gartner group first proposed the total cost of

software ownership concept upon finding they needed help with some software costs. The group thus devised a

model that would use cost accounting to obtain the total cost of software ownership. The Gartner Group defines

Total cost of ownership as all the costs that involve information technology and anything encompassing

information technology (Gollapudi et al., 2018). Therefore, the total cost of software ownership is the entire cost,

from the planning of acquisition to the final stage of the software, which is retirement.

mailto:duncankereukodhek@gmail.com

http://cis.ccsenet.org Computer and Information Science Vol. 17, No. 1; 2024

19

1.1 Research Problem

According to research on Open-source software adoption in institutions, as of 2012, 60% of organizations in

Kenya had adopted Open-source software (Gichira et al., 2012). Undoubtedly, Open-source software adoption

levels have risen over the years, and the challenge is not adoption anymore. There has arisen a new concern. The

total cost of ownership of open-source software is unknown by organizations (Kamau, 2017). This is the problem

that this study seeks to address. The study intends to develop a Model to calculate the total cost of owning

open-source software. There are available models of the total cost of ownership; however, they cannot come up

with the total cost of ownership of open-source software. The generic metrics need to be improved, as cited by

(Bensberg & Dewanto, 2003), where it is argued that the total cost of ownership uses cost accounting instead of

capital budgeting.

On the other hand, Bailey & Heidt, (2003) counters that the available models are futuristic and thus not helpful.

Whereas Owoche (2017) argues that the original Gartner model was not specific to a particular scenario and thus

ineffective. Böckelman, (2017) says that the generic total cost of ownership models fails to factor in risk. Finally,

Ilin et al. (2021) discovered hidden costs left out of the initial TCO models. The aim of open-source software is

cost reduction and an increase in cost is the least expected scenario. How can we then determine an approximate

price before committing to adoption?

There is a need to determine the total cost of ownership of open-source software in Kenya and Africa (Kamau,

2017). The existing models measure other aspects that are not open-source software. For instance, the research

carried out by Taibi, Lavazza, and Morasca (2007) highlighted that most organizations did not want to adopt

open-source software mainly because there was no well-structured evaluation technique. The organizations

needed a proper open-source software model to evaluate costs. Bassi (2010) argues that the total cost of

ownership available is not specific to open-source software, and thus, there is a need for a model to determine

open-source software. Also, because of the unique nature of the open-source software, it has to use a different

procurement style, which demands a new model to aid in making procurement decisions (Golden, 2005).

1.2 Justification

The proposed model gives institutions a well-structured evaluation tool to enable them to adopt open-source

software. It significantly contributes to Kenyan and African continent Information Technology organizations and

institutions of higher learning as there is a lack of contextualized models for open-source software. The model

addresses the issue of hidden costs left out by the generic total cost of ownership models. It factors hidden costs

and is contextualized to an open-source learning management system. Kenyan and African information

technology firms and academic institutions find this contribution particularly useful since it tackles the unique

contextual difficulties they encounter.

1.3 Purpose of the Study

This study aimed to develop a model for total cost determination in open-source software ownership.

2. Literature Review

This part of the review explores the literature that has been done regarding cost of software. It explores the

techniques, the methods and models of total cost of ownership of open-source software.

2.1 Techniques to Calculate Cost of Software

Techniques are generally acceptable ways of doing something. The techniques to calculate the software cost are

proven to work when quantifying the cost. The following table below summarizes the techniques used to

quantify the cost of owning software, their definition, and the limitations of the techniques, as pointed out by

various scholars.

2.2.1 Expert Judgment

As expounded by Shrestha and Sheikh (2021), the technique involves taking the knowledge on the cost of

software from experts. The technique involves first identifying the project one wants to undertake, the second

step is pinpointing experts skilled in software development and estimation, and the third step is giving out their

views where the expert view of every member is taken into consideration. Finally, the judgments were analyzed,

and an average was carried out through such methods as weighted averaging. The technique however has

drawbacks.

The technique’s most significant limitation is that it is prone to bias. As DeMarco and Lister (2013) pointed out,

the biggest challenge is bias and being subjective on the side of the experts. The judgment of the experts, as

http://cis.ccsenet.org Computer and Information Science Vol. 17, No. 1; 2024

20

pointed out by the authors, is subjective to their views on the subject. Another disadvantage of the technique

highlighted by the work is inconsistency among the experts, as different experts may explain a similar situation

based on their view on that particular subject.

2.1.2 Software Estimation by Analogy

It is a software estimation technique that is based on comparisons. A project is taken and checked based on its

resemblance to a past project (Phannachitta, 2020). The procedure followed in this kind of estimation is to

identify a similarity between the project that has been identified and the one you are about to carry out; the

second step is to collect data from the historical project pointed out, and the third step entails analysis of the

metrics used to identify trends that can be related to the current project. Finally, the differences are adjusted, and

the model is applied to the current project. The technique of assessing a project with a similar one in the recent

past has its disadvantages.

As Katoh and Standley (2013) pointed out, the disadvantage of estimation by analogy is first that the technique is

built upon assumptions. The technique first assumes that the projects with certain similarities will likely cost the

same amount of cash. This assumption often needs to be revised, as pointed out by the article. Another

disadvantage is the difficulty of finding data that aligns with a project one wishes to undertake.

2.1.3 Parkinson’s Law Software Estimation

It is a general law that states that regardless of the effort that is applied, work or a project expands to be done

within the time frame that it was scheduled to be done. The shortcoming of the technique is its assumption that

effort is always well-spent.

2.1.4 Pricing to Win Technique of Software Estimation

This is a technique used for software estimation whereby the cost is taken to be what a customer offers (Thota et

al., 2020). For instance, if a customer offered 200 dollars for a software project, the cost would be 200. However,

the technique of molding software according to a client’s budget has disadvantages. As pointed out by Thota et al.

(2020), a limitation of this technique is the likelihood of compromising user requirements and features for the

money the customer gives.

2.1.5 Bottom-up and Top-down Estimation Techniques

The bottom-up software estimation technique takes the cost of every module, adding it as software development

goes on. The bottom-up starts with small patches joining them to make up the more significant project

(Jørgensen, 2004). On the other hand, the top-down software estimation technique contemplates a software

project as one massive project. Then, it cuts it down into smaller, understandable components or modules. The

techniques have drawbacks that render them unsuitable. As Tayal et al. (2019) demonstrated, the methods often

ignore the crucial step of documentation. Also, the techniques are time-consuming and resource-consuming since

the breakdown of a project into its modules is a laborious task and, thus, an expensive exercise in the long run.

The techniques are also known as traditional ways of software estimation. Over time, better and more

sophisticated methods emerged. Unlike a technique, the model may incorporate several techniques and methods

to improve cost estimation.

2.2 Software Ownership Models

A model describes how structures function and how computation is arrived at. It can also be described as a

representation of a complex scenario in a more straightforward way that the audience can easily understand.

The models are classified as either mathematical or pictorial. Mathematical models are in the form of equations

that can be used to give out a figure. On the other hand, pictorial models are diagrammatical representations that

depict the flow of functions and structures. Below is a table summarizing software ownership models, their

descriptions, and the corresponding limitations.

2.2.1 COCOMO

It is an acronym for constructive cost model. It was developed by Barry Boehm in 1981 after collection of data

from several software development projects. Since its development in 1981, the model has undergone various

improvements and updates. The model is given as an equation that factors the software project's time, size, and

effort.

The equations for the COCOMO are listed below:

http://cis.ccsenet.org Computer and Information Science Vol. 17, No. 1; 2024

21

Basic COCOMO model

E=a×(KLOC)b (1)

With E being effort calculated in person-months, a and b being constants obtained from historical projects, and

KLOC (kilobytes in lines of code). The above equation was the basic COCOMO equation proposed in 1981.

The basic model was criticized by Ilham Cahya Suherman et al. (2020) because the model should have taken into

consideration other factors, such as environmental factors. These weaknesses gave birth to the next version of

COCOMO.

Intermediate COCOMO model

This version was conceptualized to cover the defects in the basic COCOMO. The intermediate COCOMO

incorporated 15 cost drivers into its initial equation, thus improving it. The equation for the intermediate model

is given as:

E=a×(Size)b×∏i=1nEmi. (2)

The equation considered personnel attributes, hardware factors, and environmental factors.

n is the number of cost drivers presented.

A and b are the constants obtained from the historical projects.

E is effort in person-months, and Emi is the cost driver.

The detailed model

This is an improvement of the intermediate model; it retains the equation above while it introduces an

assessment of the cost drivers in the six stages of software development. The equation for the model is:

E=a×(Size)b×EAF. (3)

Where E is the effort in person-months, a and b are constants, EAF is a product of various cost drivers.

2.2.2 Estimacs Model

Robin Howard put forth the model. It is applicable mainly in finding the approximate cost of safety-critical

software. The model relies on function points to give the software cost. The equation applied to come up with an

approximate cost is private as it is proprietary software (Kahuti, 2020). The model involves function points,

which are 25 input functionalities rather than lines of code. The 25 questions are pre-defined and awarded

weights used to arrive at a weighted score. The score is subjected to an internal classified algorithm, and an

estimate of the software project is given. The model however had some disadvantages that made it unsuitable. As

illustrated by Baghel et al. (2020), the most significant limitation of the model is the need for more transparency

on how data is manipulated and is thus prone to bias.

2.2.3 PUTNAM Model

It is also known as the software lifecycle model (SLIM). It predicts software cost in person-months by measuring

the estimated lines of code in conjunction with several other factors (Sharma et al., 2011). The equation for the

model is given as:

Effort (PM) = B * L ^ Ck * Td ^ D0 (4)

Where effort is given in PM (person-months), B is the factor of scale, L is the software size in lines of code, and

Ck is the development team's experience. On the other hand, Td is development time, and D0 is the effort

multiplier.

Although the model is presented as a classic, it has some faults which make it less suitable. For instance, Sharma

et al. (2011) criticize the model as using historical data that needs to reflect the changing technology in the

industry.

2.2.4 SEER-SEM Model

The model was put up by Golath in 1983. The model works on simulation and emulates how the final software

will appear. The model has inputs and outputs (Saleem et al., 2019). The inputs are the size of the project, the

personnel needed for the development, the environmental characteristics, the constraints of the project, and the

software project's complexity level. The inputs are entered by a user or through analysis of historical data or

expert opinion.

The outputs are approximated in cost, effort, schedule, maintenance, and reliability.

http://cis.ccsenet.org Computer and Information Science Vol. 17, No. 1; 2024

22

The basic equation is given as:

Effort (E) = Size (S) * Productivity Factor (PF) (5)

The major limitation has been said by researchers to be that the model has complex internal calculations, which

makes it undesirable to several project managers as it is difficult for them to comprehend how it functions (Wiley,

2014).

2.3 Total Cost of Software Ownership Models

The term total cost of ownership was coined by the Gartner Group in 1987 when they discovered that costs were

not reflected in their books of account. The cost of owning software covers every aspect, from purchase to

retiring the software. Below are the total cost of ownership models.

2.3.1 Gartner Total Cost Ownership Model

This was the very first model developed by the Gartner group so that they could account for the costs of the

computing machinery that was available on their premises. The model goes beyond the purchase price of

hardware or software equipment to include its service fee and other costs incurred. The model has postulated

direct and indirect costs (Kumar & Behera, 2020). The indirect costs could be accounted for and reflected in

books of account. Indirect costs, on the other hand, are derived costs that may not be reflected in the books of

accounts.

TCO= direct costs+ indirect costs (6)

TCO- Total cost of ownership.

The model comprises five phases: acquisition, deployment, management, end user, and disposal costs. The

acquisition phase entailed the upfront costs of hardware and software, training and license fees, and installation

costs. The second phase included integration costs, customization fees, testing, and data migration fees. The third

phase entails management costs for extra staff, maintenance, and security. The fourth phase was end-user costs,

which included downtime, lost time, and a learning curve. The final phase had disposal costs, which included

data removal, de-installation, and recycling. The Gartner model is criticized as having limitations by various

scholars.

Owoche (2017) argues that the Gartner group model was not tailored to any particular product. However, it was

a generic model, and thus, there are more suitable models for estimating software costs. Also, the writer critiques

the model as a cost accounting tool that comes in handy after the damage has been done; thus, it cannot be used

for prediction or planning.

2.3.2 Total Cost of Ownership Model for a Server Platform

The model is an equation that is mathematical and is applied to come up with the cost of owning a cloud server

platform (Capuano, 2014). The equation for the model is given as:

TCO = Chw + Csw + Csvc + Coth (7)

Where: TCO is the total cost of ownership, Chw- is the cost of hardware, Csw is the cost of software, Csvc is

the cost of service, and Coth is any other costs. The model has faults and has been critiqued by Chi et al. (2021).

The scholar argues that the other costs left open in the equation (Coth) are often ignored when coming up with

costs since they have yet to be specified.

2.3.3 Total Cost of Ownership of ERP System

The model for an enterprise resource planning system was developed by Patrick Owoche in 2017. The model. It

was developed after careful examination of the system at Maseno University. The model comprises procurement,

hardware and software acquisition, implementation, maintenance, and end-user costs.

The study's limitations, as pointed out by Akbar (2019), the model cannot be generalized as it was done as a case

study in a single institution. Also, the article needs to fix the model as a data-collecting tool rather than a

software estimation model.

2.3.4 Cloud Computing Model

The cloud computing model was developed by McKinsey & Company. The model aims to calculate the

approximate cost (Gadatsch, 2023). The equation that was created for the total cost of ownership of the cloud is

given as:

TCO= Initial Costs + Recurring Costs – Savings (9)

http://cis.ccsenet.org Computer and Information Science Vol. 17, No. 1; 2024

23

TCO is the total cost of owning the cloud. It is given by adding the initial and recurring expenses and subtracting

the savings. It is a model that involves additional costs recurring costs and removes the savings incurred in a

system.

2.4 Total Cost of Open-Source Software Ownership Models

2.4.1 Maha and Shaikh TCO for open-source software

Shaikh and Conford specifically developed the open-source cost determination model for the United Kingdom

government. The government needed to learn the actual cost of the open-source software they used, and thus,

they were tasked with developing a model. The model classified the open-source as consisting of factors pushing

the software's cost (Maha, 2011). The cost factors are the elements that influence or cause the price of something,

in this case software, to increase.

The equation for the model is given as:

TCO= direct costs + indirect costs (10)

The model identified direct cost factors, described as the cost elements that can be accounted for and reflected in

the accounting books. The direct costs were the ones that are frequently reflected in accounting details. The other

cost factors identified are the indirect costs, which consist of cost elements that may not be inferred directly but

influence the cost of open-source software. The expenses were added through the lifecycle of the project.

Owoche (2017) argues that this model is that although it correctly identifies direct and indirect cost factors and is

related to open-source software and thus can measure the cost of open-source software, it is specifically not

targeted at a software product and, therefore, needs to be more precise. It is general. Another limitation is that the

model fails to factor in marketing costs, which is a hidden cost. Thus, the model fails to factor in the hidden

costs.

According to Kamau & Sanders (2017), the model cannot be contextualized to the local setting as it was carried

out in Europe and Asia. Thus, there is a need to develop an open-source cost determination model that can be

contextualized to the local conditions and context.

To solve the identified issues, a refined total cost of ownership model of open-source software must be

developed. Böckelman (2017) argues that a better total cost of ownership model should capture hidden costs

such as marketing costs and retraining due to users' poor attitudes. The model to be developed should also be

specific to a given open-source product so that it achieves its purpose. Moreover, the model has to be

contextualized to the local setting for relevancy. Thus, it has to be in the Kenyan setup.

Various researchers argue that research should be based on the local conditions to be relevant. For instance, the

factors influencing the cost of open-source software could be different for the African continent than those in

Europe (Kibuku et al., 2020). There is also an argument that besides hidden costs, hidden costs such as retraining

and marketing of open-source software and employee time should be included in a total cost of ownership

model.

There is a limited adoption level of open-source software. This is even higher, as seen by studies in Africa.

Despite having no fee, several individuals do not use open-source software but prefer proprietary software. The

governments in Africa have the highest adoption levels of open-source software. The reason for not adopting

open-source software, among others, is the need for more knowledge of the cost of this software.

2.5 Theoretical Framework

Gartner's TCO model was the theoretical framework and basis for developing the new model. Gartner group

proposed a model conceptualizing that the total cost of ownership of open-source software is direct cost-plus

indirect costs, which gives the total cost of ownership of software. The limitations and weaknesses identified in

the models enabled the researcher to develop a conceptual framework factoring in the ideas fronted by the critics

of the previous cost estimation methods and models.

2.6 Conceptual Framework

The conceptual framework is often a pictorial representation of the variables involved in research and the

relationship between them. The representation shown below has the independent and dependent variables,

demonstrating their relationship.

The conceptual framework is illustrated below:

http://cis.ccsenet.org Computer and Information Science Vol. 17, No. 1; 2024

24

Conceptual framework

 Independent Variables

Figure 1. The conceptual framework of the proposed model

Independent variables are the variables that are not affected by others, while a dependent variable is one affected

by the independent variable. The independent variables in the above representation are direct, indirect, and hidden

costs.

The direct costs are the ones that are easily seen and readily accounted for in the lifetime of software (Owoche et al.,

2015). The direct costs include search costs, which are the price incurred in the selection of a suitable software;

acquisition costs, which entail the cost to put the software in place for it to function correctly; and integration costs,

DEPENDENT VARIABLE

Direct costs

• Search costs

• Acquisition

• Integration

Indirect costs

• training costs

• hosting costs

• Third - party

plugins

• hiring new staff

Hidden costs

• Attitude of

employees

• Compensation

costs

• Re - training of

peers

• Employee time

Ownership of open -

source software.

- contributor

- software component

- proportion of ownership

(Ownership of open -

source software.)

http://cis.ccsenet.org Computer and Information Science Vol. 17, No. 1; 2024

25

which are the cost incurred in joining up the software so as it can work properly with the existing systems.

Indirect costs are incurred by software; they are not directly computed but then reflected in the books of account

(Owoche et al., 2015). The indirect costs, as depicted in the conceptual framework, are training costs, hosting costs,

and third-party plugins needing monthly subscriptions.

Hidden costs, on the other hand, are not easily identified and do not end up in the books of account. The costs entail

the attitude of employees, compensation costs, retraining of peers, and employee time.

The dependent variable is the variable whose change is affected by the independent variables. The dependent

variable in this is the total cost of ownership of open-source software.

3. Research Methodology

The research adopted a multi method methodology to address the study's objectives. The methodology uses

quantitative and qualitative data to come up with a solution to a research question. The methodology ensured that

the varied objectives of the study were eventually accomplished.

3.1 Research Design

The research design that was adopted by the study was correlational. A correlational design aims to check

whether a relationship exists between the variables presented for the study. It helped check whether the

independent variables were related to the dependent variable.

3.2 Population

The population for the study was 316 participants in the Open distance and learning departments (ODEL) in

public universities in Embu and Kiambu counties.

Table 1. Population for study

University county Status Number of participants

Kenyatta university (Main campus) Kiambu Public 80

Jomo Kenyatta University of science and Technology (Main campus) Kiambu Public 74

Mount Kenya University (Main campus) Kiambu Private 50

Gretsa University Kiambu Private 45

Embu University (main campus) Embu Public 67

 316

(Ntarangwi, 2022).

Kiambu County was chosen for study as it possesses the most universities that pioneered adopting an

open-source Learning management system (LMS) (Ntarangwi, 2022). Embu County, on the other hand, was

selected to bring about balance. The universities were selected through purposeful sampling. A preliminary study

was conducted to identify the universities in the counties that used open-source Learning management systems.

The Open Distance and Learning Departments (ODEL) department was picked because it is where the learning

management system is often utilized. Thus, it has the population possessing characteristics desired by the user.

3.3 Sample Size Determination

Mugenda and Mugenda’s 30% formula was used to select some participants in the study. The researchers state

that for a population of less than 10,000, a 30% representative sample is sufficient (Omona, 2013).

One public university with the most participants and one private university with the most subjects in the

population were purposefully selected for study. The purposefully selected institutions were subjected to 30% for

the desired sample size.

Table 2. Sample population for the study

University County Population Sampled participants

Kenyatta university Kiambu 80 27

Mount Kenya University Kiambu 50 15

Embu University Embu 67 20

TOTAL SAMPLE 62

The sample size chosen was 62 respondents and 15 more to account for any error, making it 77 respondents. Of

the 77 respondents, 62 were issued questionnaires, while 15 were interviewed.

3.4 Data Collection Techniques

Questionnaires and interviews collected data for the research. The questionnaire had questions that were on a

Likert scale with 5-point values. On the other hand, interviews were structured and answered by experts in the

http://cis.ccsenet.org Computer and Information Science Vol. 17, No. 1; 2024

26

ODEL departments, such as system administrators of the open-source LMS. The data was collected and analyzed

using SPSS version 25.

3.5 Data Analysis and Presentation

The collected data was cleaned by removing the incomplete responses and leaving the complete ones. The

responses given out by respondents were presented using tables, pie charts, and bar graphs for easier visibility.

Further analysis was subjected to the questionnaires, whereby linear regression was applied to establish the

relationship between variables.

4. Analysis and Findings

This section provides the results that were found and the analysis of them. The results are presented in the

order so as to answer the various objectives.

4.1 The Direct Cost Factors of Open-Source Software

The researcher set out the direct cost factors to find out their existence by posing the questions to respondents to

ascertain that search, acquisition, and integration costs are direct cost factors. The responses are as shown below.

4.1.1 Search Costs

The search costs are described as the costs incurred when sampling out and deciding on the type of software the

institution needs. The responses shown by the histogram below are responses given out by respondents

concerning whether they thought search costs existed.

Figure 2. Responses on Search cost

80.33% and 13.11% of respondents strongly agreed and agreed that search costs were incurred when selecting

the type of open-source LMS to acquire and use as an institution. Interviews, on the other hand, helped expand

on the search costs, whereby it was pointed out that meetings were held to agree on the type of software, expert

opinion fee, and fee incurred in demonstrations and presentations.

4.1.2 Acquisition Cost

The acquisition costs are incurred to bring the open-source software searched for and identified by the team to

the institution. To find out the certainty of the acquisition being part of the costs incurred, a question was posed

to respondents, asking them to give their opinion on whether, indeed, there are acquisition costs. The table below

shows the responses given.

Table 3. Responses on acquisition costs

Acquisition cost Frequency Percent

 Strongly agree 41 67.2%

Agree 16 26.2%

Neutral 3 4.9%

Disagree 1 1.6%

Total 61 100.0%

Table 3 shows that 67.2% and 26.2% agreed and agreed that acquisition cost is incurred in procuring

open-source software. This confirms that open-source software accrues acquisition costs.

http://cis.ccsenet.org Computer and Information Science Vol. 17, No. 1; 2024

27

Upon further analysis of the responses given through interviews, it was revealed that acquisition costs included

installation fees and pilot test costs.

4.1.3 Integration Costs

Integration costs are incurred when the system is being installed in the institution. The costs involve ensuring the

open-source software's compatibility with the organization's existing systems. The questionnaire was given to

respondents, asking them to gauge whether they thought the costs were incurred during the installation of the

open-source software. The results obtained are displayed below.

Table 4. Responses on Integration costs

Integration costs were incurred Frequency Percent

 Strongly agree 42 68.9%

Agree 17 27.9%

Neutral 2 3.3%

Total 61 100.0%

Table 4 shows the responses given by the respondents; it is evident that most of the respondents strongly agreed

and agreed at 68.9% and 27.9%, respectively. These confirm that integration costs are incurred when using a new

open-source software. The interviews revealed that the integration costs in open-source software are plugins to

support the software, APIs acquired to allow communication between the new system and other systems, and the

costs incurred in the migration of users.

4.2 The Indirect Cost Factors of Open-Source Software

These costs are known to be incurred by open-source software; however, they are only sometimes recorded in

the account books. The research explored the indirect cost factors to ascertain whether the cost factors apply to

open-source software. The results from the respondents are as explored below.

4.2.1 Hiring Costs

These are costs that are accrued by an open-source software as a result of it requiring the organization to hire

more staff to manage the newly acquired software.

Figure 3. Responses on hiring costs

As shown by the histogram in figure 3 above, most respondents, 72.13% and 16.39%, strongly agreed and

agreed. Therefore, hiring costs are indirect to an open-source software product.4.2.2 hosting costs

These are costs that revolve around hosting the open-source software. The results below are from respondents:

Table 5. Responses on hosting costs

The open source LMS is hosted and a fee is remitted to pay for it

 Frequency Percent

Valid Strongly agree 44 72.1%

Agree 10 16.4%

Neutral 5 8.2%

Disagree 2 3.3%

Total 61 100.0%

http://cis.ccsenet.org Computer and Information Science Vol. 17, No. 1; 2024

28

Table 5 above shows that 72.1% and 16.4% of respondents strongly agreed and agreed, respectively, that

open-source software accrues hosting costs. Therefore, hosting costs are indirect costs accrued by open-source

software.

4.2.3 Third Party Costs

These are costs incurred in payment to software or services provided by third parties. The question was posed to

find out if third party costs are incurred and below are the responses

Figure 4. Responses on Third party costs

The histogram majority of respondents, 67.21% and 14.75%, strongly agreed that third-party costs are incurred

in open-source software. From the responses, third-party costs are indirect costs incurred.

4.2.4 Compensation Costs

This is money paid out to cover services provided by the staff outside the regular hours or a fee given as a

penalty. To ascertain that open-source software incurs compensation costs, a question was posed to respondents,

and the answers are given below.

Table 6. Responses on compensation costs

Compensation costs are incurred by an open-source software

 Frequency Percent

Valid Strongly agree 43 70.5%

Agree 9 14.8%

Neutral 3 4.9%

Disagree 5 8.2%

Strongly disagree 1 1.6%

Total 61 100.0%

Most respondents, 70.5% and 14.8%, strongly agreed that open-source software incurs compensation costs.

Upon further inquiry, the interviews revealed that the compensation costs included paid time off and overtime

pay.

4.3 The Hidden Cost Factors of Open-Source Software

The hidden cost factors are costs which are not accounted for and rarely seen as cost factors in an organization.

4.3.1 Marketing Costs

For open-source software to be acceptable in the organization, marketing the product to employees must be done

to achieve acceptance and public participation. The respondents were asked whether they thought open-source

software incurred marketing costs, and the responses are as presented below:

http://cis.ccsenet.org Computer and Information Science Vol. 17, No. 1; 2024

29

Figure 5. Responses on marketing costs

78.69% and 19.67% of respondents strongly agreed and agreed that marketing costs were incurred in setting up

open-source software. The marketing costs are used in workshops, facilitations, posters, and expert-facilitated

meetings.

4.3.2 Employee Time

This refers to the extra number of hours that an employee has to work as a result of the introduction of

open-source software. This translates to money payable for overtime due to extra hours worked.

To affirm that employee time is a cost to open-source software, a question was posed to respondents, and the

result is as shown below:

Figure 6. Responses on employee time

75.41% and 16.39% strongly agreed that employee time is a cost in open-source software. The responses thus

confirm that employee time is a cost attached to open-source software. Interview responses clarified that

employee time includes workload addition costs, system downtime costs, and overtime costs.

4.3.3 Retraining Costs

Retraining is training done again after the official paid-for training has concluded. The retraining takes the form

of employing a one-on-one coach for better training or going the extra painful mile of making tutorials. The

question was posed to respondents to confirm that retraining is a cost incurred in open-source software. The

answers are present in the pie chart below.

http://cis.ccsenet.org Computer and Information Science Vol. 17, No. 1; 2024

30

Figure 7. Responses on compensation costs

The pie chart shows that 88.89% and 13.11% strongly agreed and agreed that retraining costs are incurred in the

case of open-source software. On further analysis, interviews revealed that the retraining involved the tutorial fee

and one-on-one coaching fee.

4.3.4 Attitudinal Costs

These costs result from the attitude of the employees and users of the open-source software. For instance, the

resistance to the software may lengthen the learning curve, meaning more time and money.

To find out if attitude is a cost in open-source software, a question was posed to respondents, and the results are

as shown below:

Figure 8. Responses on attitudinal costs

The histogram in figure 8 above shows that 63.93% and 26.23% strongly agreed and agreed that attitude is a cost

to open-source software. This confirms that attitude is a cost attached to open-source software. On further inquiry,

the interviews shed light on attitude costs: longer-learnability costs and resistance to change costs.

5. Relationship between the Independent and Dependent Variables

5.1 The Relationship between Direct Cost Factors and Total Cost of Ownership of Open-Source Software

The table 7 presented below was an analysis that majorly examined the correlation between direct cost factors

and the total cost of ownership of open-source software. The Spearman’s coefficient was used to develop the

relationship, as demonstrated in Table 3 below.

Table 7. Relationship between direct factors and total cost of ownership

Correlations

 Total cost_ ownership Direct_cost_factors

Spearman's rho Total_cost_ownership hip Correlation Coefficient 1.000 .393**

Sig. (2-tailed) . .002

N 61 61

Direct_cost_factors
s

Correlation Coefficient .393** 1.000

Sig. (2-tailed) .002 .

N 61 61

**. Correlation is significant at the 0.01 level (2-tailed).

http://cis.ccsenet.org Computer and Information Science Vol. 17, No. 1; 2024

31

Table 7 above shows the results obtained. There is a relationship between direct cost factors and total cost of

ownership. The coefficient for the relationship is 0.393, which shows a moderate positive relationship between

the two variables. This signifies that as the direct costs increase, the total cost of ownership also increases. The

significance level is 0.002, showing that the relationship does not occur by chance or randomly.

Therefore, there is a relationship between direct cost factors and total cost of ownership.

5.2 The Relationship between Indirect Cost Factors and Total Cost of Ownership of Open-Source Software

To establish a relationship between the indirect cost factors and total cost of ownership spearman’s correlation

was done and shown below are the tables with the results.

Table 8. The relationship between indirect cost factors and total cost of ownership of open-source software

Correlations

 Total_cost_ ownership indirect_cost_facto rs

Spearman's rho Total_cost_owners hip Correlation Coefficient 1.000 .487**

Sig. (2-tailed) . .000

N 61 61

indirect_cost_fact ors Correlation Coefficient .487** 1.000

Sig. (2-tailed) .000 .

N 61 61

**. Correlation is significant at the 0.01 level (2-tailed).

The table 8 above shows the relationship between indirect cost factors and total cost ownership. The Spearman’s

coefficient is 0.487, indicating a moderate positive relationship. As the indirect costs increase, the total cost of

ownership also increases. The relationship is statistically significant; thus, it did not occur by chance or

randomly.

Therefore, there is a positive relationship between the total cost of ownership and indirect variables.

5.3 The Relationship between Hidden Cost Factors and Total Cost of Ownership of Open-Source Software

To establish a relationship between the hidden cost factors and total cost of ownership spearman’s correlation

was done and shown below are the tables with the results.

Table 9. The relationship between hidden cost factors and total cost of ownership of open-source software

Correlations

 Total_cost_ ownership Hidden_cost_factors

Spearman's rho Total_cost_owners hip Correlation Coefficient 1.000 .594**

Sig. (2-tailed) . .000

N 61 61

Hidden_cost_facto
rs

Correlation Coefficient .594** 1.000

Sig. (2-tailed) .000 .

N 61 61

**. Correlation is significant at the 0.01 level (2-tailed).

Table 9 above shows that the correlation coefficient was 0.594. This value signifies a robust positive relationship

between hidden cost factors and the total cost of ownership. This means that as hidden costs increase, so does the

total cost of ownership.

Therefore, the findings show a strong relationship between hidden cost factors and the total cost of ownership of

open-source software.

6. Model Summary

The model summary presents a summary of the squares and the predictor values and how they relate to the

dependent variable. The summary is shown in the table below.

Table 10. The Model Summary

Model Summary

Model R R
Square

Adjusted R
Square

Std. Error of
the

Estimate

Change Statistics

R Square
Change

F
Chang

e

df1 df2 Sig. F
Change

1 .825a .681 .664 1.90099 .681 40.593 3 57 .000

a. Predictors: (Constant), Hidden_cost_factors, Direct_cost_factors, indirect_cost_factors

b. Dependent Variable: Total_cost_ownership

http://cis.ccsenet.org Computer and Information Science Vol. 17, No. 1; 2024

32

Table 10 above, shows a model summary whereby it shows a strong relationship between the predictors which

are direct, indirect and hidden cost factors, and the dependent variable total cost of ownership. Total cost of

ownership changes are correlated with changes in the predictors, according to the strong positive correlation

coefficient (R) of 0.825. The model's predictors account for about 68.1% of the overall cost of ownership

variability, according to the coefficient of determination (R Square) of 0.681. This overally shows that there is a

strong relationship between the predictors and the dependent variable.

Figure 9. The proposed total cost of open-source software ownership model

The model depicted above in figure shows that the direct, indirect, and hidden cost factors directly cause the cost of

ownership of open-source software. The direct cost factors include search costs, which are the initial costs incurred

when looking for a product or its vendor; the search costs are further broken down into meetings held, expert

opinion fees, and demonstrations and presentations.

The indirect cost factors, on the other hand, include hiring staff, hosting costs, third-party plugin licenses, and

compensation, which consist of time-off and extra-hour rate pay.

The hidden costs, on the other hand, comprise the open-source learning management system comprising awareness

costs and professional opinion fees. Employee time is the second attribute comprising workload increase

allowances, downtime, and overtime fees. Another element of the hidden costs is retraining, which consists of

consultation fees, tutorial costs, and one-on-one coaching fees. The final element is attitude, which includes

change resistance and negative attitude.

The discussions above show that hidden costs contribute the most to the total cost of ownership of open-source

software. The aspect is illustrated perfectly through the mathematical equation derived from the coefficients of the

model, as shown below:

Total cost of open-source software= 2.000+ 0.134*direct costs + 0.101* indirect costs + 0.430*hidden costs

(11)

http://cis.ccsenet.org Computer and Information Science Vol. 17, No. 1; 2024

33

7. Conclusions

In conclusion, the study above explored the problem of software cost determination. A gap was subsequently

identified after a review of the available methods used for determining the cost of open-source software. Most of

the models pointed out had issues of computing effort alone, capturing only the acquisition cost and ignoring the

lifecycle costs of a product. On the other hand, the available total cost of ownership models needed to be more

specific to open-source software, thus being insufficient for computing the cost of open-source software.

This study used Gartner’s theory of total cost of ownership as the basis for the study. The study used a multi

method methodology incorporating qualitative and quantitative methods to collect data. The research design that

was applied was a correlational research design collecting data from 77 users of open-source LMS in public

universities in Kiambu and Embu counties.

The results showed that the hidden, direct, and indirect cost factors influence the total cost of ownership of

open-source software. The hidden cost factors were found to be the most significant contributor to the cost of

open-source software. Thereafter a total cost model for open-source software was developed. The model will go

a long way in solving cost approximation of open-source software in institutions and various companies.

Acknowledgments

I wish to acknowledge Dr. John Wachira Kamau and Dr. Faith Mueni Musyoka for their invaluable contributions

to this article. Their expertise, guidance, and support have been indispensable in shaping the content and

ensuring its completion. I am deeply grateful for their commitment to this work.

Authors contributions

Duncan Kereu Kodhek was responsible for preparing the article, writing the literature review, developing the

study design, and collecting and analyzing data. Dr. John Wachira Kamau played a pivotal role in formulating

the study topic, revising the article, and served as the primary supervisor for this work. Dr. Faith Mueni Musyoka

contributed significantly to data collection, proofreading of the article, and also acted as a supervisor for this

project. It is important to note that both Dr. John Wachira Kamau and Dr. Faith Mueni Musyoka made substantial

contributions that greatly contributed to the success of this work. All authors have thoroughly reviewed and

approved the final manuscript.

Funding

There was no funding for this project.

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could

have appeared to influence the work reported in this paper.

Informed consent

Obtained.

Ethics approval

The Publication Ethics Committee of the Canadian Center of Science and Education.

The journal’s policies adhere to the Core Practices established by the Committee on Publication Ethics (COPE).

Provenance and peer review

Not commissioned; externally double-blind peer reviewed.

Data availability statement

The data that support the findings of this study are available on request from the corresponding author. The data

are not publicly available due to privacy or ethical restrictions.

Data sharing statement

No additional data are available.

Open access

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution

license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/

http://cis.ccsenet.org Computer and Information Science Vol. 17, No. 1; 2024

34

References

Abdulmajeed, A. A., Al-Jawaherry, M. A., & Tawfeeq, T. M. (2021). Predict the required cost to develop

Software Engineering projects by Using Machine Learning. Journal of Physics: Conference Series, 1897(1),

012029. https://doi.org/10.1088/1742-6596/1897/1/012029

Asamoah, M. K. (2019). Reflections and refractions on Sakai/Moodle learning management system in

developing countries: A case of Ghanaian universities’ demand and supply perspective analyses. African

Journal of Science, Technology, Innovation and Development, 12(2), 243-259.

https://doi.org/10.1080/20421338.2019.1634318

Bista, G. (2023, January 24). Total cost modeling of software ownership in Virtual Network Functions.

Theses.hal.science. Retrieved from https://theses.hal.science/tel-04074989/

Böckelman, C. (2017). Cost analysis of cloud based converged infrastructure for a small sized enterprise.

Aaltodoc.aalto.fi, 28(12). https://aaltodoc.aalto.fi/handle/123456789/27921

Chi, Y., Dai, W., Fan, Y., Ruan, J., Hwang, K., & Cai, W. (2021). Total cost ownership optimization of private

clouds: a rack minimization perspective. Wireless Networks, 15(7).

https://doi.org/10.1007/s11276-021-02757-1

Corrado, E. M. (2023). Proprietary and Open Source Software Systems in Libraries: A Few Considerations.

Technical Services Quarterly, 40(3), 202-209. https://doi.org/10.1080/07317131.2023.2226434

Gadatsch, A. (2023). IT Investment Calculation and Total Cost of Ownership Analysis: IT Standards as a Tool

for IT Controlling. Springer EBooks, 16(6), 75-93. https://doi.org/10.1007/978-3-658-39270-3_6

Gandomani, T. J., Dashti, M., & Nafchi, M. Z. (2022). Hybrid Genetic-Environmental Adaptation Algorithm to

Improve Parameters of COCOMO for Software Cost Estimation. 2022 Second International Conference on

Distributed Computing and High Performance Computing (DCHPC), 9(4), 82-85.

https://doi.org/10.1109/DCHPC55044.2022.9732107

Gollapudi, S., Rath, K., Vrind, T., TY, D., & Rao, P. (2018). A Novel and Optimal approach for Multimedia

Cloud Storage and Delivery to reduce Total Cost of Ownership. EAI Endorsed Transactions on Cloud

Systems, 0(0), 162596. https://doi.org/10.4108/eai.5-11-2019.162596

Jørgensen, M. (2004). Top-down and bottom-up expert estimation of software development effort. Information

and Software Technology, 46(1), 3-16. https://doi.org/10.1016/s0950-5849(03)00093-4

Kahuti, J. (2020, December 21). Software Cost Estimation – A Comparative Study of COCOMO-II and

Bailey-Basili Models. Ieeexplore.ieee.org. Retrieved from

https://ieeexplore.ieee.org/abstract/document/9194166/

Kalantar, K. L., Carvalho, T., de Bourcy, C. F. A., Dimitrov, B., Dingle, G., Egger, R., … Zhang, M. A. (2020).

IDseq—An open source cloud-based pipeline and analysis service for metagenomic pathogen detection and

monitoring. GigaScience, 9(10). https://doi.org/10.1093/gigascience/giaa111

Kamau, J., & Sanders, I. (2017). Adoption of Free Desktop Open Source Software in Developing Countries in

Africa: A Case of Kenyan University Students. Retrieved from

https://core.ac.uk/download/pdf/154915166.pdf

Kibuku, R., Ochieng, D., & Wausi, A. (2020). 2020. e-Learning Challenges Faced by Universities in Kenya: A

Literature Review. The Electronic Journal of E-Learning, 18(2). https://doi.org/10.34190/EJEL.20.18.2.004

Kumar, K., & Behera, H. S. (2020). Software Effort Estimation Using Particle Swarm Optimization: Advances

and Challenges. Advances in Intelligent Systems and Computing, 14(8), 243-258.

https://doi.org/10.1007/978-981-15-2449-3_20

Link, G. J. P., & Qureshi, S. (2018). The Role of Open Source Communities in Development: Policy

Implications for Governments. Hawaii International Conference on System Sciences 2018 (HICSS-51),

21(12). https://doi.org/10.24251/HICSS.2018.302

Maha, S. (2011). Maha Shaikh and Tony Cornford. Retrieved from

https://eprints.lse.ac.uk/39826/1/Total_cost_of_ownership_of_open_source_software_(LSERO).pdf

Mthethwa-Kunene, K. E., & Maphosa, C. (2020). An Analysis of Factors Affecting Utilisation of Moodle

Learning Management System by Open and Distance Learning Students at the University of Eswatini.

American Journal of Social Sciences and Humanities, 5(1), 17-32. https://doi.org/10.20448/801.51.17.32

https://doi.org/10.1088/1742-6596/1897/1/012029
https://doi.org/10.1080/20421338.2019.1634318
https://theses.hal.science/tel-04074989/
https://aaltodoc.aalto.fi/handle/123456789/27921
https://doi.org/10.1007/s11276-021-02757-1
https://doi.org/10.1007/978-3-658-39270-3_6
https://doi.org/10.1109/DCHPC55044.2022.9732107
https://doi.org/10.4108/eai.5-11-2019.162596
https://doi.org/10.1016/s0950-5849(03)00093-4
https://ieeexplore.ieee.org/abstract/document/9194166/
https://doi.org/10.1093/gigascience/giaa111
https://core.ac.uk/download/pdf/154915166.pdf
https://doi.org/10.34190/EJEL.20.18.2.004
https://doi.org/10.1007/978-981-15-2449-3_20

http://cis.ccsenet.org Computer and Information Science Vol. 17, No. 1; 2024

35

Mutai, G. K. (2019). A Framework of Open Source Solution as Tool for Cost Reduction Among Smes in Nairobi:

Case of Ainushamsi Energy. Erepository.uonbi.ac.ke. http://erepository.uonbi.ac.ke/handle/11295/107163

Owoche, P., Gregory, W., & Juma, K. (2015). Evaluating Total Cost of Ownership for University Enterprise

Resource Planning: Case of Maseno University. Semantic Scholar. Retrieved from

https://www.semanticscholar.org/paper/Evaluating-Total-Cost-of-Ownership-for-University-Owoche-Grego

ry/2df1b4c7549a4405b0dad377ed2c52748ac1a895

Phannachitta, P. (2020). On an optimal analogy-based software effort estimation. Information and Software

Technology, 125(8), 106330. https://doi.org/10.1016/j.infsof.2020.106330

Racero, F. J., Bueno, S., & Gallego, M. D. (2020). Predicting Students’ Behavioral Intention to Use Open Source

Software: A Combined View of the Technology Acceptance Model and Self-Determination Theory. Applied

Sciences, 10(8), 2711. https://doi.org/10.3390/app10082711

Rashid, J., Kanwal, S., Wasif Nisar, M., Kim, J., & Hussain, A. (2023). An Artificial Neural Network-Based

Model for Effective Software Development Effort Estimation. Computer Systems Science and Engineering,

44(2), 1309-1324. https://doi.org/10.32604/csse.2023.026018

Saleem, M. A., Ahmad, R., Alyas, T., Idrees, M., Farooq, A., Shahid, A., & Ali, K. (2019). Systematic Literature

Review of Identifying Issues in Software Cost Estimation Techniques. International Journal of Advanced

Computer Science and Applications, 10(8). https://doi.org/10.14569/ijacsa.2019.0100844

Sharma, T., Bhardwaj, A., & Sharma, A. (2011). A Comparative study of COCOMO II and Putnam models of

Software Cost Estimation. International Journal of Scientific & Engineering Research, 2(11). Retrieved

from

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0fc2259f539200f92e791237a1099fe918

87b746

Shrestha, L., & Sheikh, N. J. (2021). Multiperspective Assessment of Enterprise Data Storage Systems: The Use

of Expert Judgment Quantification and Constant Sum Pairwise Comparison in Finding Criteria Weights.

Open Journal of Business and Management, 09(02), 955. https://doi.org/10.4236/ojbm.2021.92051

Sohaib, O., Naderpour, M., Hussain, W., & Martinez, L. (2019). Cloud computing model selection for

e-commerce enterprises using a new 2-tuple fuzzy linguistic decision-making method. Computers &

Industrial Engineering, 132(21), 47-58. https://doi.org/10.1016/j.cie.2019.04.020

Srivastava, P., Srivastava, N., Agarwal, R., & Singh, P. (2021). A Systematic Literature Review on Software

Development Estimation Techniques. Second International Conference on Sustainable Technologies for

Computational Intelligence, 9(12), 119-134. https://doi.org/10.1007/978-981-16-4641-6_11

Tayal, A., Lam, E., Choudhury, D., Dickerson, M., Moovera, G., & Arora, G. (2019). Determining the Total Cost

of Ownership of Serverless Technologies when compared to Traditional Cloud Deloitte Consulting.

Retrieved from http://pages.awscloud.com/rs/112-TZM-766/images/AWS_MAD_Deloitte_TCO_paper.pdf

Wiley, D. (2014). Bruce Perens, “The Open Source Definition.” Semantic Scholar. Retrieved from

https://www.semanticscholar.org/paper/Bruce-Perens%2C-%E2%80%9CThe-Open-Source-Definition%E2

%80%9D-Wiley/bd77761fc80f775bc50295251191375db8a27d19

http://erepository.uonbi.ac.ke/handle/11295/107163
https://www.semanticscholar.org/paper/Evaluating-Total-Cost-of-Ownership-for-University-Owoche-Gregory/2df1b4c7549a4405b0dad377ed2c52748ac1a895
https://www.semanticscholar.org/paper/Evaluating-Total-Cost-of-Ownership-for-University-Owoche-Gregory/2df1b4c7549a4405b0dad377ed2c52748ac1a895
https://doi.org/10.1016/j.infsof.2020.106330
https://doi.org/10.3390/app10082711
https://doi.org/10.32604/csse.2023.026018
https://doi.org/10.14569/ijacsa.2019.0100844
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0fc2259f539200f92e791237a1099fe91887b746
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0fc2259f539200f92e791237a1099fe91887b746
https://doi.org/10.4236/ojbm.2021.92051
https://doi.org/10.1016/j.cie.2019.04.020
https://doi.org/10.1007/978-981-16-4641-6_11
http://pages.awscloud.com/rs/112-TZM-766/images/AWS_MAD_Deloitte_TCO_paper.pdf
https://www.semanticscholar.org/paper/Bruce-Perens%2C-%E2%80%9CThe-Open-Source-Definition%E2%80%9D-Wiley/bd77761fc80f775bc50295251191375db8a27d19
https://www.semanticscholar.org/paper/Bruce-Perens%2C-%E2%80%9CThe-Open-Source-Definition%E2%80%9D-Wiley/bd77761fc80f775bc50295251191375db8a27d19

