
Computer and Information Science; Vol. 16, No. 1; 2023

ISSN 1913-8989 E-ISSN 1913-8997

Published by Canadian Center of Science and Education

1

A Reference Framework for Variability Management of Software

Product Lines

Saiqa Aleem1*, Luiz Fernando Capretz2, & Faheem Ahmed1

1 Department of Engineering, Thompson Rivers University, Kamloops, British Columbia, Canada, V2C 0C8

2 Electrical & Computer Engineering Department, Western University, London ON, Canada, N6A 5B9

Correspondence: Saiqa Aleem Department of Engineering, Thompson Rivers University, Kamloops, British

Columbia, V2C 0C8, Canada.

Received: October 13, 2022 Accepted: November 15, 2022 Online Published: November 25, 2022

doi:10.5539/cis.v16n1p1 URL: https://doi.org/10.5539/cis.v16n1p1

Abstract

Variability management (VM) in software product line engineering (SPLE) is introduced as an abstraction that

enables the reuse and customization of assets. VM is a complex task involving the identification, representation,

and instantiation of variability for specific products, as well as the evolution of variability itself. This work

presents a comparison and contrast between existing VM approaches using ―qualitative meta-synthesis‖ to

determine the underlying perspectives, metaphors, and concepts of existing methods. A common frame of

reference for the VM was proposed as the result of this analysis. Putting metaphors in the context of the

dimensions in which variability occurs and identifying its key concepts provides a better understanding of its

management and enables several analyses and evaluation opportunities. Finally, the proposed framework was

evaluated using a qualitative study approach. The results of the evaluation phase suggest that the organizations in

practice only focus on one dimension. The presented frame of reference will help the organization to cover this

gap in practice.

Keywords: application engineering, domain engineering, software product lines, variability management

1. Introduction

Since the 1960s, the main concern in software engineering has been the creation of software products in a shorter

time to market with low cost and high quality. By addressing these concerns, software product line engineering

(SPLE) has attracted substantial attention in recent years because it promises the construction of high-quality

software products at a lower cost in less time (Pohl et al., 2005); Moon et al. (2005)) by proactive use.

Furthermore, SPLE supports the systematic development of a group mileage method for identifying variation

and mapping it to other phases, that is, domain engineering and application engineering. Moreover, the existing

approaches in VM literature appear to be incongruent with each other because they take different perspectives

and use somewhat different metaphors with limited scope (Chen et al. 2009). These problems highlight the need

for a common frame of reference for VM adoption and implementation in SPLE because organizations are

exposed to several approaches. A common frame of reference would help developers understand and implement

VM effectively in different views of domain engineering and application engineering (SPLE).

This study aims to provide a common frame of reference for VM in SPLE by using ―qualitative meta-synthesis‖

(Walsh & Downe, 2005). The qualitative meta-analysis approach used comparison and contrast techniques. The

comparison and contrast technique between existing VM approaches helps determine the underlying

perspectives, metaphors, and concepts of existing methods. The study adopted a qualitative meta-synthesis

approach and followed the research methodology explained by Walsh & Downe (2005).

1.1 Related Work

Many software product-line design methods and methodologies, including but not limited to FODA (Kang et al.,

1990), FORM (Kang et al., 1989), FAST (Ardis et al., 2000), SPLIT (Coriat et al., 2000), KobrA (Atkinson et al.,

2000), and QADA (2019) have been proposed to manage variabilities in software product lines over the past two

decades with applications in different industrial contexts. Recently, Itzik et al. (2016) introduced an approach

called semantic and ontological variability analysis (SOVA) to analyze the variability among different software

products based on their textual requirements. In SOVA, two perspectives are discussed: structural and functional,

http://cis.ccsenet.org Computer and Information Science Vol. 16, No. 1; 2023

2

and its outcomes are feature diagrams organized according to selected perspectives. FeatureIDE (Meinicke et al.,

2016) is an Eclipse-based tool that supports the handling of multiple challenges with preprocessors and is used in

the entire life cycle of software product life development.

Many studies have analyzed variability management techniques from a different perspective. Matinlassi (2004)

provided a detailed comparison of software product line architecture design methods: COPA, FAST, FORM,

KobrA, and QADA by their context, user, structure, and validation. Chen et al. (2009;2011) carried out a

systematic literature review of VM approaches in a software product line from 1990 to 2007. They reported

that most VM approaches were neither evaluated thoroughly using scientific techniques nor the trends of

scientific evaluation of VM approaches appeared to be improving. They also highlighted areas that require

improvement and proposed that these approaches can be constructive if applied appropriately. Sinnema et al.

(2007) provided a detailed classification of variability modelling techniques based on their similarities. They also

highlighted the differences, scope, size, and application domains of product families.

Similarly, Metzger & Pohl (2014) briefly summarized the significant research achievements and structured their

research summaries along with a standardized software product line framework. They found significant

contributions in the areas of variability modelling and informally verified product line artifacts. They also

highlighted trends that will influence software product line engineering research in the coming years, which

shows research opportunities at the intersection between software product line engineering and service-oriented

computing, cloud computing, big data analytics, autonomic computing, and adaptive systems.

Moreover, Arrieta et al. (2015) analyzed variability challenges in a cyber-physical system with a resulting

taxonomy that is useful for future developers of CPS product lines. A systematic literature review by Galster et al.

(2014) for variability highlighted that throughout the software engineering phases, only testing is a phase where

variability has not been addressed sufficiently. They reported that for variability management, software quality

attributes have not gained much consideration. The proposed dimensions of variability indicate many

opportunities for future research. Reinhartz-Berger et al.(2017) investigated the comprehensibility of the two

methods of variability organization into models. They concluded that when creating a model from natural

language description, the modelling style is determined by prior exposure to the modelling style and the degree

of dependency among elements. The comprehension of the variability model also depends on the degree of

dependence.

Empirical studies on variability management comprise the work of Chen & Babar (2010), who identified the

issues and challenges of VM faced by industry practitioners. Some of these challenges were later confirmed by

Berger et al. (2013). Berger et al. (2013) tried to improve the empirical understanding of variability modelling

practices in industrial software product lines by analyzing the survey results of industrial practitioners. They

found that most models used in industry have variability units ranging from 50 to 10,000 and a high

heterogeneity of notations and tools. Czarnecki et al. (2012) compared FM and decision modelling approaches

for variability. They structured the research conducted in the field of variability modelling and evaluated possible

synergies. The comparison consists of many aspects of FM and DM, including historical origins and rationale,

syntactic and semantic richness, tool support, and identifying commonalities and differences. The organizational

factors and business factors of successful software produtct lines were investigated by Ahmed et. al. (2007) and

Ahmed and Capretz (2007) respectively; these two studies led to the creation of a business maturity model of

software product line engineering (Ahmed and Capretz, 2011). Bosch et al. (2015) presented trends in software

variability in the technical practice area.

To build systems that are more context-aware, post-deployment reconfigurable and runtime adaptive dynamic

software product line (DSPL) engineering exploit the knowledge acquired in SPLE (Melo et al., 2007;2013). Da

Silva et al. (2016) provided a systematic review of the literature. They identified the assets, activities, tools, and

approaches used in requirements engineering and variability management in dynamic software product lines

(domain engineering). The activities are focused on DSPL modelling and specification. They mentioned that

traditional approaches such as UML diagrams could be used to document the domain requirements as well as the

feature model, which can also be used to represent the domain variability. Guedes et al. (2015) conducted a

systematic mapping to discover how variability is modelled in DSPL approaches and which information is used

to guide variability binding at runtime. They synthesized the results of the systematic mapping, which can be

used to identify trends and gaps for research on the variability management of DSPL. They found that various

notations were used and discovered that two-thirds of their selected studies used feature models to capture

variability. The proposed framework of Bashari et al. (2017) is designed by defining a set of dimensions that

answer questions about how runtime adaptation can be realized using DSPL engineering approaches. For the

http://cis.ccsenet.org Computer and Information Science Vol. 16, No. 1; 2023

3

organization of dimensions, their framework conceptualizes DSPL adaptation management as a MAPE-K loop.

The related work on variability management mostly includes quantitative-based research. Moreover, the

approaches mentioned above only cover a single aspect of VM, such as analysis, implementation, adoption,

domain engineering, or application engineering phase. There is a lack of a common frame of reference in SPLE

for VM adoption and implementation. In this study, we presented the VM common frame of reference that

covers the domain and application engineering phases as well as business and technical aspects. We used the

qualitative meta-synthesis method to determine the underlying perspectives, metaphors, and concepts of existing

VM approaches and proposed a common frame of reference that would help developers understand and

implement VM effectively in different views of SPLE.

The rest of the paper is structured as follows: Section 2 (Research motivation and methodology) introduces the

qualitative meta-synthesis procedure used in this study. Section 3 (Results and analysis stage of meta-synthesis

techniques) reviews and analyzes eleven VM approaches found in the literature between 2000 and 2019. The

existing VM approaches are compared and contrasted with each other, revealing the perspectives, scope, and

metaphors used by each.

Section 4 defines the final VM framework. Section 5 (a common framework for variability management)

proposes a common frame of reference for describing and implementing VM based on the analysis presented in

the results section, that is, Section 3. Section 5 presents the evaluation of the proposed framework. Section 6

(Conclusions and future research directions) presents the concluding comments and directions for future

research.

2. Research Methodology and Motivation

2.1 Research Motivation

This research aims to reveal the underlying concepts and metaphors present in various VM approaches and to

theorize and build an underlying higher-level VM model to achieve a better understanding by developers. The

main research motivation behind this research is that VM is one of the fundamental activities of SPLE and

involves the explicit representation of the variation in software product artifacts, management of dependencies

among variants, and support for instantiations of the product line throughout the SPLE lifecycle. In product line

engineering, efficiently realizing and managing variability is a key challenge (Myllärniemi et al., 2016).

Therefore, it is clear that VM involves extremely challenging and complex tasks, which must be supported by a

common frame of reference that clarifies the decision model for variations and endorses the use of effective

techniques and tools. Several approaches have proposed solutions to these challenges for nearly 20 years.

The goal of this research is to synthesize the VM approaches proposed by researchers during the last two

decades and develop a common frame of reference for VM description and implementation throughout the SPLE

lifecycle. The proposed approaches were identified through a literature review. From the proposed approaches,

various metaphors and perspectives observed were contrasted, compared, and synthesized. It is noteworthy that

the research approaches found in the literature review are based on quantitative rather than qualitative studies.

Qualitative studies provide depth and details for the analysis, rather than ranks based on quantitative analysis.

They also created openness for further analyses. Therefore, a qualitative meta-synthesis approach appears to be a

suitable technique for exposing the underlying frame of reference for VM description and implementation.

Specifically, the qualitative meta-synthesis approach presented by Walsh and Downs 2005 was chosen for this

study. Walsh and Downe (2005) developed and proposed a six-step approach for qualitative meta-synthesis

through an extensive literature review using different phrases such as ―meta-analysis‖, ―meta-synthesis‖, and

follow-up ―berry picking‖ (Bates, 1989) procedures. The six steps of the qualitative meta-synthesis approach

include: (a) framing the meta-synthesis exercise, (b) locating relevant papers, (c) deciding what to include, (d)

appraising the studies, (e) performing analytical techniques such as comparing, contrasting, and reciprocal

translation, and (f) synthesizing the translations.

2.2 Research Methodology: Qualitative Meta-Synthesis

In this study, the ―qualitative meta-synthesis‖ research methodology was used (Walsh and Downe, 2005). This is

recognized as an exploratory research approach that is used to extract or build a common frame of reference

from the analysis of research results. This approach helps to create a staged framework. In the healthcare

research domain, the phrase qualitative meta-synthesis was first coined by Stern and Harris (1985) in the context

of a systematic review of qualitative studies, but it must be distinguished from the concept of a systematic review.

A systematic review can be performed by following a series of well-defined steps. Statistical analysis was

performed on a pool of research studies, enabling a robust comparison among quantitative studies. This type of

http://cis.ccsenet.org Computer and Information Science Vol. 16, No. 1; 2023

4

statistical analysis can also be called a meta-analysis. Studies based on qualitative meta-synthesis can provide

more in-depth analysis and investigation. The objective of qualitative meta-synthesis is to develop a model or

exploratory theory that can explain the results of a group of similar qualitative studies (Dixon-woods et al. 2007;

Finlayson and Dixon, 2009; Humphrey et al. 2007; Jensen and Allen 2006). Such an aggregation of qualitative

studies has been described by Zimmer (2006): ―through a process of translation and synthesis, identification of

consensus, hypothesis development, and investigation of contradictions in patterns of experience across studies

make theorizing at higher levels possible‘ (p. 1). This translation and synthesis seek not only to retain the

distinctive features of individual studies but also to reveal their differences, thereby facilitating understanding by

both researchers and readers of how various research results are related to each other.

In this study, the qualitative meta-synthesis procedure is outlined in Figure 1, followed by the details of each

phase in the following sub-section.

1) Design Framing a Qualitative Meta-synthesis:

The first step of a qualitative meta-synthesis approach involves an appropriate research question. First, a research

question must always be proposed. Selecting a topic for qualitative meta-synthesis is critically important because

many factors such as research gaps, research impact, and individual or community interests contribute to shaping

this research question.

2) Locating Relevant Studies and Deciding What to Include:

This step involves searching for relevant studies in the available databases, which can be performed in two

phases. In the first phase, an initial search can be performed based on the identified keywords and the research

question that was formed in the previous step. An initial selection can be made based on the suitability criteria

for the research topic. The second phase of screening was based on the Bates (1989) ―berry picking‖ approach.

The main purpose of this approach is to search for related ―approaches used for the study‖, and a citation

analysis was performed by searching for ―mainstream approaches‖ and following the chain of citations. This

approach will help to include any important studies that were missed in the previous step.

3) Appraisal Studies:

This phase involves screening studies with low quality. Walsh and Downe‘s (2005) approach was selected for

this study, except for the appraisal phase.

Figure 1. Qualitative meta-synthesis procedure (Moon et al. 2005)

4) Analytical techniques

This step involves the ―compare and contrast phase‖ and reciprocal translation of the approaches of the identified

studies. In the comparison and contrast phases, the researcher determines how frameworks/approaches overlap or

differ in the selected studies. The reciprocal translation step involves exploring the metaphors involved in the

identified concepts and themes for reciprocal translation that the various approaches could use. Themes and

http://cis.ccsenet.org Computer and Information Science Vol. 16, No. 1; 2023

5

concepts are linked to the identification of overarching metaphors. Meaningful dimensions were identified across

the different phases during this process.

5) Synthesis of Translations:

 Progressively, clusters of metaphors, themes, and concepts can be refined and can emerge as substantive

theories (Sherwood, 1997; Strauss & Corbin, 1998). In this step, translation synthesis addresses the

contradictions and overlaps in the concepts identified in the reciprocal translation process.

2.3 Application of qualitative Meta-synthesis

In the following section, the phases of the meta-synthesis procedure are described.

1) Framing a qualitative meta-synthesis:

The research question covered in this study includes the interrogation of underlying metaphors and themes in

various VM approaches found in the literature and the development of a common frame of reference that

developers can use to design and implement VM initiatives. First, we defined the general question of the study as

follows:

General Research Question: Can we develop a common framework for VM description or its implementation for

developers?

To answer the general question, we defined the sub-questions which are listed below:

Research Question (i): What are the themes and metaphors contained in various existing VM approaches?

Research Question (ii): What is the common frame of reference for VM implementation?

2) Locating Relevant Studies and Deciding What to Include

 First, a conventional electronic database search was undertaken using various combinations of terms such as

variability, approaches, management, software products, implementation, tools, variants, modelling, and model

against major electronic databases, including IEEE Computer Society, ACM Communications, Google Scholar,

Elsevier Science Direct, Wiley Online Library, and Springer. This procedure, as explained earlier, consists of two

phases. In the first phase, an initial search was performed, 334 articles were retrieved based on the identified

keywords, and a research question was formed. An initial selection was made based on the following suitability

criteria for the research topic:

• The studies should be about VM approaches, their description, and implementation.

• The full article text should be available.

• If any article identifies any framework or approach for implementing VM in SPLE, that article is included.

• Studies that described the modelling of VM in SPLE were included.

• Studies that described the importance of VM and discussed its issues were included.

• Analyses of case studies for VM were included.

Some articles were excluded because they were not directly related to VM for SPLE based on the following

exclusion criteria:

• Articles published on company Web sites were not included.

• Articles irrelevant to the research questions were not included.

• Articles that did not describe VM implementations were not included.

• Articles that did not identify VM approaches in SPLE were not included.

Accordingly, 233 research papers were selected. In the second phase, 101 articles that were directly related to

VM approaches based on the inclusion and exclusion criteria shown in Figure 2 were selected. The second phase

of screening was based on the Bates (1989) ―berry picking‖ approach. The main purpose of this approach was to

search for related ―approaches used for VM implementation by developers‖, and a citation analysis was

performed searching for ―mainstream approaches of VM for SPLE and its implementation‖ and following the

chain of citations. As a result, some researchers have used previously developed techniques to support their

analyses or arguments. At this stage, various relevant articles from the literature or elsewhere, such as industry

reports, book chapters, and white papers from international organizations, were identified and located from

journal citations through recursive research. Using Google and Google Scholar Web Search, this recursive

research was augmented. As a result, 17 VM approaches were identified, covering different aspects of SPLE.

http://cis.ccsenet.org Computer and Information Science Vol. 16, No. 1; 2023

6

Figure 2. Study selection process

3) Appraisal Studies

This approach is suitable only in areas such as education, nursing, and healthcare, where many studies have been

conducted. In the final selection of articles on VM for SPLE, relatively few studies remained, and because the

objective of this research was to highlight the metaphors and concepts underlying these approaches, the rigorous

relevance of the approach was more critical than the implementation process itself. Therefore, judgments were

not made about the quality of the articles or the approaches, and any approach suggesting the modelling or

description of VM at any point in time in SPLE or its implementation was included in this analysis. In other

words, the appraisal phase was conducted under relaxed criteria.

4) Analytical techniques

The identified VM approaches for SPLE were compared and contrasted with each other from various

perspectives. Practically, this process involved in-depth reading of each article and report. Understanding the

author's usage of key ideas, metaphors, phrases, relations, and concepts generated a grid that linked concepts to

themes by tabulating them against each other. This is an interpretive and descriptive process. As Jensen and

Allen (2006) explained, ―this is a two-part process. The first part accurately captures concepts, while the second

is a dialectic relating of studies to each other through the juxtaposition of the concepts identified in the process.‖

By using this juxtaposition of concepts, the identified terms revealed degrees of heterogeneity or homogeneity

among these approaches, as can be seen in new concepts for a common frame of reference for VM. The results

of this phase are presented in Table 3, Appendix I, and Figure 4 and are discussed in detail in Section 3. In short,

this research is based on a qualitative meta-synthesis research approach that combines results from various

qualitative approaches within a specific domain. The domain of interest for this study includes VM approaches,

and the study follows a detailed procedure as suggested by Walsh and Downe (2005) and also adopted by Lee

(2010) to answer this research question and its sub-questions. However, this approach cannot be considered as a

literature review or an analysis of primary data, but rather as a qualitative study aggregating results interpreted

by researchers in a collection of VM approaches found in the literature. The outcomes of this phase are presented

in Table 1 in Appendix I. Table 1 includes columns that list each identified approach's underlying concepts,

modelling techniques that they cover, the scope of each approach, each approach addressed issues and the

limitations of each approach. Table 1 is discussed in detail in section 4.1.

5) Reciprocal translation

This process was reciprocal in the sense that, among the VM approaches, the comparison and creation of

concepts and metaphors were performed repeatedly. In particular, when concepts are homogeneous in terms of

usage and definitions, this process is relatively straightforward. At other times, the same concepts may stand in

opposition to each other. Noblit and Hare (1988) described this as ―refutation translation‖ because concepts may

overlap without being sufficiently replaceable. This translation may be a sign of the existence of a new category

that was not revealed in the first step. The results of this reciprocal translation are shown in Table 2 in Appendix

I. Table 2 has three columns: the first column lists the approach, the second column lists the SPL stage described

in the approach, and the third column provides the mapping in comparison with SPL stages for variability

management. The outcome is discussed in section 4.2 in detail.

6) Synthesis of Translations

The last phase of the meta-synthesis approach involved the synthesis of translated and juxtaposed metaphors and

concepts in elucidating exploratory theories, underlying dimensions, and new concepts for a common frame of

reference for VM. The results of this phase are presented in Table 3, Appendix I, and Figure 4 and are discussed

in detail in Section 4.3.

In short, this research is based on a qualitative meta-synthesis research approach that combines results from

http://cis.ccsenet.org Computer and Information Science Vol. 16, No. 1; 2023

7

various qualitative approaches within a specific domain. The domain of interest for this study includes VM

approaches, and the study follows a detailed procedure as suggested by Walsh and Downe (2005) and also

adopted by Lee (2010) to answer this research question and its sub-questions. However, this approach cannot be

considered as a literature review or an analysis of primary data, but rather as a qualitative study aggregating

results interpreted by researchers in a collection of VM approaches found in the literature.

3. Results and Analysis of Meta-Synthesis

This section elaborates on the results of the analytical analysis stage of the meta-synthesis technique. From this

stage, twelve approaches were identified after the recursive and iterative literature search and analysis of

citations described in the section on the detailed qualitative meta-synthesis process. A subsequent web search

was performed after studying the documentation and original reports from companies and consulting firms and

confirmed the use and existence of these approaches (FODA (Kang et al. 1990), Koalish (Asikainen et al. 2004),

KobrA (Atkinson et al. 2000), Kumbang (Asikainen et al., 2007), COVAMOF (Junior et al. 2005), and others).

Most of these approaches include custom tools to support product line activities as part of their methods

(Chimalakonda et al., 2016).

Most VM methods have been developed by individual researchers and have been described in the academic

literature. It seems that some of these approaches were based on previously developed approaches or

combinations of more than one VM approach, whereas others were disconnected in terms of their specific details

as well as their general perspective. The approaches studied are quite diverse in terms of their goals, design

philosophy approaches, and variability modelling methods. Because of the diversity of the reported approaches,

it would be difficult to classify them, although some researchers have tried. This study attempted to describe the

approaches based on the underlying classification strategy. The outcome of the analytical technique phase is

mentioned in Table 1, Appendix I. Clearly, several approaches cover only one or two phases of the SPLE life

cycle. Only a few approaches have been found that attempts to cover the full SPLE lifecycle; these are presented

in Table 2 in Appendix I.

3.1 Result of Analytical Technique Phase

A brief description of each identified approach as an outcome of the analytical technique phase is provided

below:

Feature-oriented domain analysis (FODA) based VM approaches: The FODA (Kang et al. 1990) method

developed by the Software Engineering Institute (SEI) uses features to characterize a domain. The features of a

product can be services, characteristics, or technologies in a particular product line. This approach uses features

to control variability in both problem and solution spaces and introduces the basic concept of feature modelling.

From 1998 to 2008, researchers proposed and implemented numerous extensions and enhancements to the

original FODA model (Bosch et al. 2015). The feature-oriented reuse method (FORM) (Knag et al. 1989) is an

extension of the FODA approach that supports VM. It identifies the commonalities among applications in a

particular domain and constructs a feature model during the analysis. This featured model captures

commonalities as an AND/OR graph, mandatory features can be identified by AND and OR nodes, and

alternative features selectable for different applications can be specified. Many approaches have been proposed

to use the same feature modelling concept or extend it. A tool for VM in the requirements phase was developed

by RequiLine (von der Massen et al., 2004). This approach proposed a model that reused features as an extension

of a feature model. These features might be useful or mandatory in one domain, but optional in another. Ferber et

al. (2002) used separate views to represent feature dependencies and interactions. The same approach was

extended by Ye and Liu (2005) by expanding the meaning of the views. Many researchers have studied

state-of-the-art feature model analysis (Benavides et al., 2010; Lesta et al., 2015; Thum et al., 2014). Sree-Kumar

et al. (2016) reviewed the state-of-the-art analysis of FMs using alloy (a popular framework used for feature

model analysis) using the list of analysis operations as proposed by Benavides et al. (2010) as a reference.

Identification of features, their representation in the feature model, and then variability design from architecture

to component implementation are stages of FODA-based approaches. Approximately 13 approaches are based on

FODA, and these approaches help in analyzing domain requirement commonalities and performing variability

modelling or analysis. Only FORM provides comprehensive coverage of the SPLE lifecycle, excluding the

testing phase.

Koala-Based VM Approaches: Koala (Asikainen et al., 2004) was developed by Philips Consumer Electronics

for the development of embedded software in consumer electronic devices. The modelling elements of Koala

contain components that have interfaces, functions corresponding to function signatures, and configurations that

are not part of components and have no interfaces, as well as bindings between interfaces. These elements are

http://cis.ccsenet.org Computer and Information Science Vol. 16, No. 1; 2023

8

used to specify the logical structure of a software system. Some of these VM approaches were inspired by Koala

(Asikainen et al., 2004). VM is performed at compile time using Koala-based approaches. The method proposed

by van der Hoek (2004) differs from Koala because it supports variability management at any point in the

software lifecycle. Another extension of the Koala approach is Koalish (Asikainen et al., 2004), a component

model, and an architectural description language for explicit VM mechanisms that are used to capture alternative

or optional components. For contained components, a set of possible types and cardinalities can be defined to

enable variability tracing among them. Constraints can be used in this approach to restricting the set of valid

individual systems. Koalish is based on the product configuration domain. Kumbang (Asikainen et al., 2007) is a

combination of Koalish and feature modelling concepts. It models SPLE from both features and architectural

perspectives. This approach was also introduced by the common author of Koala and Koalish. It is based on

three layers of abstraction. The meta-layer has the highest level of abstraction and is made up of modelling

concepts or metaclasses. The model layer is the next layer consisting of the Kumbang models; it contains entities

and classes that are instances of metaclasses. The final layer is the instance layer and consists of instances of

model layer classes. Variability is represented in a Kumbang model that contains a set of Kumbang types and is

the description of its instances. Kumbang synthesizes existing methods of variability modelling and provides a

basis for the development of VM modelling and tool support from requirements specification to architecture

phases (Asikainen et al., 2007), as well as enabling SPL configuration according to specific customer

requirements.

Component-based product-line engineering VM approaches: The KobrA approach serves as the foundation

for SPLE and is based on the concept of component-based product-line engineering (Asikainen, 2002). It uses a

decision model to represent variability identification and design (Asikainen et al., 2001). The decision model

consists of variability IDs, variation points, effect sets, and a resolution set for variability. A questionnaire was

used for requirements identification, after which variability was derived. The derived variability was represented

in terms of the variation points with a resolution setting. This approach does not explicitly present the variability

types and scope. Another component-based variability approach was proposed by Bachmann and Bass (2001) for

an SPLE architecture. In this architecture, different variation points were identified as data, functions, control

flows, quality goals, technologies, and the environment. Variability features can be an alternative, a set of

alternatives, or optional. This approach does not address the appropriate scope or level of detail for variability

types. The approach proposed by Muthig and Atkinson (2002) is also based on a decision model approach for the

architectural design phase. It introduces three types of variation points. However, this approach is limited to a

known range of variability. Lau et al. (2014) surveyed and studied existing component-based software

engineering approaches and their corresponding component models. They also defined a new component model

and the taxonomy of the existing component model. Few studies using the component-based development

approach provide a classification of variability in terms of its scope (Lee et al., 1999; Sharp, 2000; Becker et al.

2002).

UML-Based VM Approaches: The UML process-based approach was introduced for variability management

(Junior et al., 2005). It provides identification, representation, and delimitation of variability, as well as the

identification of mechanisms for variability implementation. A systematic review of the evaluation of variability

management (Chen & Babar, 2011) showed that a large majority of VM approaches are based on feature

modelling and/or UML-based techniques. The UML-based process supports the SPL lifecycle, variability tracing,

and analysis of specific product configurations. Generally, variability refers to the variable aspects of the SPL

products. Term variation and variants are also used to describe variability (Pohl et al. 2005). The variability

management process runs in parallel with the development of core assets because it is an iterative and

incremental process. In the core asset development process, the variability management process is executed after

each activity implementation. The number of variabilities can be expected to increase as activities are executed,

and updates of variability are allowed from any activity in the process. The proposed process is constructed as

follows: a) the variability tracing definition stage accepts inputs in the form of a use case and a feature model

and generates output in the form of a variability tracing model; b) the variability identification stage accepts the

use case, the feature model, the static type, and the component model as inputs and generates the identified

variabilities along with the same artifacts as outputs; c) variability delimitation accepts the same inputs as the

variability identification stage and generates outputs in the form of the same artifacts with the variabilities

limited; and d) identification of mechanisms for variability implementation accepts the static type and the

component model as inputs and generates output in the form of a variability implementation model. The

evaluation method was based on case studies, and the results showed that it is beneficial to establish well-defined

and controlled variability management for core asset development as the main activity. This study also proposed

http://cis.ccsenet.org Computer and Information Science Vol. 16, No. 1; 2023

9

a metadata model that constitutes the basis for tool design to support variability management. The proposed

approach is limited to domain engineering.

Systematic process-support-based VM Approach: Family-Oriented Abstraction, Specification, and

Translation (FAST) (Ardis et al. 2000) use a systematic process for commonality analysis that exploits the

commonalities among the family and simultaneously accommodates variations among the members. The FAST

process can be divided into two stages: domain engineering and application engineering. The first step is domain

analysis in the domain engineering stage. Commonality analysis is the preferred method for this analysis, in

which experts collect and document their knowledge of the SPL. To produce family products quickly and

cheaply, an application engineering environment was developed based on a commonality analysis. In such an

environment, domain-specific languages and architectural frameworks are often used. The second step in domain

engineering is to translate the knowledge obtained from the commonality analysis phase into useful technology.

This useful technology can include the creation of domain-specific and composable components. The application

engineer uses the information obtained to produce the individual members of a product family. Feedback also

plays a vital role in the modification of the environment. FAST focuses mainly on domain engineering and is

used for the fast generation of individual products.

Notation-Independent VM Approaches: The SPLIT (Coriat et al., 2000) approach uses an extension of the

UML for variability modelling. It uses a multilevel decision model to provide definitions of decision rules that

are needed to identify the relations between decisions. This approach is dependent on an environment that uses

UML, and intentionally, no particular notation is used to describe product-line assets to approach notation

independence. Schmid and John (2004) also proposed a notation-independent representation for VM as a

meta-model containing the following components: a decision model for variability effect characterization, a

mechanism for the description of various decision interactions, a mechanism for variability resolution, a set of

selector types, and a mapping of selector types to specific notations for expressing variation points in the

artifacts. This approach complements Muthig‘s (2002) approach but focuses more on using product-line methods

along with a comprehensive modelling approach for variability.

Optimization-based VM Approaches: Loesch and Ploedereder (2007) proposed an iterative semi-automated

process and a variability optimization method for an SPL. It optimizes the number of required variable features

without affecting the configuration of existing SPLs and future products. This approach also provides an

interactive visualization of variability to help SPL engineers perform product derivation, variability management,

and other tasks. The entire process consists of four phases: a) in variability documentation, a matrix is

constructed relating product configurations and variable features to provide precise documentation of SPL

variability; b) the variability prediction phase predicts the required future variability; c) in variability analysis,

the matrix is used to analyze the use of current and future variability features in product configuration. Features

are classified according to their usage, and constraints are identified; and d) in variability restructuring, the

output of variability analysis is used to derive restructuring strategies to simplify variability and apply these

strategies to SPL components. This approach provides limited support for the evolution of the variability.

Variation point model (VPM) Approach: VPM (Webber & Gomma, 2004) manages variation points from

common requirements up to the design level. It models four types of variability: parameterization enables the

user to define a population of attributes; inheritance makes it possible to choose variants from a limited set of

choices; information hiding also enables a user to choose from a limited set of choices, but the interface is

common, and the implementation is different, and the last type is evaluated using variation points. The VPM

extends the definition of a variation point by including its variability mechanisms in addition to its mechanism.

This approach describes the four views that are necessary for adequate communication of the variation points to

the user. The four views are the requirements view, component variation point view, static variation point view,

and dynamic variation point view. This approach models the variability of core asset component variation points

and builds target system components from unique variants built from variation points. It provides more

flexibility to the re-user and enables the creation and maintenance of unique variants.

Configuration-based Approach: Krueger‘s (2002) approach is based on configuration management. In SPL, the

VM is a multidimensional problem of configuration management. The author used the ―divide and conquer‖

approach to the variation management problem in software product lines. Variability management problems are

divided into a collection of nine smaller problems and solutions. The proposed solutions to the nine problems are

lightweight solutions that also help reduce the associated cost, risk, and time. The application of the proposed

solution was also analyzed even with legacy software systems that have no proper documentation.

1) Result of Comparing and contrasting phase

http://cis.ccsenet.org Computer and Information Science Vol. 16, No. 1; 2023

10

Research A focus group comprised three experts (two from academia (SPLE researchers) and one from industry

(dealing with VM projects). They compared the different phases of variability management against each other

using the semantic comparison of the descriptions of each phase in the selected approaches, as shown in Table 3.

The identified approaches were selected based on the inclusion criteria that mainly described variability

management for an SPL. In the analytical technique step, the experts identified the twelve specific stages from

the identified studies and numbered them in the leftmost column of Table 3, Appendix I.

Table 3 shows the different approaches that implicitly or explicitly discuss VM phases from the literature. The

phases are divided into two domains: domain engineering and application engineering. Some approaches discuss

phases from both domains, but some only focus on the application phase, such as Krueger (2002). After

comparing and contrasting, a total of 12 phases were identified. Contrasts between these approaches, along with

the metaphors and themes used, were identified throughout the process and are described below. Concepts,

themes, and metaphors are italicized.

Phase 1. The approach taken by Kim et al. (2011) is exceptional in that it explicitly emphasizes business

planning and product information as initial steps toward VM and calls them a scoping step that determines the

boundaries of an SPL. FODA (Kang et al., 1990) and FORM (Kang, 1989) also help domain engineers in the

identification of commonality and variability features in product lines. FAST (Ardis et al., 2000) is another

approach that addresses the commonality analysis issue for SPLs. Junior et al. (2005) included a

variability-tracing definition in the form of a variability-tracing model. The approach of Kim et al. (2011)

consisted of both business and technical perspectives on the SPL for VM. This phase is important because it

provides prerequisites for later stages.

Phases 2 & 3. Phase 2 involves the identification of variability. It seems that most of the approaches include a

requirement view, C&V modelling, or a variation point view. Despite the different names used by the approaches,

they all suggest that the organization must identify variability in SPLs as its first initiative toward VM. VPM

(Webber & Gomaa, 2004) discussed the identification of requirements for SPLs from a technical perspective.

Phase 3 includes the dependency view of variability in one product with other features, as discussed in the

context of COVAMOF (Sinnema et al., 2004). These two phases can be merged because they highlight the

importance of variability identification and their dependency on other SPL features. Itzik et al. (2016) introduced

an approach to automate the requirements variability analysis based on ontological and semantic considerations.

This approach analyzes and presents variability based on textual requirements only.

Phases 4, 5, & 6. The detailed phases 4, 5, and 6 are primarily related to the modelling of variability in most of

the approaches that describe it differently. FAST (Ardis et al., 2000) refers to this phase as the creation of

composable components, VPM (Webber & Gomaa, 2004) defines different views of static and dynamic variation,

and Kumbang (2007) and Font et al. (2017) described this phase in the form of a model, but all these approaches

contain the technical perspective of VM. The approach taken by Kim et al., (2011) is different because it

describes the business service scenario along with architectural modelling from a business perspective.

Phases 7, 8, & 9. The next detailed phases deal with the actual implementation of variability along with the SPL

application engineering phase. Junior et al. (2005) proposed a variability implementation mode and the tracing

and control of variability from a technical perspective. The Krueger approach is based on configuration

management and implements variability in the form of components. Kim et al. (2011) adopted a distinct

approach in that they briefly discussed the variability in product design, analysis, and development. The FAST

(Ardis et al., 2000) approach simply discussed variability under the generic architecture phase in a general

manner. The Schmid and John (2004) approach described the decision model for variability and the identity of

the actors and discussed the variability binding stage from both a business and technical perspective.

Phases 10, 11, & 12. The last detail phase is the optimization of variability, which is found in only a few

approaches. The FAST (Ardis et al., 2000) approach briefly describes the testing phase for an SPL, but does not

explain the testing phase for VM. Junior et al. (2005) attempted to describe the optimization of variability in the

form of a configuration analysis of a particular product. Myllärniemi et al. (2016) also proposed theories for

performance variability in software product lines and evaluated them using a case study. The most important

approach in terms of optimization or evolution of variability is the Loesch and Ploedereder (2007) approach. It

describes in detail how to analyze, predict, and restructure variability from both business and technical

perspectives for better scalability and business portfolio management.

Summary of comparison and contrast of features of VM approaches:

A cross-modal comparison revealed two important themes. Figure 3 shows the results of the ―comparison and

http://cis.ccsenet.org Computer and Information Science Vol. 16, No. 1; 2023

11

contrasting stages‖ of the research methodology based on different identified phases. It also highlights the

reciprocal relationship between the identified themes and phases from this stage. One theme is related to the

business perspective of VM in SPLs, and its key concepts are business planning, business service scenarios,

decision models of product variability, and portfolio management. Portfolio management refers to the

management of different business services based on the implementation of variability. The other theme is related

to the technology perspective of VM adoption in SPLs, and its identified key concepts are requirements

identification, architectural modelling, implementation, and testing. Table 3 and Appendix I present the 12

detailed phases identified in the analysis. The first phase of business planning and product information is

important from both perspectives. Phases 2 and 3 are merged because they cover the identification of SPL

requirements from a technical perspective. Phases 4, 5, and 6 are clustered together because they address the

variability modelling issue. Phases 7, 8, and 9 discuss the binding of variation points in terms of variability

implementation. Phases 10, 11, and 12 deal with variability optimization from both technical and business

perspectives for better scalability.

2) Result of the Reciprocal translation phase

It is about identifying underlying concepts and themes. The next step in the analysis is a reciprocal translation,

which deals with the translation of studies into one another‘s terms.

At this stage, the surveyed studies are compared and contrasted with each other and with the dimensions

identified in the comparison study. A reciprocal translation of the concepts and themes is presented in Table 4 in

Appendix I and compared to the phases provided in the surveyed approaches. A tick mark against the concepts in

a given set of cells represents the existence of that concept in the approach. First, the initial business planning

phase seems to be related more to the business perspective but is also related to the technical perspective,

whereas requirements identification is more related to the technical perspective. Business service scenarios and

decision modelling both refer to the business perspective. Architectural modelling, implementation, and testing

seem to be related more to a technical perspective.

3.2 Result of Synthesis of Translation; Relating Concepts and Themes Revealing Underlying Metaphors.

The synthesis of translation is the last step of the method and explores the underlying themes and concepts for

metaphors. This step of the study confirmed the preliminary findings of previous reciprocal translations. The

expert team sequenced and classified the initial concepts identified (such as business planning, requirements

identification, business service scenarios, architectural modelling, decision model, implementation, and testing)

with the two themes (business and technical perspectives). Business planning, business service scenarios,

decision models, and portfolio management concepts were related to the business perspective, whereas

requirements identification, architectural modelling, implementation, and testing concepts were related to the

technical perspective. Next, all identified concepts were sequenced during the development and adoption phases.

Finally, four phases/metaphors were identified across the two themes and eight concepts. Table 5 in Appendix I

summarizes the definitions and corresponding phases of the metaphors. The four metaphors identified through

this synthesis of the translation step are variability identification, variability modelling, variability

implementation, and variability optimization.

Variability identification metaphors: The variability identification metaphor refers to the identification of

variability requirements and the planning of product variability information. Requirement identification falls

under the technical perspective, and business planning falls under the business perspective. This phase

determines the SPL boundaries, and the variable-tracing model can be used to capture the variability

identification requirements. An enhanced product map, feature list, or refined feature diagram can be the

outcome of this metaphor. This metaphor can be positioned in the first phase of the VM adoption frame of

reference as an initial step toward the VM process.

Variability-modelling metaphor: This metaphor consists of the variability modelling process, and most previous

studies have addressed this issue. From a technical perspective, architectural modelling describes the variability

that is allowed in products and model variations in a particular product. The business service scenario falls under

the business perspective and models different business services from the standpoint of product variability. The

outcomes of this metaphor can be refined using use case models or business service scenarios. A product feature

map can also be constructed. This metaphor can be positioned after the identification of variability between

business service scenarios and architectural modelling. The first two metaphors can be categorized as domain

engineering.

Variability implementation metaphors: The variability-implementation metaphor consists of a decision model,

http://cis.ccsenet.org Computer and Information Science Vol. 16, No. 1; 2023

12

product derivation, or implementation concepts. This metaphor can be aligned with these two concepts. This

metaphor implements variability, and tracing and binding of different product variation points also occur in this

phase. The variable product can be derived by binding the variation points. This metaphor falls under the

implementation of the SPL stage and the decision model from a business perspective and also involves decisions

about variability in the product line from a business perspective. The actual product configuration is a part of this

metaphor.

Variability optimization metaphor: The final metaphor is variability optimization. Among the key concepts

that can be aligned with this metaphor is the testing of variation point binding, and portfolio management from a

business perspective deals with the management of this metaphor. The different services offered by a product

also provide scalability. This metaphor can also involve a product configuration analysis. Addition, deletion, and

updating of variation points can also be addressed using this metaphor which can be positioned at the last phase

of VM, which is the adoption of a common SPL frame of reference.

The variability implementation metaphor can be categorized under application engineering.

4. Common Framework for VM of SPL

Several approaches have been identified from the literature and compared with each other for the meta-synthesis

of qualitative analysis. Key concepts were extracted from these approaches because they used different

descriptions. The underlying themes were identified by performing semantic analysis. Through reciprocal

translation and synthesis of translation, underlying metaphors were extracted. Figure 4 shows the resulting

common framework for VM adoption in the SPL for any organization.

The analysis of content identified two apparent themes: business and technical perspectives. For any

organization to deliver competitive software products, these two themes are very important, and the present

analysis distinguishes them from each other. In Figure 4, the technical and business themes are represented by

the x- and y-axes, respectively. The relationships between phases and themes indicate four separate but

interrelated metaphors: variability identification, variability modeling, variability implementation, and variability

optimization. These metaphors are indicated on the diagonal of the figure as boxes with bold characters. Two

themes are clearly shown by all the metaphors: technical and business perspectives.

Figure 4. Relationship between themes and stages

http://cis.ccsenet.org Computer and Information Science Vol. 16, No. 1; 2023

13

Figure 5. A common frame of reference for VM in SPL

The variability identification metaphor covers the concepts of requirements identification and business planning

in parallel, whereas variability modeling covers architecture modeling and business service scenarios. Both

metaphors fall under domain engineering. The variability implementation metaphor includes the concepts of a

decision model and the implementation phase of an SPL, whereas variability optimization consists of testing and

portfolio management.

Existing VM approaches seem to be fragmented in terms of their perspectives and applications, as revealed by

reciprocal translation. None of the approaches in the literature are comprehensive enough that an organization

can use it as a guideline for VM adoption. Management, organizational perspective, technology, and narrow

focus are all present in a fragmented manner across various approaches. The use of a meta-synthesis qualitative

analysis reveals a common frame of reference for VM adoption, which was presented in this study.

This common frame of reference is simple, yet comprehensive, and covers all the features provided by the

various approaches. It can be used by any organization for VM adoption in SPLs. From a technological

standpoint, the proposed frame of reference is an accumulative model for VM adoption. The first phase involves

the identification of the business planning and variability requirements.

The second phase includes the modeling of product variability in a software product line and can be

accomplished in many ways because most of the work related to VM is performed in this area. The third phase

involves the actual implementation of variability features in a product, and the final phase deals with variability

optimization to track variability features.

5. Evaluation of the Proposed Framework

To evaluate the common frame of reference, a qualitative study was performed. The case study approach was

used to demonstrate the applicability of the common frame of reference. Generally, the case study approach is an

appropriate strategy, when ‗why‘ or ‗how‘ questions are of primary interest (Yin, 2008). The goal of case studies

is not to validate the proposed common frame of reference in this phase of the study, but to demonstrate its

applicability in the SPLE industry. The study involved a set of semi-structured interviews to evaluate the

proposed framework of VM practices in six organizations. We first describe the interview design, participants,

and research methodology. We then present detailed interview results based on the interview data.

http://cis.ccsenet.org Computer and Information Science Vol. 16, No. 1; 2023

14

5.1 Interview Design and Participant Data Collection

We conducted semi-structured 36 interviews, among which some interviewers were employees of the same

organization. The participants were involved in the product-line efforts of a single organization. The subjects

involved in the study were two industrial companies that applied SPLE and variability modeling, two were SPLE

consultant companies, one was a telecommunication infrastructure company, and the last was a mobile game

development organization. Industrial companies are selected because they publish product-line efforts in terms of

highly referenced experience reports.

The consultant companies were selected because they showed interest in our proposed framework and their

employees‘ responses to our questionnaire. We invited participants to participate in the interview, and each

interview lasted for almost one hour. A sample questionnaire is provided in Appendix II. The names of the

respondents and their organizations were kept confidential for reasons of privacy. Participating organizations

were informed that this is a research study and that, subsequently, neither the identity of the organization nor that

of any individual would be disclosed in any publication.

The two consultancy companies were medium-sized organizations and developed custom software solutions for

their clients. One is an IT consulting organization referred to as case study A. The respondents were IT

consultants with 6-8 years of experience. The second is a web-based application organization referred to as Case

Study B, and respondents of the interview are process managers and software architects with experience of 8-15

years working in a team of 5-7 members. The industrial organizations come under the category of large-scale and

belong to automotive (referred to as case study C), and respondents are software architects with experience of

3-6 years that previously modelled and managed variability for the organization's product lines. The fourth

category is the electro-mechanical producers‘ category (Case Study D), and respondents are software architects

with a team size of 6-8 members having experience of 5-8 years. They developed the SPL for their main

products. The fifth is a telecommunication large-scale organization, and its product line contains both software

and hardware (case study E), and respondents are product line architects and managers having experience of

5-17 years. The mobile game organization is small and targets different mobile device hardware, software, and

sales channel customization (case study F), and respondents are managers and software developers with

experience varying from 5 to 15 years and working in a team size of 3-5 members.

5.2 Interview Result

Responses were collected from the respondents. We analyzed the collected data, and figure 5 presents a summary

of the results. Figure 5 shows the activities performed in each phase of the presented framework for the VM in

each case study.

Case Study A & B: Case study A is involved in an independent IT consulting company that offers expertise in

product line research and involves selling methodologies and technologies for developing SPL. The respondents

of the interviews were IT consultants. Case Study B was a web-based application development company. The

respondents of the interviews were process managers and software architects. The developers in both

organizations prefer to use the visual and configuration capabilities of the feature models. They don‘t follow the

variability management in terms of the phases. They merged their variability identification and modeling phases.

They only focus on the technical perspective of variability management.

Case Study C & D: The respondents were software architects that previously modelled and managed variability

for the organization's product lines. Both case studies are similar in that they perform variability identification

and variability, and modeling does not use any formal model. Stakeholders were involved only in the testing

phase. They also do not follow any specific phases for variability management, as presented in the common

frame of reference. Both case studies focused more on the technical perspective of variability management. They

do not use specific decision models for the variation points.

Case Study E: The respondents are product line architects and managers. They also merge two phases of the

framework, that is, identification and modelling involve only a technical perspective. In the implementation

phase, they did not follow any feature map. They developed their decision model and did not use any formal

representation. The optimization phase does not involve all the stakeholders.

Case Study F: The respondents from this organization were software developers and managers. They only

manage lightweight variability. More focused on a technical perspective

http://cis.ccsenet.org Computer and Information Science Vol. 16, No. 1; 2023

15

Figure 5. Framework evaluation qualitative study

In short, all the case studies are more focused on the technical perspective of the VM framework, as they cover

most phases of the technical dimension presented in the framework, but pay very little attention to the business

perspective of VM of SPL. They do not follow any specified variability framework for management. All the

organizations found the presented framework and showed interest in the different metaphors of the phases. The

results of this study solely depend on the respondents‘ perspective; therefore, it is subject to validity threats in an

interview-based qualitative study. Another limitation is the number of respondents; we avoided any

generalization to address this limitation.

6. Conclusion and Future Directions

Variability management from requirements identification to implementation is becoming a key business

requirement. In this research, a qualitative meta-synthesis approach was used to contrast and compare various

VM-related approaches found in the literature. A meta-synthesis approach was used to synthesize the results

from the qualitative studies. A common frame of reference for VM was proposed as a result of this analysis.

Putting metaphors in the context of the dimensions in which variability occurs and identifying key concepts

provides a better understanding of variability management. This offers several opportunities for analysis and

evaluation.

However, the proposed model is the first step toward understanding the VM. The authors evaluated the presented

frame of reference by investigating the SPL organizations. The evaluation aims to identify the gap in practice by

comparing it with the frame of reference. The results of the evaluation phase suggest that the organizations in

practice only focus on one dimension. The presented frame of reference will help the organization to cover this

gap in practice. In the future, we expect to work on elaborating metaphors from the two perspectives explored in

this study and validate them through empirical research.

Acknowledgments

This study was supported by the RIF activity R17014 granted by Zayed University, Abu Dhabi, U.A.E.

References

Ahmed, F., & Capretz, L. F. (2007). Managing the Business of Software Product Line: An Empirical

Investigation of Key Business Factors. Information and Software Technology, 49(2), 194-208.

https://doi.org/10.1016/j.infsof.2006.05.004

Ahmed, F., & Capretz, L. F. (2011). A Business Maturity Model of Software Product Line Engineering.

Information Systems Frontiers, 13, 543-560. https://doi.org/10.1007/s10796-010-9230-8

Ahmed, F., Capretz, L. F., & Sheikh, S. A. (2007). Institutionalization of Software Product Line: An Empirical

Investigation of Key Organizational Factors. Journal of Systems and Software, 80(6), 836-849.

https://doi.org/10.1016/j.jss.2006.09.010

Ardis, M., Daley, N., Hoffman, D., Siy, H., & Weiss, D. (2000). Software Product Lines: A Case Study.

Software-Practice and Experience, 30(7), 825-847.

https://doi.org/10.1002/(SICI)1097-024X(200006)30:7<825::AID-SPE322>3.0.CO;2-1

http://cis.ccsenet.org Computer and Information Science Vol. 16, No. 1; 2023

16

Arrieta, A., Goiuria S., & Leire, E. (2015). Cyber-physical systems product lines: Variability analysis and

challenges. Jornadas de Computación Empotrada.

Asikainen, T., Männistö, T., & Soininen, T. (2007). Kumbang: A Domain Ontology for Modelling Variability in

Software Product Families. Advanced Engineering Informatics, 21, 23-40.

https://doi.org/10.1016/j.aei.2006.11.007

Asikainen, T., Soininen, T., & Männistö, T. (2004). A Koala-Based Approach for Modelling and Deploying

Configurable Software Product Families. Software Product-Family Engineering (PFE-5). Springer, 3014,

225-249. https://doi.org/10.1007/978-3-540-24667-1_17

Atkinson, C. (2002). Component-Based Product Line Engineering with UML. Addison-Wesley.

https://doi.org/10.1007/3-540-46020-9_34

Atkinson, C., Bayer, J., & Muthig, D. (2000). Component-Based Product Line Development: the KobrA

Approach. In Proceedings, First International Software Product Line Conference, Denver, CO, 289-309.

https://doi.org/10.1007/978-1-4615-4339-8_16

Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., … Zettel J. (2001).

Component-Based Product Line Engineering with UML. Addison-Wesley, Reading, MA.

Bachmann, F., & Bass, L. (2001). Managing Variability in Software Architecture. ACM SIGSOFT Software

Engineering Notes, May 1, 26(3), 126-132. https://doi.org/10.1145/379377.375274

Bashari, M., Ebrahim, B., & Weichang, D. (2017). Dynamic software product line engineering: a reference

framework. International Journal of Software Engineering and Knowledge Engineering, 27(2), 191-234.

https://doi.org/10.1142/S0218194017500085

Bates, M. (1989). The Design of Browsing and Berrypicking Techniques for On-line Search Interface. Online

Review, 13(5), 407-424. https://doi.org/10.1108/eb024320

Becker, M., Geyer, L., Gilbert, A., & Becker, K. (2002). Comprehensive variability modeling to facilitate

efficient variability treatment. Lecture Notes in Computer Science 2290. In Proceedings of Fourth

International Workshop on Product Family Engineering, 294-303.

https://doi.org/10.1007/3-540-47833-7_26

Benavides, D., Segura, S., & Ruiz-Cortés, A. (2010). Automated analysis of feature models 20 years later: A

literature review. Information Systems, 35(6), 615-636. https://doi.org/10.1016/j.is.2010.01.001

Berger, T., Rublack, R., Nair, D., Atlee, J. M., Becker, M., Czarnecki, K., & Wąsowski, A. (2013). A survey of

variability modeling in industrial practice. Proceedings of the Seventh International Workshop on

Variability Modelling of Software-intensive Systems. ACM, (p. 7).

https://doi.org/10.1145/2430502.2430513

Bosch, J., Rafael, C., & Rich, H. (2015). Trends in Systems and Software Variability [Guest editors' introduction.

IEEE Software, 32(3), 44-51. https://doi.org/10.1109/MS.2015.74

Chen, L., & Babar, M. A. (2010). Variability management in software product lines: an investigation of

contemporary industrial challenges. International Conference on Software Product Lines. Springer Berlin

Heidelberg,(pp. 166-180). https://doi.org/10.1007/978-3-642-15579-6_12

Chen, L., & Babar, M. A., (2011). A systematic review of evaluation of variability management approaches in

software product lines. Information and Software Technology, 53(4), 344-362.

https://doi.org/10.1016/j.infsof.2010.12.006

Chen, L., Ali Babar, M., & Ali, N., (2015). Variability management in dynamic software product lines: A

systematic mapping. Components, Architectures and Reuse Software (SBCARS), 2015 IX Brazilian

Symposium on. IEEE.

Chen, L., Babar, M. A., & Ali, N. (2009). Variability Management in Software Product Lines: A systematic

review. In Proceedings of the 13th International Software Product Line Conference (SPLC). Carnegie

Mellon University, ACM Pittsburgh, PA, USA, pp. 81-90.

Chen, L., Babar, M. A., & Crowley, C. (2009). A status Report on the evaluation of variability management

approaches. https://doi.org/10.14236/ewic/EASE2009.14

Chimalakonda, S., & Lee, D. H. (2016). On the Evolution of Software and Systems Product Line Standards.

ACM SIGSOFT Software Engineering Notes, 41(3), 27-30. https://doi.org/10.1145/2934240.2934248

http://cis.ccsenet.org Computer and Information Science Vol. 16, No. 1; 2023

17

Coriat, M., Jourdan, J., & Boisbourdin, F. (2000). The SPLIT Method: Building Product Lines for

Software-intensive Systems. In Proceedings 1st International Software Product Line Conference, Denver,

CO, 2000, pp. 147-166. https://doi.org/10.1007/978-1-4615-4339-8_8

Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., & Wąsowski, A. (2012). Cool features and tough

decisions: a comparison of variability modeling approaches. Proceedings of the sixth international

workshop on variability modeling of software-intensive systems. ACM, (pp. 173-182).

https://doi.org/10.1145/2110147.2110167

da Silva, L. M., Bezerra, C. I., Andrade, R. M., & Monteiro, J. M. S. (2016). Requirements Engineering and

Variability Management in DSPLs Domain Engineering: A Systematic Literature Review. ICEIS 2016, 544.

https://doi.org/10.5220/0005872405440551

Dixon-Woods, M., Booth, A., & Sutton, A., (2007). Synthesizing Qualitative Research: A Review of Published

Reports. Qualitative Research, 7(3), 375-422. https://doi.org/10.1177/1468794107078517

Ferber, S., Haag, J., & Savolainen, J. (2002). Feature Interaction and Dependencies: Modeling Features for

Re-engineering a Legacy Product Line. Software Product Lines (SPLC2): Springer, LNCS, 2379, 37-60.

https://doi.org/10.1007/3-540-45652-X_15

Finlayson, K. W., & Dixon, A. (2009). Qualitative Meta-Synthesis: A Guide for the Novice. Nurse Researcher,

15(2), 59-71. https://doi.org/10.7748/nr2008.01.15.2.59.c6330

Font, J., Arcega, L., Haugen, O., & Cetina, C. (2017). Leveraging variability modeling to address metamodel

revisions in Model-based Software Product Lines. Computer Languages, Systems & Structures, 48, 20-38.

https://doi.org/10.1016/j.cl.2016.08.003

Galster, M., Weyns, D., Tofan, D., Michalik, B., & Avgeriou, P. (2014). Variability in software systems—a

systematic literature review. IEEE Transactions on Software Engineering, 40(3), 282-306.

https://doi.org/10.1109/TSE.2013.56

Humphreys, A., Johnson, S., Richardson, J., Stenhouse, E., & Watkins, M. (2007). A Systematic Review and

Meta-synthesis: Evaluating the Effectiveness of Nurse, Midwife, and Allied Health Professional

Consultants. Journal of Clinical Nursing, 2007, 16(10), 1792-1808.

https://doi.org/10.1111/j.1365-2702.2007.01757.x

Itzik, N., Reinhartz-Berger, I., & Wand, Y. (2016). Variability Analysis of Requirements: Considering Behavioral

Differences and Reflecting Stakeholders‘ Perspectives. IEEE Transactions on Software Engineering, 42(7),

687-706. https://doi.org/10.1109/TSE.2015.2512599

Jensen, L. A., & Allen, M. N., (2006). Meta-Synthesis of Qualitative Findings. Qualitative Health Research, 6(4),

553-560. https://doi.org/10.1177/104973239600600407

Junior, E., Gimenes, I. M. S., Huzita, E. H. M., & Maldonado, J. C. (2005). A Variability Management Process

for Software Product Lines. In Proceedings of the Conference of the Center for Advanced Studies on

Collaborative Research (CASCON‘05), 2005, 225-241.

Kang, K. C., Cohen, S. G., Hess, J., Novak, A., & Peterson, A. S. (1990). Feature-Oriented Domain Analysis

(FODA) Feasibility Study. SEI Technical Report. https://doi.org/10.21236/ADA235785

Kang, K. C., Kim, S., Lee, J., Kim, K., Shin, E., & Huh, M. (1989). FORM: A Feature-Oriented Reuse Method

with Domain-Specific Reference Architectures. Annals of Software Engineering, 5, 143-168.

https://doi.org/10.1023/A:1018980625587

Kim, Y. G., Lee, S. K., & Jang, S. (2011). Variability Management for Software Product-line Architecture

Development. International Journal of Software Engineering and Knowledge Engineering, 21(7), 931-956.

https://doi.org/10.1142/S0218194011005542

Krueger, C. (2002). Variation Management for Software Product Lines. In Proceedings, 2nd International

Conference on Software Product Lines (SPLC’02), LNCS Springer, 2379, 107-108.

Lau, K. K. (2014). Software component models: Past, present and future. Proceedings of the 17th international

ACM Sigsoft symposium on Component-based software engineering. pp. 185-186, ACM.

https://doi.org/10.1145/2602458.2611456

Lee, J. W. (2010). 10-year Retrospective on Staged Models of E-government: a Qualitative Meta-Synthesis.

Government Information Quarterly, 27, 220-230. https://doi.org/10.1016/j.giq.2009.12.009

http://cis.ccsenet.org Computer and Information Science Vol. 16, No. 1; 2023

18

Lee, S., Yang, Y., Cho, E., Kim, S., & Rhew, S. (1999). COMO: a UML-based Component Development

Methodology. In Proceedings of IEEE Asia-Pacific Software Engineering Conference (APSEC99),

Takamatsu, pp. 54-61.

Lesta, U., Schaefer, I., & Winkelmann, T. (2015). Detecting and explaining conflicts in attributed feature models.

arXiv preprint arXiv:1504.03483. https://doi.org/10.4204/EPTCS.182.3

Loesch, F., & Ploedereder, E. (2007). Optimization of Variability in Software Product Lines. In Proceedings of

11th International Software Product Line Conference, pp. 151-162.

https://doi.org/10.1109/SPLINE.2007.31

Matinlassi, M. (2004). Comparison of software product line architecture design methods: COPA, FAST, FORM,

KobrA and QADA. Software Engineering, 2004. ICSE 2004. Proceedings. 26th International Conference on.

IEEE. https://doi.org/10.1109/ICSE.2004.1317435

Meinicke, J., Thüm, T., Schröter, R., Krieter, S., Benduhn, F., Saake, G., & Leich, T. (2016). FeatureIDE:

Taming the preprocessor wilderness. Proceedings of the 38th International Conference on Software

Engineering Companion. ACM. https://doi.org/10.1145/2889160.2889175

Melo, H., Coelho, R., Kulesza, U., & Sena, D. (2013). In-Depth Characterization of Exception Flows in

Software Product Lines: An Empirical Study. Journal of Software Engineering Research and Development,

1, 3. https://doi.org/10.1186/2195-1721-1-3

Metzger, A., & Pohl, K. (2014). Software product line engineering and variability management: achievements

and challenges. In Proceedings of Future of Software Engineering, May 31- June 7, 70–84.

https://doi.org/10.1145/2593882.2593888

Moon, M., Yeom, K., & Chae, H. S. (2005). An Approach to Developing Domain Requirements as a Core Asset

Based on Commonality and Variability Analysis in a Product Line. IEEE Transactions on Software

Engineering (TSE), 31(7), 551-569. https://doi.org/10.1109/TSE.2005.76

Muthig, D. (2002). A Light-Weight Approach Facilitating an Evolutionary Transition Towards Software Product

Lines. Ph.D. Theses in Experimental Software Engineering, Fraunhofer IRB Verlag, 2002.

Muthig, D., & Atkinson, C. (2002). Model-driven Product Line Architectures. Lecture Notes in Computer

Science 2379. In Proceedings of the Second Software Product Line Conference, pp. 110-129.

https://doi.org/10.1007/3-540-45652-X_8

Myllärniemi, V., Savolainen, J., Raatikainen, M., & Mannisto, T. (2016). Performance variability in software

product lines: proposing theories from a case study. Empirical Software Engineering, 21(4), 1623-1169.

https://doi.org/10.1007/s10664-014-9359-z

Noblit, G., & Hare, R. (1988). Meta-Ethnography: Synthesizing Qualitative Studies. Sage, Newbury Park. Vol.

11. https://doi.org/10.4135/9781412985000

Pohl, K., Böckle, G., & Linden, F. (2005). Software Product Line Engineering: Foundations, Principles, and

Techniques. Springer-Verlag New York, Inc. Secaucus, NJ, USA. (2005).

https://doi.org/10.1007/3-540-28901-1

QADA. (2019). Retrieved January 26, 2019, from http://virtual.vtt.fi/virtual/proj1/projects/qada/index.htm

Reinhartz-Berger, I., Figl, K., & Haugen, O. (2017). Investigating styles in variability modeling: Hierarchical vs.

constrained styles. Information and software technology, 87, 81-102.

https://doi.org/10.1016/j.infsof.2017.01.012

Schmid, K., & John, I. (2004). A Customizable Approach to Full Lifecycle Variability Management. Science

Computer Program, 53, 259-284. https://doi.org/10.1016/j.scico.2003.04.002

Sharp, D. C. (2000). Containing and facilitating change via object-oriented tailoring techniques. In Proceedings

of the First Software Product Line Conference, Denver, Colorado, August 8 pages.

Sherwood, G. (1997). Meta-synthesis of Qualitative Analyses of Caring: Defining a Therapeutic Model of

Nursing. Advanced Practice Nursing Quarterly, 3(1), 32-42.

Sinnema, M., & Sybren, D. (2007). Classifying variability modeling techniques. Information and Software

Technology, 49(7), 717-739. https://doi.org/10.1016/j.infsof.2006.08.001

Sinnema, M., Deelstra, S., Nijhuis, J., & Bosch, J. (2004). COVAMOF: A Framework for Modeling Variability in

Software Product Families. In Nord, R. L. (Ed.), SPLC, Springer, Heidelberg, LNCS, 3154, 197-213.

http://cis.ccsenet.org Computer and Information Science Vol. 16, No. 1; 2023

19

https://doi.org/10.1007/978-3-540-28630-1_12

Sree-Kumar, A., Planas, E., & Clarisó, R. (2016). Analysis of Feature Models Using Alloy: A Survey. arXiv

preprint arXiv:1604.00349. https://doi.org/10.4204/EPTCS.206.5

Stern, P., & Harris, C. (1985). Women‘s Health and the Self-care Paradox: A Model to Guide Self-Care

Readiness. Health Care for Women International, 6(1-3), 151-163.

https://doi.org/10.1080/07399338509515689

Strauss, A., & Corbin, J. (1998). The Basics of Qualitative Research: Techniques and Procedures for Developing

Grounded Theory. Sage Publications: Thousand Oaks, CA.

Thüm, T., Apel, S., Kästner, C., Schaefer, I., & Saake, G. (2014). A classification and survey of analysis

strategies for software product lines. ACM Computing Surveys (CSUR), 47(1), 6.

https://doi.org/10.1145/2580950

van der Hoek, A. (2004). Design-time Product Line Architectures for Any-time Variability. Science Computer

Program, 53, 285-304. https://doi.org/10.1016/j.scico.2003.04.003

von der Massen, T., & Lichter, H. (2004). RequiLine: A Requirements Engineering Tool for Software Product

Lines. Software Product-Family Engineering (PFE-5): Springer, LNCS, 3014, 168-180.

https://doi.org/10.1007/978-3-540-24667-1_13

Walsh, D., & Downe, S. (2005). Meta-Synthesis Method for Qualitative Research: A Literature Review. Journal

of Advanced Nursing, 50(2), 204-211. https://doi.org/10.1111/j.1365-2648.2005.03380.x

Webber, D. L., & Gomaa, H. (2004). Modeling Variability in Software Product Lines with the Variation Point

Model. Science Computer Program, 53, 305-331. https://doi.org/10.1016/j.scico.2003.04.004

Ye, H., & Liu, H. (2005). Approach to Modeling Feature Variability and Dependencies in Software Product

Lines. IEEE Proc. Software, 152(3), 101-109. https://doi.org/10.1049/ip-sen:20045007

Yin, R. K., (2008). Case study research: Design and methods (2nd ed.). (1994). Newbury Park, CA: Sage

Publications.

Zimmer, L. (2006). Qualitative Meta-Synthesis: A Question of Dialoguing with Texts. Journal of Advanced

Nursing, 53(3), 311-318. https://doi.org/10.1111/j.1365-2648.2006.03721.x

http://cis.ccsenet.org Computer and Information Science Vol. 16, No. 1; 2023

20

Appendix

Table 1. Comparison of SPL approaches for variability management

Approach Underlying concept Modeling

Technique

Scope Issues

Addressed

Limitations

FODA (Kang etal.,

1990)

Feature-oriented Feature

modeling

SPL life cycle  Variability

modeling

 Identification

of commonality

and variability

 Scope limited

toSPLE

 Does not

cover a

particular VM

FORM (Kan et al.

1989)

Based on FODA Feature

modeling

Requirements phase

 Design phase

Implementation phase

Variability

modeling

Limited scope:

limited to

modeling

RequiLine (Von der

Massen & Lichter,

2004)

Based on FODA Feature

modeling

Requirements phase Variability

modeling Tool

support

Limited scope:

covers only one

phase

Ferber et al. (2002) Based on FODA Views to

represent

dependency

interaction

Requirements phase How dependent

variant interact

Limited to

views and

requirement

phase

Ye & Li (2005) Extension of

Ferber‘s approach

View

extension

Requirements phase Variability

modeling

Evolution of

variability

Limited scope:

covers only one

phase

van der Hoek (2004) Component/

Koala-based

 Architecture-centric Support any-time

variability

Binding time

addressed

Limited scope

to architecture

phase

Koalish (Asikainen

et al. 2004)

Component-based Architecture and configuration

phases

Variability

modeling

Product

derivation

Limited scope:

covers only one

phase

Krueger (Krueger

2002)

Configuration-based N/A Configuration phase Product

derivation

File system level

Limited scope:

covers only one

phase

COVAMOF (Junior

et al. 2005; Sinnema

et al., 2004)

Based on the feature

model

Variation

point view

and

dependency

view

Define the level of abstraction

a) features

b) architecture

c)component implementation

Variability

modeling

Product

derivation

Limited scope: :

covers only one

phase

Kumbang

(Asikainen at al.,

2007)

FODA+ component

(Koala)-based

VPM (Webber &

Gomaa, 2004)

Variation

point-based

UML

extension

Requirements phase Variability

modeling

Limited scope:

covers only one

phase

Muthig [68] Separation of

variability

representation from

SPL artifacts + uses

a decision model

Notation-inde

pendent

Requirements phase Variability

modeling

Limited scope:

covers only one

phase

Schmid and John

(2004)

Customizability

approach and use of

decision model

Notation-inde

pendent

Requirements, architecture, and

implementation phases

Variability

modeling and

emphasis on ease

of adoption

FAST (Ardis et al.

2000)

Process support No prescription

of VM model

DRM & MOON et

al.(2005)

Based on FODA Requirements phase Identification of

commonality and

variability

Limited scope:

covers only one

phase

Loesch and

Ploedereder (2007)

Optimization-based Maintenance phase Evolution of

variability

Limited to the

maintenance

phase

Kim et al. (2011) Feature model UML

extension

Domain engineering &

architecture

VM in domain

engineering

Limited scope

but

comprehensive

http://cis.ccsenet.org Computer and Information Science Vol. 16, No. 1; 2023

21

Table 2. Comparison of SPL Stages for Variability Management

Approaches SPL stages are covered by an approach Mapping in comparison with SPL stages

for Variability Management

Muthig (2002) Separation of variability from SPL artifacts

 Notation-independent

Requirements engineering phase

COVAMOF (Junior et

al. 2005;Sinnema et al.,

2004)

Modeling techniques

a) Variation point view

(i) variation point (ii) variant (iii) dependency

b) Dependency view

Feature model

Architecture

Component implementation

Koalish (Asikainen et

al., 2004)

Variability modeling Modeling language for

configuration-based approaches

1) Components and

compositional structure

2) Connection points

3) Attributes

4) Constraints

Formalization (weight constraint

rule language) - tool support

Variation Management

for SPLE Krueger

(2002)

Configuration-based approach—File system level

a) Basic configuration management

i) version management ii) branch iii) baseline iv) branched

baseline

b) Component composition

i) composition management ii) branched composition

management

c) Software mass customization

i) Variation point management, ii) customization

management iii) customization composition management

SPLE artifacts under variation

management

1) Domain engineering- common

& variant artifacts.

2) Product instantiation-

instantiation infrastructure

3) Product development –

product instances

Use-product instances

KobrA (Atkinson et al.,

2000)

Integration of product-line concept into component-based

development; VM not discussed in particular

1) Framework engineering phase

i) context realization, ii) component

specification, iii) component realization

2) Application engineering

i) application context realization, ii)

framework instantiation

Schmid and John

(2004)

Limited to component-based development only-

a) decision model

b) interactions

c) relations

d) variation types

e) specific mapping

Traceability of variability in all kinds of

SPL lifecycle artifacts, both horizontally

and vertically

Kim et al. (2011) a) Domain engineering

i) Scoping: business planning and product information

ii) C&V modeling – Control feature list, enhanced product map,

refined feature diagram

iii)Architecture modeling- Inputs are refined use case model,

business service case scenario, and outputs are quality

goals specification, architecture view

b) Application engineering

i) product analysis

ii) product design

 product development

Mainly focused on domain engineering in

SPL

FAST (Ardis et al. 2000) a) Commonality analysis

Creation of domain-specific language & creation of composable

component

Loesch and Ploedereder

(2007)

Describes participants like core asset developers, product

developers, technology experts, marketing managers, product line

manager

Phases for optimization process:

a) variability documentation

b) variability prediction

c) variability analysis

d) variability restructuring

This approach is dependent on evolving

SPL with existing variability for the

optimization process.

FORM (Kang et al.

1989)

VM is not explicitly discussed 1) Domain engineering

i) Domain analysis & feature

modeling

ii) Architectural & component

http://cis.ccsenet.org Computer and Information Science Vol. 16, No. 1; 2023

22

modeling

2) Application engineering

i) Requirements analysis & feature

selection

ii) Architectural model selection &

application development.

Junior et al. (2005) a) Variability tracing definition- variability tracing model

b) Variability identification

c) Variability delimitation

d) Identification of mechanisms for variability management.

5) Requirements identification

(UML-based)

VPM (Webber &

Gomaa, 2004)

a) Requirements view

b) Component variation point view

c) Static variation point view

d) Dynamic variation point view

Requirements to design level.

Table 3. VM Phases Identified From Approaches

Authors FAST

(Ardis et al.

2000)

Krueger

(2002)

Schmi

d and

John

(2004)

VPM

(Webber

&

Gomaa,

2004)

Junior et

al. (2005)

COVAMO

F

(Sinnema

et al. 2004)

Kumban

g

(Asikain

en et al.

2007)

Loesch and

Ploedereder

(2007)

Kim et al.

(2011)

Year 2000 2002 2004 2004 2005 2004-2008 2007 2007 2011

Phase # 5 3 5 4 4 2 3 4 3

Domain Engineering

1 Commonalit

y analysis

 Variability

tracing

definition

 Scoping

2 Creation of

domain-spec

ific language

for

variability

identification

 Requirem

ents view

Variability

identificati

on

Variation

point view

Meta

layer

Variability

documentatio

n

C & V

modeling

3 Dependenc

y view

4 Composable

component

creation

 Compone

nt

variation

view

Variability

delimitatio

n

 Kumbang

model

 Architectur

al modeling

5 Static

variation

point view

 Instance

layer

6 Dynamic

variation

point view

Application Engineering

7 Generic

architecture

Basic

configurat

ion mgmt.

Decisio

n

model

 Variability

implementa

tion mode

 Product

analysis

8 Compone

nt

compositi

on

Mappin

g

 Variability

tracing &

control

 Product

design

9 Software

mass

customiza

tion

 Product

developme

nt

10 Testing

phase

 Configurati

on analysis

of specific

product

 Variability

prediction

11 Variability

analysis

12 Variability

restructure-in

g

http://cis.ccsenet.org Computer and Information Science Vol. 16, No. 1; 2023

23

Table 4. Underlying Metaphors and Themes of the VM Phase Model

Metaphor Description Stages/Concepts

Business
Perspective

Technical
Perspective

Variability identification Identification of product variability for SPL Business planning Requirements
identification

Variability modeling

Modeling of variation points for specific
products

Business service
scenarios

Architectural
modeling

Variability
implementation

Product derivation and binding of version
points

Decision model Implementation

Variability optimization Restructuring of variability, addition,
deletion, and updating of variation points

Portfolio management Testing

Table 5. Metaphors: their definition, related stages, and themes

Metaphor Themes Concepts FAS

T

(Ard

is et

al.

2000

)

Krueg

er

(2002)

Schm

id

and

John

(2004

)

VPM

(Webb

er &

Goma

a,

2004)

Juni

or et

al.

(200

5)

COVAM

OF

(Sinnem

a et al.

2004)

Kumba

ng

(Asikai

nen et

al.

2007)

Loesch

and

Ploedere

der

(2007)

Kim

et al.

(2011

)

Variability

identificati

on

Business/tech

nical

perspective

Product

information

/

requirement

s

identificatio

n

   



Variability

modeling

Business/

technical

perspective

Business

services

scenarios/

architectura

l modeling

       

Variability

implementa

tion

Business/

technical

perspective

Decision

model/

implementa

tion

 



  

Variability

optimizatio

n

Business/

technical

perspective

Portfolio

mgmt./testi

ng

scalability

 

http://cis.ccsenet.org Computer and Information Science Vol. 16, No. 1; 2023

24

Appendix B

Table 6. Sample semi structured Interview questionnaire

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution

license (http://creativecommons.org/licenses/by/4.0/).

Variability Management Framework

Domain Engineering

Variability Identification

(Requirement identification &

Business planning)

1. Is there a formal/informal process to identify variability in SPLE?

2. Is enhanced product map developed during identification phase or not?

3. Is feature list identified or not?

4. The alignment of business objective is performed at the identification phase or not?

5. All stakeholders are involved at this stage or not?

Variability Modeling

(Architectural Modelling &

Business service scenario)

1. Is Meta-Model developed formally for variation points?

2. Is formal representation used such as UML/Arbitrary modeling?

3. Are models used for the different business scenarios from the standpoint of product

variability?

4. Are product feature maps used for modeling variation points in SPLE?

5. Are architectural components are usually derived from requirement mapping

mechanisms?

Application Engineering

Variability implementation

(Product derivation &

Decision model)

1. Is decision modelling used for variability implementation and aligned with business

objective?

2. Are product variation points are traced and bind bases on decision model or they

variate?

3. Does your project team apply developed feature map fully for product variation

points?

Variability Optimization

(Testing & Scalability,

Portfolio Management)

1. After binding take place, team always perform testing of variation points or not?

2. Is portfolio management is used for SPL?

3. Is product configuration analysis is performed or not?

4. Did you perform any update for variation points of product based on configuration

analysis?

5. All Stakeholders are involved in this phase or not?

