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Abstract

Vehicles are becoming more and more connected today, with many direct interfaces and infotainment units widely de-
ployed in in-vehicle networks. However, the increase in interfaces and units can also lead to an increase in cyberattacks
surfaces. As the de facto standard for the in-vehicle network protocol, the Controller Area Network (CAN) protocol pro-
vides an efficient, stable, and cost-effective communication channel between electric control units (ECUs). Nonetheless,
it is increasingly threatened by cyberattack due to the lack of security mechanisms by design. This paper proposes a
novel anomaly detection methodology based on graph pattern matching, which expresses CAN traffic in terms of graph
structures. Given a base graph and window graph, we determine whether the window graph represents normal or anoma-
ly by using the distance measure on the base graph. We have validated this anomaly detection methodology on public
datasets and in an actual vehicle environment. Experimental results show that this methodology significantly improved
the detection of unknown attacks and outperforms other CAN traffic-based approaches.
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1. Introduction

Nowadays, the vehicle is changing from a traditional driving tool to a service system that provides people with many
conveniences. The trend of vehicle intelligence is becoming more and more prominent. Modern vehicles are equipped
with many electronic control units (ECUs), which manage the various functions of the vehicle and replace mechanical
control units. In addition, the ECUs exchange information using in-vehicle networks such as Controller Area Network
(CAN), LIN, MOST, and FlexRay. Among them, CAN is well-known and most deployed as the de facto standard for
in-vehicle networks, which is designed by BOSCH and first used in cars in 1991 (Bosch & Robert, 1991). However, while
CAN provides an efficient, stable, and cost-effective communication channel between ECUs, it lacks security features and
is vulnerable to cyber threats. More direct interfaces and infotainment units have been deployed widely inside networks,
making the vehicles more vulnerable to different attacks from inside and outside the vehicle. As a result, adversaries can
easily connect devices to the CAN bus, sniff CAN traffic, and launch the attacks via On-Board Diagnostics port (OBD-
II) (Mekki, Bouhoute, & Berrada, 2019), WIFI (Woo, Jo, & Dong, 2014), and Bluetooth (Pu, Zhu & et al., 2020), etc.
Therefore, CAN security has become a genuine concern for vehicle manufacturers.

As potential attack surfaces inside vehicles continue to increase, more vulnerabilities and entry points are being discov-
ered, and many security solutions for CAN bus have been proposed, such as message encryption (Cui, & Chen et al.,
2020), message authentication (Jo, Jin, & Choi et al., 2019), and intrusion detection (Mter, & Asaj, 2011). The intrusion
detection method operates as a countermeasure inside the vehicle. It works in both a passive and active manner and does
not require changes to existing network and protocol specifications. Hence, it receives more widespread use than mes-
sage encryption and authentication. Many state-of-art intrusion detection approaches have been proposed to secure CAN
(Song, Kim, 2021, & Cheng, Bai et al., 2020), including message periodicity monitor, payload check, ECU fingerprinting
approaches, and so on. CAN traffic has been the main focus of most researchers in their approaches because most of the
message frames on the CAN bus are transmitted periodically. In addition, CAN traffic is more accessible to obtain than
other data information (e.g., payload, signals, etc.).

This paper also proposes an anomaly detection methodology based on CAN traffic features. It is worth mentioning that the
fundamental idea of the proposed methodology is to represent CAN traffic with the graph structure, unlike the traditional
approaches. Graph-based anomaly detection techniques have been used widely in industries like finance, fraud detection,
computer and social networking, data center monitoring, etc. (Akoglu, Tong, & Koutra, 2015), and have given good
detection performance. The methodology based on graph pattern matching proposed in this paper consists of two phases,
i.e., offline learning and online detection phases. In the offline learning phase, the proposed methodology constructs a base
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graph based on normal CAN traffic, which serves as a criterion for graph pattern matching, and obtains the ground truth
values for detecting an anomaly. In the online detection phase, the proposed methodology constructs the CAN traffic in the
sliding window to be detected as the window graph. Given the base graph and window graph, the proposed methodology
performs graph pattern matching based on the graph distance defined in this paper and compares the distance value with
the ground truth value to derive the detection results. In addition, graphs detected as normal are merged into the base
graph in the online detection phase, i.e., the base graph is continuously improved during the real-time detection process.
Experimental results show significant success in detecting different kinds of attacks with the proposed methodology.

The main contributions of this paper can be summarized as follows.

1. This paper uses graph pattern matching for the first time to detect the CAN bus’s anomaly and defines the graph
distance for graph pattern matching.

2. This paper implements and validates the proposed methodology not only on a public dataset but also on a real
vehicle dataset, and experiment results demonstrate that the proposed methodology can effectively detect six types
of attacks, and outperforms other CAN traffic-based approaches in terms of detection accuracy, precision, FPR, and
F1-score.

The rest of this paper is organized as follows. Section 2 analyzes the current status of research on CAN bus security. Then
Section 3 details the various stages in the proposed methodology, and experimental validation is presented in Section
4. Subsequently, compatibility and limitation issues about the proposed methodology are discussed further in Section 5,
followed by the conclusion and future work in Section 6.

2. Related Work

Each CAN message in the data link layer can extract four types of main information: timestamp, CAN ID, DLC and
payload. So far, researchers have proposed various types of anomaly-based intrusion detection approaches by leveraging
this information.

Timestamp: For the timestamp information, the time interval feature can be extracted. Song et al. (Song, Kim, & Kim,
2016) propose a lightweight detection method based on CAN message transmission time interval, which detects attacks
by monitoring whether the change of time interval exceeds the threshold range. Cho et al. (Cho, Shin, 2016) propose
taking the time interval of periodic CAN message as the fingerprint of sending ECU, and modeling and analyzing it as the
basis for anomaly detection.

CAN ID: For the timestamp information, the CAN ID frequency, information entropy, similarity and ID location rela-
tionship features can be extracted. Attacks can be detected through monitoring these feature values, as they are unique
across the network. Taylor et al. (Taylor, Japkowicz, & Leblanc, 2015) use the invariance of message frequency in the
time window as the baseline for anomaly detection. Müter et al. (Müter, Asaj, 2011) proposed calculating the information
entropy of ID in the time window as the feature of anomaly detection. When an injection attack occurs on the CAN
bus, the change of information entropy will exceed the normal range. Kwak et al. take the cosine similarity between ID
sequences on the calculated CAN bus as the feature of anomaly detection, and realized the effective detection of flooding
attacks and fuzzy attacks. Marchetti et al. (Marchetti, Stabili, 2017) are the first to use the features of ID sequence as the
parameters of anomaly detection, and they establish the transmission matrix according to the location relationship of the
message ID, and regarded the ID pair that did not appear as an exception. In addition, the feature changes in ID value
can also be used as the detection parameter. For example, a message with ID 0x000 is malicious since it can be used to
occupy the bus and perform DoS attack.

DLC: A 4-bit field is used to identify the length of the data payload. Attacks can be detected by checking their value and
range, as each ECU uses fixed byte size in the payload (Aliwa, Rana, & Perera et al., 2021).

Payload: For CAN ID information, payload range, fixed-rate and data consistency features can be extracted. Attacks
can be detected if anomaly values and changes occur in the data field. Pawelec et al (Pawelec, Bridges, & Combs,
2019). model the 64-bit payload field for each AID and use prediction error to identify anomalies. Stabili et al. (Stabili,
Marchetti, & Colajanni, 2017) propose Hamming distance-based detection approach. They analyze CAN payload and
record each bit in the data field, and attacks are identified based on significant deviation from the calculated Hamming
distance function.

The features in CAN ID can be extracted even without knowing the message specification; that is, we do not require
knowledge of the syntax and semantics of the CAN messages, which are kept highly confidential by carmakers and their
suppliers. Therefore, CAN ID is more often used as the parameter for anomaly detection in CAN bus.
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Figure 1. CAN traffic graph at a sliding window. The labels of the nodes are the message IDs, and the labels of the edges
are number of times a message with the ID source of the edge is followed by a message with the ID destination of the

same edge during the sliding window. For example, four messages with ID ’01f1’ followed messages with ID ’02c0’ at
resp

3. Method

In this section, we present the framework of the proposed methodology. We first introduce the basic definitions involved in
the proposed methodology and formally describe our problem. Secondly, we describe in detail the design of the proposed
methodology at different phases, including the framework and algorithms, etc. Finally, we explain the definition of the
detection time of the scheme.

3.1 Problem Definition

In this paper, we focus on a directed graph g with vertices and edges, and denote it as (V, E, LE, LV), where V is the set of
vertices, and E(⊆ V × V) is a set of edges. LV and LE are functions that assign labels for each vertex u ∈ V(g) and edge
(u, v) ∈ E(g), respectively.

Definition 1 (Graph isomorphism). Given two graphs g1 and g2, g1 and g2 are isomorphic if there is a bijective function
f: V(g1) → V(g2) such that ∀u ∈ V(g1), f (u) ∈ V(g2) ∧ LV1(u) = LV2( f (u)), and ∀(u, v) ∈ E(g1), ( f (u), f (v)) ∈ E(g2) ∧
LE1((u, v)) = LE2(( f (u), f (v))).

Definition 2 (Maximum common subgraph). Given two graphs q and g, the maximum common subgraph (MCS), denoted
as MCS (q, g), is the connected subgraph s with the maximum number of edges common to the two graphs q and g, where
s is isomorphic to the subgraph of each of the two given graphs.

Definition 3 (CAN traffic graph). A directed graph consisting of a sequence of CAN messages within a sliding window
is denoted as CTG. As shown in Figure 1, the vertices of the CTG is a message ID, the position relationship between the
message IDs in the sequence forms the edges of the CTG, and the label of the edge is the number of times a message with
the ID source of the edge is followed by a message with the ID destination of the same edge during the sliding window.

Definition 4 (Base graph). A CAN traffic graph serves as a criterion to calculate the graph distance and is denoted as bg.
Moreover, bg is continuously updated as the detection process proceeds.

Definition 5 (Window graph). A CAN traffic graph represents a graph constructed from CAN messages within the current
sliding window and denoted as wg.

3.2 Overview of Anomaly Detection Framework

This paper proposes a novel methodology based on graph pattern matching that leverages CAN traffic features to detect
attacks on the CAN bus. The graph distance is a metric for a matching pattern between two graphs. The graph distance,
denoted as Gdist(bg,wg), is defined as follows:

Gdist(bg,wg) = |E(wg)| − |E(MCS (bg,wg))| (1)

where, both bg and wg has introduced in the problem definition. |E()| is the function that calculates the number of graph
edges, i.e., the sum of the label values of all edges. MCS (bg,wg) is the maximum common subgraph of graph bg and
graph wg, described in detail in the problem definition. Gdist(bg,wg) indicates how many edges of the wg are not present
in the bg.

As shown in Figure 2. the proposed methodology consists of two phases: one phase is the offline learning phase, in which
we obtain the ground-truth value for the selected sliding window and the base graph bg for pattern matching. The other
is the online detection phase, in which we use the base graph obtained in the offline learning phase to calculate graph
distance with the window graph wg to detect anomalies in real-time. The detail is as follows.

80



http://cis.ccsenet.org Computer and Information Science Vol. 15, No. 2; 2022

...

Construct  window
graph wg

CAN traffic

Calculate graph
distance dis according

to Gdist(bg, wg)

Select the maximum and
average values of dis
as thredet and threup

Construct base graph bg based
on the entire traffic

A slidding window as
one calculation block

Offline Learning Phase

Online Detection Phase

CAN Bus Network

ECUECU
...

Merge graph wg
to graph bg

Construct window
graph wg 

Calculate graph
distance dis according

to Gdist(bg, wg)
dis <= thredet?

Extract
message ID

Compliant with the
sliding window size?

Process next input

Yes Yes

No No

Ground Truth DB
Merge graph wg

to graph bg

bg initialized to the
first graph

dis <= threup?
Yes

Alarm log DB

No

Figure 2. Overview of the anomaly detection methodology based on graph pattern matching in the CAN bus

Phase 1(Offline learning phase). This phase divides the normal CAN traffic (without attack messages) extracted from the
CAN bus network into multiple equal-sized sliding windows and transforms the message ID sequence within the current
window into a window graph wg. To obtain the ground truth, we first obtain the graph distance disk at tk according
to Gdist(bg,wg), and calculate the Gdistk+1 at tk+1 after the sliding window was updated, where bg is initialized to the
first graph and continuously updated by merging new wg as the sliding window moves. The set of graph distances was
S (x) = dis1, dis2, , disn , and we selected the value of max dis and average dis in S (x) as the thredet and threup. Afterward,
we saved the value in a DB as a Ground Truth in the predefined sliding window. In addition, in this phase, we construct
the entire message ID sequence as a base graph, which is used to initialize the base graph in the online detection phase.

Algorithm 1: Construct CAN Traffic Graph (Offline Learning Phase)
Input: CAN traffic within a sliding window Tr
Output: a CAN traffic graph g

1 pre msg← msg0;
2 for each msg ∈ Tr do
3 cur id ← extract CANID (msg);
4 pre id ← extract CANID (pre msg);
5 if cur id < V(g) then
6 add a new vertex cur id in V(g);
7 end
8 if (pre id, cur id) < E(g) then
9 add an edge (pre id, cur id) in E(g);

10 else
11 The label value of the edge (pre id, cur id) is added by 1
12 end
13 pre msg← msg;
14 end
15 return graph g;

Algorithm 1 shows the method of CAN traffic graph construction. Given CAN traffic within a sliding window, we first
initialize pre msg that is used to refer to the previous message. The ID of each message is extracted and added to the V(g)
as a vertex (Line 3-7). Then, an edge consisting of the previous message ID as the source vertex and the current message
ID as the destination vertex is added to E(g) (Line 8-12).

Phase 2(Online learning phase). In this phase, first, the ID of the CAN message read from the bus is extracted and stored,
and this operation is repeated until the number of messages read satisfies the size of the sliding window we define. Second,
the ID traffic within the sliding window is constructed into a CAN traffic graph according to Algorithm 1 and stored in
the wg. Finally, the graph pattern matching is performed, i.e., the graph distance dis between bg and wg is calculated
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Algorithm 2: Anomaly Detection Algorithm (Online Detection Phase)
Input: CAN message; the size of sliding window window size ; ground truth thredet; ground truth threup; Base

graph bg
Output: Anomaly Detection Alarm

1 while True do
2 i← 0; S ← [];
3 wg← CAN traffic graph;
4 while i < window size do
5 add current CAN message into S ;
6 i← i + 1;
7 end
8 wg← Algorithm 1(S );
9 dis← Gdist(bg,wg);

10 if dis >= thredet then
11 return Anomaly Detection Alarm
12 else
13 if dis <= threud then
14 for each vertex ∈ V(wg) do
15 if vertex < V(bg) then
16 add this vertex in V(bg);
17 end
18 end
19 for each edge ∈ E(wg) do
20 if edge < E(bg) then
21 add this edge in E(bg);
22 end
23 end
24 end
25 end
26 end
27 return Anomaly Detection Alarm;

according to Equation 1. The condition to identify whether the window graph wg is normal or not is as follows:

wg =


dis ≥ thredet, anomaly

dis < thredet, normal
(2)

where thredet is the ground-truth obtained from the offline learning phase. If the wg is detected as an anomaly, the detector
sends the alert message to a driver or a manager and records the anomaly log at the Alarm Log DB. Otherwise, the detector
determines again whether the wg can be used to update the bg, and the judgment conditions are as follows:

bg =


dis > threud, bg

dis ≤ threud, wg + bg
(3)

where threud is also the ground-truth, and wg+bg means to add vertices and edges in wg that do not exist in bg to bg. This
condition means that if dis is not greater than threud, bg is updated by merging wg to bg, otherwise, bg is not updated.

Algorithm 2 shows the process of detecting anomalies online in detail. Lines 4-7 correspond to the extraction and storage
of CAN IDs, and Line 8 is the CAN traffic graph wg construction. In line 9, the graph distance dis between wg and bg is
obtained. In Line 10-25, whether wg is normal is judged, and in line 13-24, when dis is not great than threud, vertices and
edges in wg that do not exist in graph bg will be added to bg, that is, merge wg to bg.
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4. Results

In this section, we verify the feasibility of the proposed methodology through different experiments. First, we describe in
detail the dataset used for the experiments. Second, we introduce the performance metrics used to evaluate the proposed
methodology. Third, we perform detection experiments for different types of attacks and give the corresponding analysis
of the experimental results. Fourth, we consider the computation overhead of the proposed methodology, and finally, we
present a comparative analysis of the methodology with related work.

4.1 Dataset

Table 1. Description of validation dataset

DataSet Attack Type Total Messages Normal Messages Attack Messages

Car-Hacking (public)

Attack-free (normal) 988,987 988,872 –
DoS Attack 3,665,771 3,078,250 (84%) 587,521 (16%)

Fuzzy Attack 3,838,860 3,347,013 (87%) 491,847(13%)

Gear Spoofing 4,443,142 3,845,890 (87%) 597,252 (13%)

RPM Spoofing 4,661,702 3,966,805 (85%) 654,897 (15%)

Car-Intrusion (private)

Attack-free (normal) 90,808 90,808 –
Flooding Attack 202,667 98,637 (49%) 104,030 (51%)

Injection Attack 200,511 76,146 (38%) 124,365 (62%)

Fuzzy Attack 268,324 93,817 (35%) 174,507 (65%)

In this paper, to verify the validity of the proposed methodology, we chose two different datasets for validation, one is a
public dataset Car-Hacking1, and the other is a private dataset Car-Intrusion collected in an actual vehicle environment
by us.

Car-Hacking Dataset: The dataset is provided by Song et.al (Song, Woo, & Kim, 2020), and has been widely adopted
by many excellent approaches, such as (Seo, Song, & Kim, 2019, Song, Kim, 2021). The dataset is generated by logging
CAN traffic via OBD-II port. Each CAN message is represented by three main features:

• CAN ID: the identifier of CAN message.

• DATA[0-7]: the 8 data bytes of the message.

• Flag: it takes two values: T and R, which represent attack and normal messages respectively.

The dataset consists of attack-free traffic and the following types of attacks:

• DoS Attack: Injecting messages of CAN ID = 0000 every 0.3 ms.

• Fuzzy Attack: Injecting messages of totally random CAN ID and DATA values every 0.5 ms.

• Gear/RPM Spoofing Attack: Injecting messages of certain CAN ID related to Gear/RPM information every 0.1 ms.

Car-Intrusion Dataset: The dataset is generated in a real vehicle (XiaoPeng P5). We connect two PCs to the OBD-II
port, gateway of the vehicle respectively through ValueCAN (a high-quality CAN network interface tool). As an attacker
node, one PC generates and injects the attack messages to the CAN bus through gateway. The other PC collected one of
the subnets traffic to monitor the status of the CAN bus.

Each CAN message also has three features consistent with Car-Hacking. The dataset consists of attack-free traffic and
the following types of attack:

• Flooding Attack: Injecting messages of CAN ID = ’0x1AF’ every 0.1 ms.

• Injection Attack: Injecting messages of certain CAN ID stored in the DBC file every 0.2 ms.

1https://ocslab.hksecurity.net/Datasets/CAN-intrusion-dataset.

83



http://cis.ccsenet.org Computer and Information Science Vol. 15, No. 2; 2022

• Fuzzy Attack: Injecting messages of totally random CAN ID and DATA values every 0.3 ms.

Table 1 shows the detailed number of each attack type in these two datasets.

4.2 Performance Metrics

To evaluate the proposed methodology, we use different performance metrics, i.e. accuracy, recall, False Positive Rate
(FPR), precision, and F1-score, which are defined by Equations 4, 5, 6, 7, 8 respectively. We define True Positive (TP) is
the number of attack graphs classified as ’attack’, False Positive (FP) is the number of normal graphs classified as ’attack’,
False negative (FN) is the number of attack graphs classified as ’normal’, True negative (TN) is the number of normal
graphs classified as ’normal’.

• Accuracy: It is the proportion of correctly classified samples among all classified samples, and calculated as:

Accuracy =
T P + T N

T P + FP + T N + FN
(4)

• Recall: It is the proportion of correctly classified attack samples among the actual attack samples, and calculated
as:

Recall =
T P

T P + FN
(5)

• FPR: It is the proportion of samples classified as normal that are incorrectly classified as attack samples, which is
calculated as follows:

FPR =
FP

FP + T N
(6)

• Precision: It is the proportion of real attack samples among the samples classified as an attack, and calculated as:

Precision =
T P

T P + FP
(7)

• F1-score: It represents the balance between precision and recall, and is generally used to measure classification
performance when the class distribution is imbalanced in the test dataset, and calculated as:

F1 − score = 2 ×
Precision × Recall
Precision + Recall

(8)

4.3 Anomaly Detection

Table 2. Experiment results

Dataset Attack type FPR(%) Recall(%) Precision(%) F1-score(%) Accuracy(%)

Car-Hacking

DoS Attack 0.0 98.98 100 99.49 99.69

Fuzzy Attack 0.0 98.54 100 99.26 99.27

Gear Spoofing 0.0 98.68 100 99.33 99.43

RPM Spoofing 0.0 98.82 100 99.41 99.47

Car-Intrusion
Flooding Attack 0.0 99.69 100 99.85 99.8

Injection Attack 0.0 99.88 100 99.94 99.9

Fuzzy Attack 0.0 99.76 100 99.88 99.81

In this section, we conduct experiments on a public dataset and a real vehicle environment, respectively, to verify the
reliability of the proposed methodology. Figure 3 and Figure 4 show partial experimental results based on the dataset
Car-Hacking and Car-Intrusion, respectively, and when the window size is set to 100. It is easy to observe that the graph
distance value increases sharply once the attack occurs, and when the attack ends, the graph distance value decreases and
normalizes. In addition, the graph distance values calculated when an attack occurs are much larger than those calculated
in the normal state, so it is easy to set thresholds to distinguish between normal and anomaly.

Table ?? describes the specific experimental results corresponding to the above experiments. The experiment data show
that the proposed methodology achieves good results for six different attacks, both in publicly available datasets and in
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Figure 3. Partial experimental results of the proposed methodology under Car-Hacking dataset with window size 100:
(a) DoS attack. (b) Fuzzy attack. (c) Gear Spoofing attack. (d) RPM Spoofing attack.
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Figure 4. Partial experimental results of the proposed methodology under Car-Intrusion dataset with window size 100.
(a) Flooding attack. (b) Injection attack. (c) Fuzzy attack.

a dataset collected in the real vehicle environment. For example, for all listed attack types, the proposed methodology
achieves 100% of precision and 0% of FPR, and both F1-score and accuracy are above 98%. Even the worst TPR value
achieves greater than 98.5%.

Furthermore, we further analyze the influence of the size of the sliding window on the detection performance. Figure
5 and Figure 6 present the analysis results under Car-Hacking and Car-Intrusion datasets, respectively. The results are
presented as a function of Window Size and varying attack types. The first observation we can draw from Figure 5 is
that the value of recall, precision, accuracy, and F1-score is very close to 100%, and the value of FPR is very close to 0%
when Window Size = 40. The effectiveness results converge to the optimal value starting from Window Size = 40. When
Window Size is ∈ [60, 110], we record values greater than 99.5% in terms of recall, precision, accuracy, and F1-score
metrics, and values less than 1% in terms of FPR, and this high-performance state is always maintained. In Figure 6,
we can observe that the Car-Intrusion dataset is less challenging than Car-Hacking as the optimal performance result is
reached when the Window Size is ∈ [40, 100] except for two metrics, i.e., precision (Window Size ∈ [70, 90], attack type
= Flooding and Fuzzy) and FPR (Window Size ∈ [70, 90], attack type = Flooding and Fuzzy). However, the results of
these two metrics under the above parameter settings are all >= 98.04%, <= 7.58%, respectively.

4.4 Time for Detection

Figure 7 shows the grouped bar diagrams as the results of running the algorithm depending on the dataset and attack type.
In calculating the detection time, the laptop specifications include Intel(R) Core(TM) i5-1135G7 CPU @2.40 GHz and
Windows 10 for the operating system. For developing the algorithm, we used Python 3.9.2 for code compilation. Figure
7(a) shows the minimum, average and maximum time consumption of the proposed methodology under the dataset Car-
Hacking. In the best case, the time cost in detecting DoS, Fuzzy, Gear Spoofing, and RPM Spoofing attacks can be as low
as 0.021, 0.028, 0.029, and 0.029 ms, respectively. Typically, the average time cost to detect these attacks can reach 0.027,
0.036, 0.036, and 0.035 ms, respectively. In the worst case, the maximum values of time cost are only 0.124, 0.366, 0.28,
0.137 ms, respectively. Figure 7(b) also details the time consumption of the proposed methodology, but under dataset
Car-Hacking. This figure shows that even in the real vehicle environment, the average and maximum values of detection
time in detecting Flooding, Injection, and Fuzzy attacks are only 0.027, 0.026, 0.023 ms, and 0.082, 0.065, and 0.139 ms,
respectively.
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Figure 5. Experimental results by window size under Car-Hacking dataset: (a) Recall. (b) Precision. (c) Accuracy. (d)
F1-score. (e) FPR.

20 40 60 80 100
Window size

0

20

40

60

80

100

Re
ca

ll(
%

)

Flooding
Injection
Fuzzy

(a)

20 40 60 80 100
Window size

93

94

95

96

97

98

99

100

Pr
ec

isi
on

(%
)

Flooding
Injection
Fuzzy

(b)

20 40 60 80 100
Window size

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

(%
)

Flooding
Injection
Fuzzy

(c)

20 40 60 80 100
Window size

0

20

40

60

80

100

F1
-s

co
re

(%
)

Flooding
Injection
Fuzzy

(d)

20 40 60 80 100
Window size

0

5

10

15

20

25

FP
R(

%
)

Flooding
Injection
Fuzzy

(e)

Figure 6. Experimental results by window size under Car-Intrusion dataset: (a) Recall. (b) Precision. (c) Accuracy. (d)
F1-score. (e) FPR.
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Figure 7. Time cost for attack detection under different datasets with window size 100. (a) Car-Hacking. (b)
Car-Intrusion

5. Discussion

The discussion below involves the proposed methodology’s deployment, compatibility and limitation.

1. Deployment: In theory, the proposed methodology can be deployed in ECUs distributed across the different branch-
es of the CAN bus or centralized in one of these ECUs, which is known as Gateways. Although the proposed
methodology, under a centralized deployment scheme, has complete visibility of all the traffic that flows in distinct
branches of the CAN bus, detection accuracy may decrease due to more noise or aperiodic IDs in CAN traffic.
Therefore, the distributed solution is a better choice. At the same time, one additional ECU to each distinct branch
of the CAN bus is sufficient for implementing the proposed methodology.

2. Compatibility: One of the advantages of the proposed methodology is that it does not require any modification in
CAN protocol, so it complies with the existing standards. In addition, since it only needs to monitor CAN traffic,
it can also work simultaneously with other approaches to secure the CAN bus, such as (Song, Kim, & Kim, 2016,
Wu, Huang, 2018, Ohira, Desta & et al., 2020).

3. Limitation: There are some limitations to the proposed methodology. Although the experimental results show that
the proposed methodology has better performance in detecting kinds of attacks, the minimum detection unit of this
methodology is a message sequence which means that it cannot locate which message is malicious.

6. Conclusion

A novel graph distance-based anomaly detection methodology has been proposed in this paper. We propose to express
the CAN traffic in a graph structure (i.e., CAN traffic graph) and perform pattern matching between base graph bg and
window graph wg according to our defined graph distance algorithm. We divide the methodology into two phases, i.e., an
offline learning phase and an online detection phase. The proposed methodology first obtains the ground-truth values for
detecting attacks by learning from the normal dataset in the offline learning phase and then obtains the detection results
by comparing the results computed in real-time with the ground truth values in the online detection phase. In addition, we
also propose an update method of bg to ensure its validity. Finally, we validate the feasibility of the proposed methodology
not only on a public dataset but also in an actual vehicle environment. The experimental results show that the proposed
methodology can detect DoS, Fuzzy, Gear Spoofing, RPM Spoofing, Flooding, and Injection attacks with the precision
of 100% and FPR of 0%. However, the TPR of this method has not reached 100%, that is, there is a case that the attack
graph has not been detected, so this will become our next research work.
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