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Abstract 

Cloud computing aims to cut costs through a reduction in spending on equipment, infrastructure, and software by 

applying the multi-tenancy feature. Despite all the benefits of multi-tenancy, it is still a source of risk in cloud 

computing. Cloud adoption may be hampered by security concerns if suitable cloud-based security solutions are 

not available. Moreover, virtualization that enables multi-tenancy, considered one of the main components of a 

cloud, introduces major security risks and does not offer appropriate isolation between different instances running 

on the same physical machine. In this paper, we present a preliminary idea that may support the development of 

new countermeasures for a particular type of threat, namely cache-based side-channel attacks that target cache 

memories in virtualized environments. Attackers specifically target virtual machines in this type of attack to 

create many side channels and gather sensitive data. Additionally, this research offers preliminary concepts to aid 

in developing of solutions or defenses that enable us to identify unusual activity that could point to attacks 

associated with multi-tenancy, as well as security measures that preserve the benefits of multi-tenancy while 

lowering security concerns. 
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1. Introduction 

Cloud computing is a promising technology that may optimize operations and enhance economic and operational 

efficiency, resulting in considerable cost reductions (Takabi et al., 2010). Essential services like social 

networking and commercial apps may also be operated in the cloud. Access to a shared pool of reconfigurable 

computing resources (including networks, servers, storage, apps, and services) that may be provided and released 

with little administration labour or service provider contact is made possible by cloud computing (Garrison et al., 

2012). 

One essential component of clouds is multi-tenancy. By dividing up a virtualized, shared infrastructure across 

multiple users, it enables cloud providers to maximize utilization of resources (Takabi et al., 2010). The 

automatic resource allocation algorithms used by cloud computing providers might result in two or more virtual 

machines representing distinct users residing on the same physical machine and sharing the same resources in 

certain situations (Aljahdali et al., 2013). However, there might be a confidentiality breach if the cloud's 

resources are shared with an adversarial user who uses the placement policy or allocation procedures to co-locate 

their virtual machine with the designated target virtual machine (Saxena et al., 2017) due to co-resident attacks 

being achieved. This allows and facilitates the exploitation of side channels for attacks. 

According to Anwar et al. (2017), in the context of cryptography, side-channel attacks are physical attacks in 

which the confidential information of cryptographic methods, such as an encryption key, is illegally retrieved 

using a physical technique.. The side-channel attack uses the shared hardware resources as a secret path via 

which the attacker obtains crucial data, such as the cryptographic key or any other sensitive information about the 

victim. Side-channel attacks are not new, but their impact is increasingly being felt in cloud computing due to 

the sharing of resources to downsize the cost of computing. Side-channel attacks are one of the most efficient 

methods and they have successfully broken almost all cryptographic algorithms of today; indeed, they are a 

serious threat to the security of cryptographic modules (Saxena et al., 2017). Different forms of side-channel 

attacks can be distinguished according to virtualization, implementation, and module access. 
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This paper focuses on the Flush+Reload cache attack found on the AES cryptosystem. We have also created a 

suitable environment for the attack using a type-two hypervisor whilst accomplishing the attack. Appropriate 

solutions are reviewed and how to solve the problem and mitigate its effects are discussed. 

The rest of the paper is organized as follows. Section 2 reviews the background. Section 3 presents related work. 

Section 4 discusses our research objectives and illustrates the proposed solutions. Finally, section 5 provides a 

brief conclusion. 

2. Background 

This section discusses some important topics and information related to the project to better understand and 

recognize the paper’s objectives. 

2.1 Multi-Tenancy 

The main goal of multi-tenancy is the sharing of resources, which is the fundamental aim of cloud computing. It 

enables many users to be served and save costs, alongside other benefits. For example, when we run a single 

instance of a software application on one instance of a database and provide this application to multiple users, all 

users’ data are hidden and isolated from other users, and each user is called a tenant of the multi-tenancy 

(AlJahdali et al., 2014). However, multi-tenancy presents severe security threats and opens doors for possible 

privacy leaks (Ren et al., 2007). Moreover, it presents the hazard of sharing a server with an adversary VM, thus 

risking the extraction of secret information via side-channels (Varadarajan et al. 2015). 

Multi-tenancy is a security concern in cloud computing because it gives malicious parties the ability to access a 

shared server (Keller et al., 2010). In the realm of cloud computing, multi-tenancy has given rise to a variety of 

discussions. Software developers view it as an opportunity, while security professionals view it as a weakness 

that may result in breaches of confidentiality and, as a result, a problem that has to be resolved (AlJahdali et al., 

2014). 

2.2 Virtualization 

Virtualization is making one physical machine act as many machines using a piece of software called Hypervisor 

(ab- straction layer), which can create a virtualization layer that makes server virtualization possible and contains 

a virtual machine manager (VMM) which enables the simultaneous operation of many operating systems on a 

host machine while monitoring how guests that share virtualized resources are being operated (Jasti et al., 2010), 

such as VMware ESX. Thus, we can run many machines in one physical host with lower cost, higher 

performance and faster maintenance. 

Virtualization's primary objective is to manage workload by increasing the computing power's scalability, 

economy, and efficiency. Virtualization may be implemented at the hardware and software levels (Malhotra et al., 

2014). Although virtualization has positive effects on a cloud computing environment, Keller et al. (2010) 

propose the removal of the virtualization layer as a preventive measure against multi-tenancy, a practice that is 

regarded as a security risk and vulnerability. 

The architecture of virtualized technology consists of cloud users, service models, virtualized models, and host 

software and their hardware. Virtualization enables the running of multiple operating systems and multiple 

applications on the same physical host at the same time (Malhotra et al., 2014), which could be exploited by an 

attacker to achieve a co-resident attack of other victims on the same server (Keller et al., 2010). 

2.3 Memory Deduplication 

Many hypervisors use a method called memory deduplication, including VMWare ESX, Xen, and Linux KVM. 

Memory deduplication increases memory utilization by allowing the data to be shared between virtual machines 

and removing multiple copies from memory (Albalawi et al., 2021). The fundamental idea is that in the case 

where multiple memory pages contain identical content, the hypervisor is solely required to retain a single copy. 

While memory deduplication improves memory efficiency, it has a major impact on system security. It is 

possible to obtain confidential information about the encryption processes running in the target virtual machine 

by taking advantage of the memory deduplication feature. It is possible to obtain confidential information about 

the processes running in the target virtual machine by using the same data of shared encryption libraries. 

Additionally, an attacker may prime data to the cache and wait for a victim to access it. The victim's behavior 

may be inferred from the victim's access to the cached data (Xiao et al., 2013; Irazoqui et al., 2014). For widely 

used hypervisors, a variety of memory deduplication techniques are used, such as the KVM hypervisor, which is 

implemented on the Linux kernel and uses the Kernel Same page Merging (KSM) technique. Virtual machine 

memory pages are automatically searched by KSM for identical pages, and signatures are generated for these 
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pages. In the deduplication table, these signatures are stored. The pages are then deduplicated if two or more are 

discovered to have the same signature (Lindemann and Fischer, 2018). 

As shown in Figure 1, within a virtualized environment, when the virtual machine of the victim and the virtual 

machine of the adversary are co-located on the same host computer, the adversary has the ability to access 

memory information from the virtual machine that is co-located with the victim. By loading the page into its own 

memory, waiting for a little until memory deduplication takes effect, and then writing to that page, for instance, 

the adversary may be able to detect whether or not a certain page is present in the memory of the co-located 

virtual machine (VM). Writing to a page that has been deduplicated will need more time than writing to a page 

that does not have any duplicates. With this knowledge, the attacker will be able to determine whether or not the 

page already exists on a virtual machine that is located nearby, which will result in the disclosure of sensitive 

information (Xiao et al., 2013). 

Figure 1. Memory Deduplication Feature 

2.4 Cloud Side-channel Attacks 

Cloud computing comes with its security problems; in this work, we are concerned with co-residency data 

leakage prob- lems. Because the same physical host is shared and only partitioned by a virtualization layer, there 

is a risk of data leakage, rather than assigning a dedicated machine to every user that leads to breaking of VM 

isolation and recovery of cryptosystem keys. Past studies have shown that cache side-channel attacks may be 

carried out in cloud computing, for instance, in Cross-VM Attack on AES implementations by Irazoqui et al. 

(2014), the attack takes advantage of using Transparent Page Sharing that is applied on virtualization 

environments. Additionally, Suzaki et al. (2011) use memory deduplication to identify the processes that are 

active in a target virtual machine. Moreover, Bernstein (2005) executes his attack in a non-virtualized 

server-client environment, he offers a cache-timing attack that is implemented in a client-server setup and aims 

to retrieve the AES secret key that the server uses to encrypt the incoming UDP packets (Bernstein, 2005). Also, 

Irazoqui et al. (2014) use Ubuntu 12.04 and Bernstein's attack on OpenSSL 1.0.1 to recover a portion of an AES 

key through a cross-VM attack that was executing in XEN and VMware. In terms of Bernstein’s attack, using an 

identical target machine to implement the profiling phase makes the attack unworkable in many situations (Atici 

et al., 2018). 

Cache attacks and information leaks have been discussed in publications addressing security issues. For instance, 

Bernstein uses a cache-timing attack on the lookup table of the OpenSSL implementation of AES. Two servers 

are used in Bernstein's attack. One is an exact copy of the victim's server, while the other is the victim's actual 

server. The attack performs two primary stages: the profiling and the attack stage. During the profiling stage, the 

attacker sends a large volume of packets to the same server, which encrypts them using a known key and replies 

to the attacker with the encryption's timing details. Using an unidentified encryption key, a similar process is 

carried out once again on the target server during the attack stage. The time profiles from these two stages are 

then linked, and the most likely key candidate is the key value that has the greatest correlation (Bernstein 2005; 

Jayasinghe et al., 2010; Atici et al., 2018). 

Yarom et al. present the Flush+Reload technique to extract the components of the private key from the GnuPG 

1.4.13 implementation of RSA and recover the secret key from an ECDSA signature algorithm (Elliptic Curve 

Digital Signature Algorithm) (Yarom and Falkner 2014; Yarom and Benger, 2014). Gullasch et al. (2011) apply a 

cache timing attack on the Advanced Encryption Standard (AES) using the Flush+Reload technique to find out 

memory accesses. The attack does not need to know any information about the ciphertext or the plaintext. The 

attack retrieves the key with about 100 encryptions and it was against the 128-bit AES implementation of 

OpenSSL 0.9.8n on Linux kernel 2.6.23.  

Irazoqui et al. (2014) implement Bernstein’s attack in a virtualized environment using Xen and VMware with 
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Cross VM setting. This attack setting is able to recover the AES secret key from the co-located virtual machine that 

is running AES encryption. The attack takes a long time to achieve on a core i5 processor. Irazoqui et al. (2014) 

also implement a cache-based side-channel attack on AES by employing the Flush+Reload technique to recover 

the full AES key across a virtualized environment. This attack needs to enable a deduplication mechanism called 

Transparent Page Sharing in VMware. The attack uses VMware ESXI 5.5.0 running Ubuntu 12.04 64-bits guest 

OSs. 

2.5 Cache Attacks 

This type of attack uses the shared cache to get data by monitoring the time needed to access certain cache lines. 

A cache side-channel attack helps an attacker to gain accurate and useful information. As caches have a higher rate 

of computing interactions between processes, it is considered one of the most important attacks in a cloud. The 

main approach used to carry out this kind of attack is Prime + Probe, which means that the attacker in the prime 

phase fills the whole cache set with his or her own data. In the probe phase, the attacker tracks how long it takes 

to access their own data from the same memory location during the probing phase. If there are significant 

variations in the execution time, it indicates that another process has removed the memory location and is 

fetching the data from RAM rather than the cache (Saxena et al., 2017).  

The co-residency feature of cloud computing makes Cross-VM cache-based side-channel attacks powerful and 

active in cloud computing environments because of the shared resources. In order to retrieve the cryptographic 

key, these attacks employ a monitoring procedure to gather data about the accessed cache line. Because there is a 

lot of common interaction between virtual machines (VMs), CPU cache is seen to be the most exposed hardware 

in a cloud (Anwar et al., 2017). 

In this kind of attack, the attacker places the malicious VM co-resident with the target VM so that they share the 

same resources and the attacker can monitor cache timing information by measuring the execution of different 

operations on the victim’s VM. When data is accessed from the cache, it consists of lines containing data that 

may be written or retrieved. The cache memory is the first place the CPU looks for data when it needs data from 

memory. When information is cached, it takes less time to put it together. However, when necessary information 

is not cached, the CPU must obtain it from main memory, which takes more time; this is known as cache miss. 

The secret key of the encryption algorithm can be extracted by exploiting this timing information. Consequently, 

the encryption time of a cryptographic procedure is related to the positions of the accessible tables. The cache 

exposes information about memory accesses to an attacker who may track cache hits and misses by using this 

timing information to obtain information about the secret key used in the encryption. We recognize that 

processing a cache miss requires more time than processing a cache hit. Exploiting this information results in a 

full key recovery. An example is using this timing information in the T table implementation of AES that 

includes SubBytes, ShiftRows, and MixColumns operations into one table look-up and XORing operation to 

make the encryption time faster. Information about table values loaded into the cache can show information 

about the secret state of AES (Yan et al., 2015; Irazoqui et al., 2014). 

3. Related Work 

In order to mitigate the risk of co-resident attacks, Amazon EC2 offers a service known as Virtual Private Cloud 

(VPC). VPC is a networking environment that is logically isolated, meaning it has its own private IP space and 

routing configuration. Customers have the ability to establish a Virtual Private Cloud (VPC) and deploy instances 

inside the VPC instead of using the extensive network pool of Amazon EC2. Private addresses in VPC instances are 

only accessible to the owner and cannot be known by any other entity. Consequently, the attacker is unable to make 

educated guesses about the precise physical whereabouts of a target instance, hence diminishing the risk of 

co-residence (Xu et al., 2015), However, an attacker may still accomplish co-residence by exploiting a 

latency-based probing technique and taking advantage of virtual machine placement policies. Essentially, VPC 

simply reduces the risk of co-residence rather than completely eliminating it (Xu et al., 2015; Varadarajan et al., 

2015). 

Zhang and Reiter (2013) developed a technology called Duppel, which alters cache timing signals to protect a 

virtual machine against cache attacks in cloud computing environments (Zhang and Reiter, 2013). On the other 

hand, Duppel may not be feasible in situations involving Simultaneous Multithreading. Enabling SMT on 

processors might cause some time-shared caches to function as concurrently shared caches. As a result, Dupple 

is not a viable option for defending against these attacks (Zhang and Reiter, 2013; Shahzad and A. Litchfield, 

2015). 

In Han et al. (2014), a modified virtual machine allocation policy is proposed to lower the likelihood of certain 
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VMs co-locating with the target VMs. This policy is called the previous-selected-server-first (PSSF) policy. In 

order to reduce the vulnerability of the target virtual machines to an attacker, the key concept is to restrict the 

total quantity of hosts that each account will utilize. This increases the number of virtual machines that are 

co-located with the same account. This reduces the vulnerability of the victims to attackers and makes it more 

difficult for them to distribute their virtual machines. However, this policy only concentrates on security issues. 

It has obvious drawbacks regarding workload balance and power consumption. Cloud computing brings with it 

new risks related to the environment of shared resources such as shared caches. To deal with this risk, we can write 

code to eliminate the signal to make the malicious virtual machines unable to receive the signal by eliminating 

fine-grained timers using fuzzy timers instead of high-resolution clocks. However, this solution is not feasible 

for applications that require fine-grained timing information (Vattikonda et al., 2011; Liu et al., 2015). 

For limiting cache-based side-channel in a multi-tenant cloud, Shi et al. (2011) proposed an approach that 

leverages dynamic cache coloring; this approach may provide effective cache isolation between different 

processes of security-critical operations (Yarom, 2015). On the other hand, the approach requires significant 

modification for the current cloud model to be correct for deployment (Using virtual machine allocation policies 

to defend against co-resident attacks in cloud computing, 2015). Moreover, a HomeAlone system is a 

co-residency direction approach using a side-channel (in the L2 memory cache) as a detection tool. The 

fundamental concept of HomeAlone is for the tenant to arrange for its virtual machines (VMs), often referred to 

as friendly VMs, to halt their activities in a designated caching zone temporarily. After that, the tenant monitors 

how much data is being cached over the next idle time to ensure no unexpected activity has occurred (Zhang et 

al., 2011). However, as it particularly focuses on the cache-based timing channel (Wu et al., 2012), some other 

side-channels could be exploited (Xiao and Xiao, 2012). 

 

Figure 2. Cache Based Side-Channel Attacks 

Despite the research so far, the solutions and mitigations available have multiple limitations, including 

performance degradation in some cases, concentration on a certain level of cache memory, and the need for 

significant modification to current cloud models. Regarding these limitations, this paper introduces initial 

solutions for addressing performance to reduce the risks of cache-based side-channel attacks in a seamlessly 

applicable manner. 

4. Preliminary Solutions 

This paper focuses on Flush+Reload cache attacks that target OpenSSL’s AES-128’s T-table implementation. In 

this type of attack, the victim’s virtual machine and the attacker’s virtual machine are on the same host and share 

the same cache memory between them. This leads to exploitation of the cache memory as a side-channel by 

using the advantage of the memory deduplication that enables the attacker to reach the same address that the 

victim uses in the cache. Since all the victim’s operations are loaded in the cache memory, the attacker can 

monitor them if the cache memory is shared and the memory deduplication is enabled. This makes it even more 

harmful when table-based encryption systems are attacked in this way, and the secret key is broken. 

Figure 2 shows the operations that take place inside the cache. Firstly, the attacker must know the offset of the T 

tables used for encryption. The attacker uses the ‘clflush’ command to flush the chosen memory lines from the 

cache to make sure that the flushed memory lines have to be retrieved from the main memory next time when 
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they need to be accessed. After that, the attacker requests encryptions and receives the ciphertext, then 

implements Flush+Reload between every encryption process to check whether the T-table values have been used 

and accessed during the execution of the encryption, by measuring the difference time between a cache hit and a 

cache miss. We can thwart the attack and make it more difficult for the attacker if we follow the cause of the 

threat or vulnerability exploited by the attacker, so we must track what the attacker does. We note that the attacker 

exploits the presence of data used during the encryption process inside the cache memory that is shared between 

the attacker and the victim. The attacker also checks for data by measuring the time difference between the cache 

hit and the cache miss; this is an important point to take into account, as this type of attack depends heavily on 

the process of measuring the time of encryption operations and thus breaking the secret key. Also, we note that 

the attacker requests several encryptions and applies Flush+Reload between each encryption; this may lead to the 

detection of the possibility of an attack, as this is considered abnormal behavior. After analyzing and identifying 

the vulnerabilities exploited by the attacker, we have proposed initial ideas for solutions to reduce the threat.  

In this section, we study some suggested solutions that will mitigate these attacks in simple and important ways 

to protect data in shared environments. Specifically, the project aims to develop security controls that maintain 

the advantages of multi-tenancy while reducing security risks arising from side-channel attacks with acceptable 

degradation in performance. This can increase the difficulty for attackers to extract sensitive information. Also, it 

aims to detect abnormal behavior in the virtualized environment that may indicate multi-tenancy related attacks.  

The solutions proposed will now be discussed. First, if we flush the lookup T-tables out of the cache after the 

encryption process then the attacker will not recognize what lookup T-table value has been accessed because all 

lookup T-tables are in the main memory. Therefore, the attacker will not detect any time differences when he or 

she measures the cache hit and miss. Also, if we load the lookup T-tables into the cache memory before the 

encryption process then the attacker will not recognize which lookup T table value has been accessed because all 

look up T-tables are in the cache memory and therefore the attacker will not detect any time differences when he 

measures the cache hit and miss. In addition, the encryption process will be faster. Moreover, if we monitor the 

activities performed on the cache and monitor the encryption requests then we will be able to detect the 

possibility of an attack because the attacker needs many encryption requests to mount the attack. Finally, if we 

control the Time-Stamp Counter (‘rdtscp’) that is used to read the processor’s time stamp counter for the cache 

hit and miss (Albalawi et al, 2022; Albalawi et al., 2022) then the attacker will never recognize any time 

differences when he or she measures the cache hit and miss because cache side-channel attacks rely on the 

measurement of data retrieval time either from the cache memory or from the memory. The below table of 

proposed solutions shows the benefits of these solutions and the impact of their application. 

Table 1. Overview of Proposed Solutions 

Solution Impact Function 

Flushing the AES lookup T-tables Constant Retrieval Time Making the attack on AES difficult 
Preloading the AES lookup T-tables Constant Retrieval Time Making the attack on AES difficult 
Monitoring the Activities Performed Detecting Suspicious Behaviours Defining and classifying processes 

Controlling on the Time-Stamp Counter Constant Retrieval Time Making the attack on AES difficult 

5. Conclusion 

Since the architecture of cloud computing relies on multi-tenancy, which offers a shared environment for 

multiple users to access and share resources on a single physical machine, attackers can use side-channel attacks 

to take advantage of the co-residence issue in a multi-tenancy environment and extract sensitive data. This type 

of attack uses the shared hardware resources as a gateway to obtain sensitive data. There are many types of 

side-channel attacks that are launched on shared virtualized environments. This paper concentrated on the shared 

cache memory attack in a virtual- ized environment. The paper proposed preliminary solutions that preserve the 

benefits of a shared environment while preventing cache attacks. 
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