
Computer and Information Science; Vol. 16, No. 2; 2023 

ISSN 1913-8989   E-ISSN 1913-8997 

Published by Canadian Center of Science and Education 

51 

 

 

Automation-Based User Input Sql Injection Detection and Prevention 

Framework 

Fredrick Ochieng Okello1, Dennis Kaburu2, & Ndia G. John3 

1 Faculty of Computing and Informatics, Mount Kenya University, Thika, Kenya. E-mail: 

Okello.alfredochieng2007@gmail.com 

2 Faculty of Computer, Jomo Kenya University of Agriculture and Technology, Thika, Kenya. E-mail: 

dennis.kaburu@gmail.com 

3 Faculty of Information Technology, Muranga University, Muranga, Kenya. E-mail: ndiajg@gmail.com 

Correspondence: Fredrick Ochieng Okello, Faculty of Computing and Informatics, Mount Kenya University, 

Thika, Kenya. E-mail: Okello.alfredochieng2007@gmail.com 

 

Received: March 6, 2023         Accepted: April 30, 2023        Online Published: May 2, 2023 

doi:10.5539/cis.v16n2p51            URL: https://doi.org/10.5539/cis.v16n2p51 

 

Abstract 

Autodect framework protects management information systems (MIS) and databases from user input SQL 

injection attacks. This framework overcomes intrusion or penetration into the system by automatically detecting 

and preventing attacks from the user input end. The attack intentions is also known since                 it is linked to a proxy 

database, which has a normal and abnormal code vector profiles that      helps to gather information about the intent 

as well as knowing the areas of interest while conducting the attack. The information about the attack is 

forwarded to Autodect knowledge base (database), meaning that any successive attacks from the proxy database 

will be compared to the existing attack pattern logs in the knowledge base, in future this knowledge base-driven 

database will help organizations to analyze trends of attackers, profile them and deter them. The research 

evaluated the existing security frameworks used to prevent user input SQL injection; analysis was also done on 

the factors that lead to the detection of SQL injection. This knowledge-based framework     is able to predict the 

end goal of any injected attack vector. (Known and unknown signatures). Experiments were conducted on true 

and simulation websites and open-source datasets to analyze the performance and a comparison drawn between 

the Autodect framework and other existing tools. The research showed that Autodect framework has an accuracy level of 

0.98. The research found a gap that all existing tools and frameworks never came up with a standard datasets for 

sql injection, neither do we have a universally accepted standard data set. 
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1. Introduction 

The discipline of information security management attempts to ensure that an organization's information 

resources are adequately protected against attacks. SQLI vulnerabilities are common in academic settings. 

According to the (Microsoft Build, 2022) research, SQLI vulnerabilities exist in thirty-five percent of 

educational institutions, 32 percent of government institutions, and 21% of all organizations allowing hostile 

actors to modify and replace queries that an application sends to its databases. This is particularly dangerous 

for the industry since it has the ability to expose highly personal information that attackers can use to 

impersonate people. The Autodect framework has aided in addressing the challenges of system vulnerabilities in 

educational institutions. According to (Erick & Wang, 2022), the risk posed to academic institutions goes beyond 

financial loss. These educational institutions store many sensitive data (information), such as student personal 

records, sensitive research data, and valuable intellectual property. Information loss or breach could endanger the 

individuals involved and significantly ruin a university's image. It is particularly dangerous for the industry since 

it can expose highly personal information that attackers can use to impersonate people. By protecting the safety 

of our information systems against attacks, MIS security management is the way to go. 

SQL injection is a method of attacking a data-driven application that entails inserting malicious SQL commands 

into an entry field for execution, such as to dump database contents to the attacker. (Venkatesan & Devi et al, 

2018) SQL injection necessitates a security hole in the application program, such as when a user input is 
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incorrectly checked for string literal or escape characters used in SQL statements or when user input is not 

strongly typed and executed unexpectedly. 

SQL attacks are commonly employed to target websites but may also be used to  attack SQL databases. 

SQL injection is one of the top five web  assaults, according to the OWASP study (Fitsum & Tsegay, et al 2022). 

According to them, the attacker must also recognize and identify the system's weaknesses. 

With a well-coordinated sql injection attack, an attacker can create a false identity, tamper      with existing data, and 

cause repudiation issues such as voiding transactions or changing balances. The attacker can take advantage of 

the system's entire exposure by destroying or otherwise making data unavailable. 

The Autodect framework has aided in preventing SQL injection attacks by automatically identifying and 

stopping them, but most importantly, by directing the attacker  to a proxy database, where the information will be 

automatically collected and saved in the Autodect knowledge base. 

This knowledge base will guide the analysis of future attacks and trends. As a result, this approach will ensure 

that MIS vulnerabilities are continually vetted. 

The Structured Query Language Injection (SQLI) attack is the most serious of the injection attacks because it 

undermines the basic security services of secrecy, authentication, authorization, and integrity. SQLI attacks occur 

when malicious SQL instructions are injected into queries and forms to gain access to a database   or manipulate 

its data (e.g., send the database   contents to the attacker, modify or delete the database content, etc.) In fact, most 

web applications today require a back end database to store user input and/or retrieve information that they have 

chosen (Ines & Habib et al, 2020) 

Because assaults are specific to the online application, the language used, site features, database structure, 

security methods, or safeguards put in place, the SQL injection detection problem persists. Because of the 

individualized character of our requests, most          SIDS do not identify new SQL injection threats, according to 

(Anastasia & Vladimir, 2019). 

Few web application firewalls and techniques     can report correct SQLIA for their deployed services, according to 

(Haifeng &, Jianning , et al., 2020). Traditional tactics focus on blocking          suspicious SQL requests but do not 

identify whether the attack is damaging or not. All of the current approaches for preventing SQLI have flaws, 

such as the absence of standard datasets, the need for admin interaction, and some being particular to certain 

programming languages. The autodect architecture solves these flaws using a four-layer strategy, which includes 

detection and prevention and adding a knowledge base and a proxy database. 

1.1 Types of SQL Injection Attacks  

1.1.1 Tautology-Based Attacks 

Tautology-based attacks work by injecting code into one or more conditional SQL statement searches in order to 

make the SQL command evaluate as true conditions such as (1=1) or (- -) (Zainal & Manal, 2017). This method 

is extensively used to acquire database access by bypassing authentication on web pages. WHERE employee 

ID='1' OR 1=1 AND employee password=1200 FROM employee 

1.1.2 Piggy Based Query 

The attacker aims to inject additional queries to retrieve, change, or add data in a piggy-backed query attack, 

according to (Ines &, Omar, et al, 2020). This database breach attack employs a query statement to the original 

query. The first query is original in this strategy, but future searches are infected. Because the attacker can use it 

to inject nearly any sort of     SQL, this attack poses a significant concern. 

Example SELECT pass FROM userTable WITH user Id="user1" AND password="0"; drop userTable   

1.1.3 Logically Incorrect 

An error-based SQL Injection attack is carried out by putting erroneous data into a query, causing the database to 

make a mistake, according to (Anandha & Adhil, et al 2021). This is usually performed by compelling the database 

to perform a potentially error-prone action. 

Uses the error messages supplied by the database as a result of an erroneous query. These database error 

messages frequently offer useful information that allows attackers to determine the application and database 

schema vulnerability variables. Example WHERE User ID="11" AND Password = "1200" AND convert 

SELECT *FROM userTable (Char, no) 
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1.1.4 Union Injection Attack 

The attacker utilizes the UNION operator to hitch a malicious query to the initial query, according to (Anandha & 

Adhil , et al 2021). The malicious query's results are used to connect the results of the first query, allowing the 

attacker to obtain the values of columns from additional tables. In this approach, the attacker sends the SQL query 

with the union of both correct and erroneous fields after providing incorrect data with a few correct columns. As 

a result, the data set from the database is retrieved correctly formatted. 

According to the report, an attacker may inject the string "UNION SELECT Card No from Credit where acc no 

=1200" into the login field (international journal of    engineering applied sciences and technology, 2016). 

SELECT account information FROM clients SELECT Card No FROM Credit WHERE login=UNION WHERE 

ACCOUNT NUMBER IS 1200 AND PASS IS AND PIN 

IS SELECT card inf FROM clients WHERE login=UNION SELECT acc inf FROM clients WHERE 

login=UNION. 

The login in the first sentence is null, so the query is invalid, however the other query retrieves the results. 

1.1.5 Hexadecimal Attack 

2016 (Santosh Kumar) SQL injection with hex code is a code injection technique that exploits a security flaw in 

the database layer of an application. 

The vulnerability occurs when user input is either not strongly typed and then executed unexpectedly or when 

user input needs to be better checked for the specified input string and then inserted in SQL statements. 

According to (Santosh Kumar, 2016), hex code SQL injection attacks are also known as insertion attacks. 

An attacker can inject harmful code into an application in various methods; hex code is just one of them. 

1.1.6 Binary Attack 

Blind SQL injection is a sort of SQLI attack that creates true or false questions to the database to ascertain the 

solution provided by the application's response, according to (S.S. Anandha Krishnan1; Adhil N Sabu, et al 2021). 

Blind SQL injection occurs when an attacker sends a SQL query to the database, leading the application to deliver 

a result. As a result, the conclusion is determined by whether the question is true or untrue. Depending on the 

decision, the information in the HTTP response will be changed or left unchanged. The attacker will determine if 

the message was received as true or false. 

1.1.7 Time-based 

It is another type of blind inferential SQL attack, according to ((Ines & Omar, et al ,2020) This method sends a 

SQL query to the database, which causes it to wait (for a specified number of seconds) before responding. As a 

result, the attacker can make some educated guesses about whether anything is real or false based on the time it 

took to react. As a result, an HTTP response will be generated immediately or after some time. The attacker 

makes decisions independently of the database. 

1.2 Existing Tools to Deal with SQL Injection  

1.2.1 Green SQL 

Green SQL is an open-source database firewall that prevents SQL injection attacks on databases. The logic is 

based on a risk-scoring matrix that evaluates SQL statements as well as prevents recognized administrative 

procedures like DROP, CREATE, and so on. 

It functions as a proxy and includes support for my SQL. 

1.2.2 Green SQL Architecture 

The supplied program connects to the green SQL server instead of the MYSQL server. For MYSQL connections, 

Green SQL acts as a reverse proxy. Green SQL will gradually analyze SQL queries and forward them to the 

MySQL server in the backend. 

If the query is deemed illegal, it is checked against a white list, and if it is discovered, it is forwarded to the 

actual MYSQL server. If the data is invalid, the program will receive an empty result. 

Green SQL might produce false positive and false negative errors during execution. As a result, some acceptable 

searches may be banned, while invalid queries may be permitted. 
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1.2.3 Microsoft Defender for SQL 

It comprises two phases, one of which includes capabilities for detecting and mitigating potential database 

vulnerabilities and the other for monitoring aberrant activity that could suggest threats to your databases. 

Potential database vulnerabilities are discovered, tracked, and remedied using a vulnerability assessment service. 

Assessment scans provide an overview of your SQL machine's security state and details. 

An advanced threat prevention service monitors your SQL servers for risks including SQL injection, brute-force 

attacks, and privileged abuse. This service sends out security notifications that are actionable. 

2. Literature Review 

2.1 Related works (Frameworks) 

The research focused on previous frameworks geared toward the mitigation of sql injection in vulnerable databases 

and management information systems. A closer look was taken at these frameworks' functionality and success 

rate to determine their shortcomings. The AUTODECT framework’s contribution factored in all these 

shortcomings. These frameworks are discussed as below. 

2.1.1 The Auto Black Box SQL Injection Vulnerability Test (SQL)Framework 

The framework will employ two detection models: signature and anomaly-based. A mix of the two will be used 

to ensure near-perfect detection of user input SQL injection. The Auto Black Box SQL Injection Vulnerability 

Test Proposes (SQL). In SQLIA, this automates an SQLIV evaluation. A recent study has also shown that current 

SQLIVS has to be upgraded to reduce human vulnerability inspection expenses and the danger of being attacked 

due to inaccurate false-negative and false-positive results. 

(Fitsum & Gizachew , et al, 2022) SQL injection attacks and the creation of a complete framework employing a 

hybrid and machine learning method This framework is used to assess the efficacy of strategies that address 

specific difficulties in the context of the attacks. 

2.1.2 DIAVA Framework 

The bidirectional network traffic of sql operations and the multilevel regular expression model were investigated. 

DIAVA is a traffic-based system for detecting SQL injection attacks and analyzing spilled data for vulnerabilities. 

According to (Haifeng ,& Jianning et al, 2020), DIAVA can send tenants proactive warnings. 

This framework is a novel traffic-based SQLIA detection and vulnerability analysis framework. DIAVA is 

meant to accordingly identify successful SQLIA among all suspects, the capacity of the attacks and vulnerability 

of leaked data is evaluated by the framework based on its GPU-based dictionary attack analysis engine. DIAVA 

framework suffers from shortcomings; it has a two-layer approach, the front end that collects network traffic and 

the backend that identifies SQLIA and evaluates it. This framework needs to be clarified on how the analysis will 

be done, and neither have they stated how they obtain datasets for signature comparison; there is no proposed 

algorithm to model the matching patterns, which may capture the network traffic. The framework also lacks 

standard datasets or a frequently updated knowledge base for future comparisons. 

2.1.3 SSF Framework 

According to (Israr Ali, Syed Hosea, Mansur Ibrahim, 2018), The primary thought of the SQL injection shield 

framework (SSF) structure is to make a profile for web applications that can present to the normal behavior of 

users regarding sql queries they submit to the database. 

This framework utilizes database logs to gather true blue questions, given that the logs are interruptions-free. SSF 

also uses misuse procedures to catch any change in the structure of the query. 

The framework uses the following methodology. 

1. Attempting to identify SQL injection through checking peculiar SQL query structure. 

2. Utilizes information condition among things that are more averse to changes. Abuse procedures as well 

as anomalies or blended approach or both. Consequently, other interruption identification strategies     were 

utilized either independently or  together. 

The framework has the capacity to distinguish interlopes by identifying practices that contrast w i t h  t h e  

typical conduct of a part in the database. (Karmal et al, 2018)   represented an upgraded model that can likewise 

distinguish gatecrashers in databases with no parts connected with every client. 

The weakness of the SSF is that it only works well in java and xml platforms; this way its work is limited across 
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a broad spectrum of platforms. This framework can only detect union attacks in sql injection, leaving others out; 

the framework, too, is dependent on user intervention as well as it does not prevent; it only detects. Lastly, SSF is 

meant to collect anomalies from the system loss, but no clear mechanisms can be achieved. 

2.1.4 Automated Security Testing Framework for Detecting SQL injection Vulnerabilities in Web Applications 

This framework uses a security tester to identify the appropriate test case before starting to exploit sql 

vulnerabilities in web-based applications during the testing phase. In identifying test cases of web applications 

and analyzing the test results of an attack, the framework captures critical issues affecting the security testing 

effectiveness (Nor F. A, Aziza A.M, 2018). The framework is separated into three stages 

i. Test case generator, which is used to generate test cases by application of permutation technique for 

automatic generation. 

ii. Attack generator for automating the injection attack process based on input generated in the first 

stage. 

iii. Response generator for analysis and determination of whether an attack is successful or not. 

The Autodect framework has a four-layer approach: detection, prevention, knowledge base, and a proxy database. 

The shortcomings of this framework are that it has no prevention mechanisms spelled out, it only deals with the 

detection, which then becomes an end in itself. It lacks a central depository where attacks or vulnerabilities are 

reported (knowledge base). 

The framework is based on test case generation, but there is no explicit, well-defined algorithm for test case 

generation. Test case generation per each case may lead to memory overload, CPU congestion, and an overloaded buffer. 

The frame fails to address the issue of standard datasets. The framework relies heavily on OWASP adaptation. 

2.1.5 SQL Injection Detection and Exploitation Framework for Penetration Testing  

(Muhammad &, Naqi , May 2019) The framework presents a novel semi-automated SQL injection detection and 

Exploitation (IDE) solution using constructive methods by combining machine learning and advanced python 

computation IDE notifying the user if the target database has sql injection vulnerability and can be exploited for 

security testing. The framework uses a machine learning process, the IDE system, to create a profile dictionary       

of various injection and exploitation examples. This profile dictionary is used to identify the sql injection 

Vulnerability and associated exploits. The framework banks hope on the fact that despite many executable sql 

injection tools, almost all of them provide a limited functionality set. 

The framework uses a multi-model classification module that considers the time-variant property of functionality 

and behavior features of SQL injection from the system level. 

The shortcomings of this framework are that using the time-variant property means only one type of sql 

inference query attack can be detected. Since the system will be waiting to flag down requests based on time delay, 

an attacker or attack will delay based on the number of trials / this framework lacks a prevention unit, it only 

detects, and later the signatures are taken to the link detection signatures and existing signatures in the dictionary. 

Most importantly, it is not able to generate standard datasets. According to (Muhammad & Naqi , May 2019) static 

analysis reports many false negatives and positives. The IDE used is only best in white box pen testing as all the 

variables and target information should be in hand to simulate the attack; this way, the framework is unsuitable for 

black box pen testing. 

2.2 Signature-based 

Signature-based detection is commonly employed for malware detection over harmful files, according to 

(Muhammad Amirulluqman et al, 2019). The signature-based detection methodology performs well against 

previously identified assaults. It checks the test log files to the list of query requests and classifies them if they 

match. 

Signature-based intrusion detection system (SIDS) provides a potential answer to the problem of online 

application security, according to (Nancy &, Syed , 2018). However, the system's success is heavily dependent on 

the quality of the signatures developed to detect attacks. According to their findings, a poor signature set can 

significantly increase the rate of false alarms making it nearly impossible to use the method. When using 

signatures, a security expert should be able to test the detector against the identified defects by looking at the 

structure of the signatures. 

Another issue in signature-based security is that a security expert establishes these signatures; therefore, the 

water tightness of the signatures is dependent on the security expert's skill, know-how, and perceived aim. The 
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attack domain and the accuracy with which the attack patterns are captured and implemented. According to 

(Nancy &Syed, 2018), both limited knowledge of the attack area and errors in the implementation of detection 

algorithms would generate a low-quality signature set, resulting in SIDS inefficiency. 

Attackers create a list of a grey area vulnerability to exploit to attack a website, and the domain of an attack 

vector changes greatly depending on the cluster of flaws. In other words, SQL-based attack vectors will use SQL 

components and related commands, while XSS-based attack vectors will largely use HTML and Javascript 

language elements. 

Regardless of the developer's knowledge, a well-defined rule set may play an equally important role in achieving 

flawless SIDS. According to (Massicote et al, 2015), detection coverage is one of the most important testing 

characteristics. The technology may allow an attack vector to breach a web application if the signature is 

incomplete or the signature pattern is not applied correctly. There is also the issue of the frequent trade-off 

between selecting a signature's sensitivity and its specificity. A generic signature can be modeled to provide 

broader detection coverage and deal with variations of attack vectors (Nancy Agarwal, Syed Zeeshan Hussain, 

2018). However, it must damage genuine request traffic by wrongly categorizing attacks. 

2.3 Anomaly-based 

Anomaly detection and Reconstruction Schemas (AD&RS) must also be emphasized, according to (Malik & Ali, 

et al, 2019), so that Intrusion detection systems can perform with some Modules, such as Anomaly detection 

Module, Query reconstruction Module, Query delegation Module, and so on. Signature-based profiles can also 

be designed to accommodate all conceivable outcomes in terms of all valid possible inquiries and their 

profile-generating path. Databases contain signature-based profiles. When a user runs a query, it is translated to a 

specified signature base type/shape and then examined/compared to previously stored searches. The request will 

be refused or allowed depending on whether the profile is normal or atypical. 

According to, the implicit profile of normal functioning provides information about the range of allowable 

correlation responses  (Anastasia & Vladimir, 2022). In designing a classification system that allows us to 

identify points within this zone from points outside, the challenge of finding anomalies will be solved. A 

one-class classifier can be made in a number of ways.  

2.4 Machine Learning 

SQL injection attacks emphasizes the characteristics of the targeted online application, the programming 

language used to create it, the database structure, and the database that feeds it, according to (Anastasia     & 

Vladimir , 2022). It is, therefore, not unexpected that intrusion protection systems sometimes notice new SQL 

injection threats. There have been attempts to lessen the individualized nature of queries, which should make 

detecting SQL injection attacks easier, although this needs to address the problem in principle. 

Machine learning algorithms are one of the most important tools for identifying various types of attacks. Such 

methods have long been used to detect SQL injection attacks and other assaults that are comparable to them. The 

ability to recognize implicit relationships in data motivates the use of machine learning. It should presumably be 

able to identify known and unknown assaults. Consider some research studies on the subject. The parameters 

chosen to compose the area of interest and to determine the proper characteristic of real-world occurrences in this 

area varies across all machine learning-based methods. The rate at which symbols, classes of symbols, and 

keywords of SQL language were considered distinguishing feature of malicious requests. It's critical to teach the 

neural network recognizer to run a synthetic test that includes both conventional SQL queries and attacks. The 

implemented approach was unique in that a neural network recognizer was installed individually on the secured 

site. 

2.5 Autodect Framework 

The framework will employ a machine learning-based model for the detection of abnormal and normal signatures. 

A mix of the two will be used to ensure near-perfect detection of user input SQL injection. 

2.5.1 Goals of the Autodect Framework 

i. Analyze the structure of SQL query requests based on heuristics 

ii. Come up with a knowledge base that will check allowable patterns of SQL statements 

iii. Come up with a white list of common SQL injection commands and strings 

iv. Create a proxy database server that will raise a red flag of a possible sql injection command. 

v. Prevent and stop SQL injection attacks to a database using a proxy server and a knowledge base. 
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Figure 2. Autodect Framework Layout 

2.5.2 Explanation of the Autodect Framework Layout   

A genuine user or an attacker gains access through a web application (user interface) i.e a login page that 

requests a user name and a password. Both users will be allowed access to the proxy database. The scanner 

/detector unit of the proxy database will check the signatures entered by both (Genuine user and attacker), to 

determine whether they are abnormal or normal code profile. After this the detector unit sends the profiles to the 

knowledge base. If normal it will be stored in the normal profile database of the knowledge base and if abnormal 

it will be stored at the abnormal profile database of the knowledge base. There will always be real time updates 

from the proxy database to the knowledge base. Normal profiles (genuine signatures) will move to the database, 

executions carried out and results returned to the webpage.  

3. Methodology 

3.1.1 Input and Output Variables 

The various sorts of sql injection queries  were used as the study's input variables. Tautology-based, piggy-based, 

logically flawed, union injection, hexadecimal attack, binary, and time-based attacks were among the few. 

The results of the input query, such as the database name, passwords, amount of time required, URL, and 

whether access is gained to the web server apps, were our output variable. 

3.1.2 Experimental Evaluation Techniques  

Depending on the goals, different assessment  approaches were used, such as quantitative testing/experiments on 

websites, databases, and datasets. User testing for usability   Questionnaires surveys and case studies. 

On the three real websites, the two simulation websites, the two open source datasets, and 100 code injection trials 

of tautology-based attacks, 80 trials of piggy-based attacks, 60 trials of logically incorrect attacks, and 150 union 

injection assaults will be conducted. 

3.2 Parameters Evaluated 

We took into account many variables, including runtime, pre-processing time, disk space (overhead), memory, 

the accuracy of discoveries, and how accurate anomaly estimates, false positive and false negative rates, user 

satisfaction, and usability. 

3.2.1 Evaluation Metrics 

A set of measures were used to assess the Autodect framework. Some of these measures measured how well the 
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suggested framework performs overall, while others evaluated particular aspects. We began by looking at a 

binary classification issue with only two classes. 

The two terms listed below were utilized to properly analyze the framework's performance. 

True positive (TP) refers to the number of inputs that the framework correctly predicts as being positive, 

whereas false positive (FP) refers to the number of inputs that the framework wrongly predicts as being positive 

when they are negative. 

The term "true negative" (TN) describes the proportion of inputs that the framework accurately predicts as being 

negative but which are positive. 

 

Figure 3.1. Evaluation Metrics Mattrix 

3.3 Evaluation Formulas 

The following formulas were adopted to help in the framework analysis. 

3.3.1 Precision and Recall (P & R) 

While the recall is the ratio of a correct positive prediction to all positive examples (TP + FN), precision is the 

ratio of correct positive predictions to all predicted positives (TP + FP). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = (
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
) 

 

3.3.2 Accuracy 

This made it easier to calculate how accurately the framework predicted the inputs, or the proportion of correctly 

predicted inputs to all inputs. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
) 

3.3.3 F1- SCORE (F1) 

Additionally, these measurements can be coupled to calculate the harmonic mean of recall and precision. 

Fβ= (1 + 𝛽2).
𝑇.𝑃

𝛽2.𝑃+𝑅
 

4. Discussion of Findings 

4.1 Response Rate 

The researcher  conducted 100 code injection attacks on five open-source datasets using tautology-based attacks, 

80 piggy-based attacks, 60 logically incorrect attacks, and 150 union injection attacks. 

The injected codes were also tested using well-known sql injection tools like Nmap (a free security scanner), 

Hping (an active network security tool), Green SQL, Microsoft defender for Mysql, Code scan labs, Metaspoilt 

(a popular tool for performing pen tests), sql map, and Nessus vulnerability scanner. All of these technologies 

fell short of the autodect framework's standard for detection and prevention precision. Some of the tools could 

either only detect or could only prevent. Other techniques, such as Hping, could only scan ports and could not 

find any  other vulnerabilities. 

Through email notification on the Google forms online survey, expert validation was carried out. Compared to the 

interviews, which had a 100% response rate, this had a 90% response rate. Because there were so few 
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interviewees—only 30 members of the general staff and 20 members of the IT department—everyone agreed to 

participate. 

4.2 Research Presentation 

The best value of the parameter and hyper parameter has a significant impact on the performance, therefore 

developing a deep learning model necessitates many experiments. Five instances were tested in order to choose 

the machine learning model that performed the best. The generalized experimentation possibilities are as follows: 

Table 4.1 Case 1. Setting the dense layer (neuron) to 256 

Optimization Algorithm Adam 

Learning rate 0.01 

Activation fun (last layer) Sigmoid 

Loss function Binary cross entropy 

Epoch 10 

Bach size 32 

Dataset splitting 30%-70% 

Dense layer neuron 256 

OUTPUT  

Execution time 562.090 

Training accuracy 0.977 

Validation accuracy 0.952 

Testing accuracy 0.966 

Table 4.2. Case 2: Configuring activation function (Softmax), number of epochs (20), and Dense layer neuron 

(64) 

Optimization Algorithm Adam 

Learning rate 0.01 

Activation fun (last layer) Softmax 

Loss function Binary cross entropy 

Epoch 10 

Bach size 32 

Dataset splitting 20%-80% 

Dense layer neuron 64 

OUTPUT  

Execution time 56.201 

Training accuracy 0.230 

Validation accuracy 0.421 

Testing accuracy 0.334 

Table 4.3. Case 3: Setting optimization algorithm (RMSprop), Activation Function (Sigmoid), Epoch (10). 

Loss function Binary cross entropy 

Epoch 10 

Bach size 32 

Dataset splitting 20%-80% 

Dense layer neuron 64 

OUTPUT  

Execution time 592.301 

Training accuracy 0.930 

Validation accuracy 0.961 

Testing accuracy 0.958 
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Table 4.4 Case 4: Setting data splitting 90%-10% (training and testing) 

Optimization Algorithm RMSprop 

Learning rate 0.01 

Activation fun (last layer) Sigmoid 

Table 4.5 Case 5: Setting the data splitting (90%-10%) with an epoch size of 20. 

Optimization Algorithm Adam 

Learning rate 0.01 

Activation fun (last layer) Sigmoid 

Loss function Binary cross entropy 

Epoch 20 

Bach size 32 

Dataset splitting 15%-85% 

Dense layer neuron 64 

OUTPUT  

Execution time 998.301 

Training accuracy 0.960 

Validation accuracy 0.971 

Testing accuracy 0.977 

4.4 Experiment Results Discussion 

The Google Colab notebooks cloud editor, tensoflow, pycharm, and Jupiter note book python  API were used for 

all of the tests, and the  GPU accelerator was turned on. Because it provides free RAM and GPU, two essential 

resources for deep learning research. The study tested five situations with various parameters, hyper parameter 

values, and cases, as was described in the hyper parameter selection sub-section. The execution times vary even if 

some of the situations have almost identical training, validation, and testing 

Table 4.6. Evaluation of the existing security frameworks used to prevent user input SQL injection 

Attack 

attempts 

TOOLS 

Total: 150 Nmap 

(Nmapfree 

security 

scanner) 

Hping(Active 

network 

security tool) 

Green 

SQL 

Microsoft 

defender 

for 

MySQ L 

Code scan 

labs 

SQL 

map 

Metaspoi lt 

Framework(Pen 

testing 

security) 

Nessus 

vulnerability 

scanner 

AUTODECT 

FRAMEWORK 

Successful 99/150 82/150 112/150 87/150 105/150 101/150 88/150 76/150 131/150 

Not 

successful 

51/15 68/150 38/150 63/150 45/15 

0 

49/150 62/150 74/150 19/150 

4.5 Evaluation of Factors that Leads to sql Injection Detection 

A pair of data: a parameter and a susceptible page should be taken into account for a successful SQLI attack. As 

an illustration, consider "username and password" as parameters and "lndex.php" as the vulnerable page. It is 

important to identify any potential attacks for each of these factors. Next, a series of scripts might be constructed 

to automatically submit the created lists and create an attack list and a benign list for the unsecured web 

application. Use that set to do a penetration test as well. A penetration test simulates an attack by a hostile person 

to evaluate the security of a computer system or network (Atefeh & Suhaimi, 2017). This comprises a system of 

constant watchfulness on all potential weak spots. These vulnerabilities may be brought on by unknown 

hardware and software failures, flaws in operational processes, technical defenses, or inappropriate system 

configuration. A potential attacker will conduct this study, which may involve actively exploiting weaknesses. A 

penetration test's goal is to evaluate the viability and potential consequences of an assault. In actuality, it is a 

component of a thorough security examination. The following section discusses the factors that influence user 

input sql injection detection. 

4.5.1 Un usual/ un Expected Behavior 

The research found out that user input sql injection attacks can cause web applications to behave in an un usual 
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or unexpected way. A penetration test from vulnerable websites proved that all the three simulation websites and 

two data sets returned errors. It was also noted that the two datasets displayed data that shouldn’t be visible. The 

Autodect framework detected, prevented and flagged these unusual behavior. 

4.5.2 Suspicious SQL Statement 

If an attacker successfully injects malicious sql code into the web application, chances are that it may result in 

suspicious sql statement being executed. These statements may include un usual characters such as apostrophes 

or semicolons and to some extent they may include SQL key words that shouldn’t be presented in the code. For 

lour testing and authenticity, we injected the following four statements, each representing four diferent kind of 

sql attacks. 

4.5.2.1 Error Based sql Injection  

‘AND (SELECT COUNT(*)FROM users)=15; As their databases did not contain exactly 15 users, the three 

simulation websites issued error messages, in two of the three simulation websites, the message disclosed the 

database structure information. Autodect framework detected 97% of the error messages and prevented them 

from returning valuable messages concerning database structure. 

4.5.2.2 Basic sql Injection 

Since all the three simulation websites had login pages with user name and password fields. For penetration 

testing we entered the following code. 

‘OR 1=1;- 

This caused the SQL query to return true in one of the websites, allowing us to bypass the login and gain access 

to the system. The Autodect framework was able to detect and prevent 95 cases in 100 trials summing up to 

95%. 

4.5.2.3 Union Based sql Injection 

The researcher injected a union query into the original statement to return additional data that the researcher was 

not authorized to view. The following Union statement was injected. 

UNION SELECT credit_card_number, null, null FROM users;-- 

We were able to get additional credit card numbers from the users table. The Autodect framework detected 107 

trials out of 112. This averaged to 95.53% 

4.5.2.4 Blind sql Attack 

Our research also used a Boolean based or time based technique to extract data from the database . The following 

code was inserted . 

‘ AND (SELECT ASCII(SUBSTRING((SELECT TOP 1 name FROM users),1,1)))>100; 

This statement extracted the first character of the ‘name’ field in the ‘users’ table using the ASCII function. 

Because the ASCII value was greater than 100, it returned true, allowing the researcher to extract the data one 

character at a time. The Autodect framework was able to detect and prevent 143 trials out of 149, which 

averaged to 95.97% 

4.5.3 Abnormal Traffic Patterns 

Sql injection attacks can generate a lot of traffic to a web application. If the traffic pattern suddenly increases it 

could be a sign that an attack is taking place. Autodect framework was able to detect and prevent 98 trials out of 

100. Totaling to around 98%. 

4.5.4 Log Analysis 

Web application logs can provide valuable information about sql injection attacks . Example if a log shows that a 

user entered sql command in a form filed it could indicate that an attacks is underway. Autodect framework is 

able to analyze the system logs and generate a report 

5. Conclusion and Future Work 

In this study, we employed a four layer approach of a detection unit, a proxy database, knowledge base and 

prevention unit. we first outlined the different categories of SQLIAs. Then we looked into SQL injection detection 

and prevention methods being used both past and present. Then, we contrasted these methods  based on how well 

they prevented SQLIA. We also contrasted these methods' deployment requirements, which inconveniences 

institutions. The findings suggest that some present strategies should be improved in order to better defend against 
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SQLI assaults. Future studies should separate techniques that have been used as tools and assess their efficacy, 

efficiency, stability, flexibility, and performance to map out their strengths and weaknesses. Some further works 

should also be done by coming up with a clear algorithm to develop sql injection universally accepted datasets. Our 

framework depended on our knowledge base to come up with a formation of standard data sets 
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