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Abstract 

This article is devoted to the analysis of the situation that has arisen in the practice of using artificial intelligence 

methods for software development. Nowadays there are many disparate approaches, models, and practices based 

on the use of narrow intelligence for decision-making at different stages of the life cycle of software products, 

and an almost complete lack of solutions brought to wide practical use. The article provides a comprehensive 

overview of the main reasons for the lack of the expected effect from the implementation of Agile and suggests a 

way to solve this problem based on the use of a self-organizing knowledge model. Based on the heuristic usage 

of transcendental logic in the terms of "ontological predicates", such a model makes it possible to create a 

formalism of the semantic representation of the requirements architecture of a software project, which could 

provide semantic interoperability and an executable semantic framework for automated ontology generation 

from unstructured informal software requirements text. The main benefit of this model is that it is flexible and 

ensures the accumulation of knowledge without the need to change the initial infrastructure as well as that the 

ontology inference engine is the part of the mechanism of collective interaction of active elements of knowledge 

and not some externally programmed system of rules that imitate the process of thinking. 

Keywords: architecture of software project requirements, ontology learning, self-organizing knowledge, 

ontological predicates 

1. Introduction 

1.1 Common Situation and Trends in the Agile Software Development 

In software engineering, Agile is the result of the development of a project-based approach to working in 

software engineering over the past several decades. However, despite its widespread use, it does not live up to 

the hopes that were pinned on it. Just like traditional methodologies, it does not meet all the needs of developers 

because “there is no definitive proof that the return on investment from agile projects is higher than that from 

traditional projects.” (Miller, 2013). Most software companies use Agile because they don't know anything else. 

They just must use what they have, although for many Agile has remained an insurmountable barrier: “While 

there is much anecdotal evidence that adopting agile practices and values improves the agility of software 

professionals, teams and organizations, the empirical evidence is mixed and hard to find” (Wikipedia, n.d.). The 

reason of this is that “practice software organizations are more concerned with sustaining Agile rather than 

adopting it” (Gregory et al., 2016). However, this does not mean that Agile has exhausted itself and should leave 

like its predecessors. On the contrary, Agile seems to have not yet fully revealed its capabilities. 

Undoubtedly, the Agile facilitates planning, budgeting, forecasting, and project management due to improved 

communications, smoother collaborations, increased flexibility, and organizational self-management. For 

example, according to Standish Group 2018 Chaos Report (Standish Group, 2018) agile projects enjoy a 60% 

greater chance of success than non-agile projects. As for the two project factors, size, and approach, Chaos 

Report presents some genuinely interesting data. Large agile projects succeed at twice the rate of non-agile 

projects and fail half as often. Only in the small category does non-agile come close to agile. Therefore, Standish 

Group concludes that size trumps agile methodology. Besides that, complexity is one of the main reasons for all 

project failures. Large, very complex projects have both the highest challenges and failure rates. Thus, overly 
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complex requirements, as well as scaling, are the main impact factor for project manageability. For small and 

simple projects, the choice of methodology does not matter; for large and complex projects, agility can only 

slightly improve the overall statistics but does not slay the “dragon” and does not guarantee final success. To 

effectively deal with the problem, you need to know all the vulnerabilities of the “dragon”. Agile projects often 

go beyond time and budget and fail. This is mainly due to two reasons. The first is since businesses are simply 

not ready to accept new ways of organizing work. The fact is that the key feature of the Agile methodology for 

software development, which consists in breaking the project into small iterations, during which part of the 

functionality is implemented, is, as is often the case, its most significant drawback. This means that for the 

successful application of this methodology it is necessary to constantly monitor the dependencies of the modules 

being developed on those that have already been implemented and a clear vision of the business goals of the 

project at all stages of its life cycle. The first allows developers not to make a lot of blunders, and the second – to 

concentrate attention and efforts on the most important positions at every moment of the Software Development 

Life Cycle. Otherwise, there will be inconsistency, repetition, and an increased risk of never releasing the final 

version of the product. That is why the greatest threat to Agile is its formal application, that is, the use of Agile 

model artifacts without considering the specifics of the project and, most importantly, without effective 

management of project knowledge. 

The second reason for the failure of agile projects, as, indeed, and non-agile projects, is associated with the fact 

that the development life cycle of most software products is much longer than the time frame of the project that 

initiated it. If the house has been built, then it is built, and you will not add anything significant to its main 

functionality – you can only keep it up to date. Another thing is the knowledge that is embedded in the software 

product. Such knowledge is usually incomplete and there is always the opportunity to add something more to the 

existing functionality, and this opportunity only increases as organizational knowledge develops, transforming 

under certain conditions into a necessity. If a software product does not initially can adapt to changes in the 

organization's business goals in the future, such a product will sooner or later complete its life cycle. 

Why is it so important for a software product to be adaptable to changes in business goals? Work in the modern 

economy is fundamentally ambiguous, unpredictable, and sometimes even chaotic. Typically, creating and 

maintaining software following specific business goals presents unique challenges and solutions, which leads to 

increased risks. This business reality is a key factor that makes software development so challenging and risky, 

which is why it is so important to be able to adapt to this business reality. Integrated Application Lifecycle 

Management (ALM) tools are called to solve this problem. Being the lifecycle management of a product, ALM 

is used in administrating a software application from its early phase until it is no longer used, and its main aim is 

to document and track the changes made to an application throughout its life circle (Aiello & Sachs, 2016; 

Rossberg, 2014). Not surprisingly, there are so few publications describing a scientifically based practical 

experience in developing and deploying enterprise-class ALM solutions. This is understandable since non-trivial 

and complex ALM processes involve the combination of various methods and tools and are used throughout the 

software development life cycle. The success of ALM implementation depends on many factors, and some 

barriers require the attention of both researchers and practitioners (Kääriäinen, 2011). ALM tools help software 

developers to achieve a higher maturity level and provide continuous workflow process improvement, but it will 

not solve the crucial problem – the complexity of the objectives forwarding, which is compounded by the 

complexity of the ALM solutions themselves. At the same time, the solution to this problem of complexity seems 

to be self-evident - it is the creation of a project knowledge base capable of integrating with the organization's 

knowledge management system. Only under this condition, the knowledge gained during the work on the project 

will be formalized and manageable, and the artifacts will be valid. The creation of such a knowledge base is the 

result of close cooperation between the customer, users, and the developer, and such cooperation is extremely 

important for the successful implementation of the project. Otherwise, there will be information chaos, to 

overcome which an agile approach to the software development was created. The short duration of iterations and 

the small amount of added functionality make it possible to correct inconsistencies and eliminate errors at a 

reasonable cost of time and effort. However, the constantly increasing software requirements complexity led, on 

the one hand, to the emergence of technologies such as Kubernetes (Lukša, 2017) for deploying and scaling 

applications and, on the other hand, must force researchers and practitioners more actively use artificial 

intelligence technologies to overcome challenges. A typical example of this trend is found in the field of 

Search-Based Software Engineering (e.g., Harman & Chicano, 2015; Ruchika et al, 2017; Ramírez et al., 2019), 

as well as works in the field of using probabilistic reasoning and machine learning in the software life cycle 

(Balikuddembe et al., 2009; Pandey et al., 2021; Jayagopal et al., 2021; Xu et al., 2016; Dell’ Anna et al., 2019). 

The most popular intelligent techniques for software development are as follows: reasoning under uncertainty 

https://www.worldcat.org/search?q=au%3AAiello%2C+Bob%2C&qt=hot_author
https://www.worldcat.org/search?q=au%3ASachs%2C+Leslie+A.%2C&qt=hot_author
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(mainly, Bayesian network), search-based solutions, and machine learning (Perkusich et al., 2020). At the same 

time, the main purpose of applying intelligent methods is to support decision-making in such tasks as labor cost 

estimation, resource allocation, and requirement management: selection, analysis, and prioritization. However, 

most of these methods, as truly noted in (Perkusich et al., 2020), are still in their infancy for many applications, 

therefore much more theoretical and empirical research is needed yet. 

1.2 Application of Artificial Intelligence to the Software Development  

Many articles, reviews, books, conference proceedings are devoted to the use of Artificial Intelligence (AI) in 

software engineering in general. (e.g., Barenkamp et al., 2020; Batarseh et al., 2021; Shehab et al., 2020). The 

application of AI techniques covers all stages of software life-circle: software project planning, problem analysis, 

software design, software implementation, software testing and integration, and software maintenance. 

AI-enhanced software development tools are a good example of how AI can empower the routine developer’s 

work, but “it will take some time before they can learn to interpret the business value of each feature and advise 

on what to develop next” (Kurasinska et al., 2019). As for the most popular intelligent techniques in the context 

of Agile software development, the main purpose of using intelligent methods seems to be to support 

decision-making in the process of solving the Next Release Problem (Chaves-González et al., 2015). 

If to talk about the impact of AI on software development, the bulk of the interest in applying AI to software 

development lies in automated testing and bug detection tools, whereas the activities such as automata 

deployment pipelines, decrease defects, working with log analysis to optimize traffic routing cause minimal 

interest (Giudice, 2016). If saying in terms of decision-making support, AI is mostly used for highly structured 

tasks and much more extent for poorly structured and unstructured tasks requiring in-depth analysis of 

information, identifying relationships and patterns for accepting decisions. All this indicates AI technology is 

closed-minded about how to interpret business values. 

In our opinion, the prospects for increasing the influence of AI on software development are associated, first, 

with the expansion of the use of AI at the stage of analyzing the initial data of the project, reducing the 

uncertainty in requirements and more efficient requirements management in the development process. 

Requirement development is essentially a mapping process between domain knowledge and the functional 

structure of the system developed. In the case of an iterative software life cycle model, such a process should be 

based on intelligent decision support models under fuzzy conditions, where the business goals of the project act 

as target functions since the requirements are not complete and can change during the implementation of design 

decisions. 

1.3 Fundamental Programming Paradigm Shift  

The inconstancy of requirements and the need for adaptive software implementation of the dynamics of the 

original subject area put forward certain requirements for the programming language, which must provide 

adequate tools for creating and manipulating the corresponding project artifacts. Unfortunately, the OOP 

paradigm, which today dominates programming like the Agile methodology in project management, is very 

limited in this regard, which introduces excessive complexity into the architecture of software systems, and noе 

always solutions based on an object-oriented approach turn out to be adequate business logic inherent in the 

requirements. Therefore, the urgent task is to create a different programming paradigm, focused not on objects 

interacting by passing messages to each other, but on facts reflecting the status and state of these objects, and 

manifesting and changing their properties through interaction with each other and with the environment. 

There are two diametrically opposed points of view on this fundamental paradigm shift. The first was formulated 

by the Director of AI at Tesla Andrej Karpathy. In a blog post titled “Software 2.0” in November 2017 he wrote 

(Karpathy, 2017):“… Software 2.0 can be written in much more abstract, human unfriendly language, such as 

the weights of a neural network. No human is involved in writing this code because there are a lot of weights 

(typical networks might have millions), and coding directly in weights is kind of hard (I tried)”. And further: 

“The 2.0 stack can fail in unintuitive and embarrassing ways, or worse, they can “silently fail”…” Now you can 

see some excitement about the fascination with neural networks, but a frank remark by Andrej Karpathy looks 

like a fly in the ointment. Software development is a highly risky business, so software developers would not 

like to add to the objectively existing risks also the risks that come from working development tools. 

The second point of view was expressed by the Co-founder, President at JetBrains Sergey Dmitriev in November 

2004 in his article “Language Oriented Programming: The Next Programming Paradigm” (Dmitriev, & JetBrains 

s.r.o., 2004). The main limitation of the existing programming paradigms is, as S. Dmitriev accurately noted, that 

they make the programmer think like a computer, but it should be the other way around – a computer should 

https://medium.com/@karpathy/software-2-0-a64152b37c35
https://motherboard.vice.com/en_us/article/nz7798/weve-already-taught-artificial-intelligence-to-be-racist-sexist
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think like a programmer. Accordingly, a program is not a set of instructions but “… any precisely defined model 

of a solution to some problem in some domain, expressed using domain concepts. … So, Language Oriented 

Programming (LOP) will not just be writing programs, but also creating languages in which to write our 

program”. But easier said than done. The idea of LOP is based on using domain-specific languages (DSL) that 

are tailored to be highly productive in a specific problem domain. But how many domains the real program could 

involve? And how to ensure their DSL consistency and synchronization?  

That is reasonably clear that we need a universal programming language, the logical structure of which, like the 

logical structure of a natural language, would reflect the structure of the real world. Within such a language, you 

can create any number of DSLs that are subsets of it, just like in the case of a natural language, which is the basis 

for creating languages for different subject areas. Unfortunately, today there are no such flexible and dynamic 

programming languages, but such a language can be created based on the principles of Wittgenstein’s factual 

language (Stern, 1996) and the pictorial theory of sentences developed by him as the logical basis of language. In 

his early fundamental work "Tractatus Logico-Philosophicus" L. Wittgenstein offers fact as a combination of 

interconnected objects, not the object itself, to be the "elementary unit" of the world, just as he considers the 

sentence, not the name, to be the "elementary unit" of language. Proceeding from the fact that sentences 

represent facts, we conclude that the world that they define, and the language, which is a collection of sentences, 

have a similar structure or, in other words, have a common logical form. According to Wittgenstein, “only facts 

are capable of expressing meaning, the class of names cannot,” and the meaning of the sentence is to depict a 

possible state of affairs in the real world. A sentence is a structural element in the model of reality, and its 

constituent elements are atomic facts (names). It should be borne in mind that this model refers to the formal 

abstract language of logic (metalanguage) and describes what the world really is but does not depend on our 

knowledge about it.  

In his later works, Wittgenstein proposed the concept of a language game as the basis of natural language, the 

essence of which is that language and actions are considered as one whole. Various types of linguistic 

communication (language games) are possible, organized according to certain rules, where words can have 

different functions, and, therefore, relate differently to reality. The semantics of a word depends primarily on the 

context in which it is used in a language game. L. Wittgenstein wrote that the process of using words in a 

language is very similar to the process of children mastering their native language, emphasizing the importance 

of rules in the process of creating language games. It is no coincidence that teaching children are considered the 

most effective precisely in the process of games when they perform different roles.  

In general, the scale of AI usage in software engineering correlates with the level of AI development and is 

mainly reduced to the selective use of narrow AI methods at certain stages of the life cycle of a software product. 

In some cases, AI can help fix certain problems and develop applications more efficiently. AI's limited use is due 

to its limited capabilities and, in some cases, unpredictable consequences and difficulties in interpreting the 

results. Non-software companies are also wary of their AI business strategies as suggested from the MIT Sloan 

Management Review, published in 2017 (Ransbotham et al., 2017): «The gap between ambition and execution is 

large at most companies. Three-quarters of executives believe AI will enable their companies to move into new 

businesses. Almost 85% believe AI will allow their companies to obtain or sustain a competitive advantage. But 

only about one in five companies has incorporated AI in some offerings or processes. Only one in 20 companies 

have extensively incorporated AI in offerings or processes. Less than 39% of all companies have an AI strategy 

in place. The largest companies – those with at least 100,000 employees – are the most likely to have an AI 

strategy, but only half have one». Wherein forms of AI in use today include predictive analytics (digital 

assistants), machine learning, natural language processing, voice recognition and response, virtual personal 

assistants (chatbots), diagnosis (recommendation engines) among others (Narrative Science, 2018). 

1.4 Problem Statement 

From the above, we can conclude that for effective management of project work in software engineering an 

urgent task is to implement a flexible structure of project knowledge that would provide monitoring and tracing 

of requirements and artifacts that are changed over time in the project and initiated by evolving organizational 

knowledge. To take a truly significant step towards increasing the efficiency of the development of complex 

software systems, it is necessary, first, to make efforts to uniform the representation of the project knowledge and, 

above all, project requirements as the basis of a conceptual scheme, and also to create a programming language 

that is not focused on building a hierarchical object model of the domain, but on reflecting the dynamic 

interaction of objects between themselves and the environment, through which the properties of these objects are 

manifested and changed. 
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Building a unified project knowledge base and keeping it up to date is the key to the success of the software 

project, but such a knowledge base should be able to integrate with the organizational knowledge management 

system, then any software system based on this knowledge can be constantly kept up to date. However, in this 

case, the concept of a project itself is leveled, since “to be truly competitive, an organization needs to be able to 

deliver a continuous stream of change. Managed properly, this negates the need for a project and the associated 

cost overheads” (Leybourn & Hastie, 2018). Moreover, for this, the methods of formalizing subject and project 

knowledge should be unified. Approaches to the formalization of knowledge can be different depending on the 

model of knowledge representation, but the most justified from the point of view of cognitive science is the 

ontology-based model. This article presents an ontological framework for the formalization and semantic 

modeling of informal project requirements, functioning based on the principle of self-organization of knowledge, 

that is, assuming that knowledge is inherent in the emergent ability to create new knowledge based on existing 

knowledge, and the corresponding model of knowledge representation (Moroz, 2020), which uses transcendental 

logic-based ontological relations to describe the relationship between structural elements (Moroz, 2021). 

The article is further organized as follows. Section 2 provides a detailed overview of the key aspects of the 

requirements formalization process for a software development project, its problems, challenges, and failures, 

and most of all, automation issues. In addition, aspects of cognitive categorization and shortcomings of the main 

theories of knowledge categorization are considered. Section 3 discusses the role of a multi-level software 

project requirements architecture in the software development technology stack, the relationships of 

requirements models in this architecture, and presents an ontological framework of a typical requirements 

architecture based on transcendental logic-oriented ontological predicates as an alternative platform for ontology 

learning. In section 4, the main findings of the study are briefly summarized. In section 5, the article concludes 

with a general discussion about the prospect of creating a fully automated unsupervised semantic parsing tool. 

2. Key Aspects of Software Project Requirements Formalization 

2.1 Formalizing Project Requirements 

Requirement specifications play a key role in software development since the analysis of requirements and their 

subsequent tracing during the development process has a significant impact on the quality of the design process 

and the final product. Nowadays computer tools for the conceptual phase of the design process are now 

emerging. The main challenge in creating design tools for this phase is to formulate functional and 

non-functional requirements in such a way that they can be processed on a computer. To this end, informal 

specifications presented in the textual form are refined to create formal specifications suitable for automatic 

processing. At the same time, the process of clarifying the requirements is iterative and usually requires the 

active participation of domain experts. Iteration with backtracks is perhaps the most reliable way to get the 

desired result, but it is very extensive being associated with significant resource costs due to the need for 

numerous repetitions and rework (e.g., Kulyamin et al., n.d.; Ghazel et al., 2015; Peres et al., 2012). 

In addition to iteration with backtracks, goal-driven software development methodology is also used to clarify 

requirements that provide a visual modeling language to define an informal specification. In this case, the most 

used form of the representation of the structure and behavior of a software model are diagrams UML/SysML 

(UCL - SST/ICTM/INGI - Pôle en ingénierie informatique & van Lamsweerde, 2009). A classical 

implementation of the goal-driven paradigm brought to an acceptable level of maturity is the requirements 

behavior tree (Dromey, 2003). Behavior trees allow you to find a compromise between requirements and 

business goals, allowing changes to both when certain conditions and constraints are imposed, that is, inherently 

represent a variant of goal trees used in knowledge-based systems to model the inference engine. Accordingly, 

they have the same drawbacks, such as retraining or oversimplification of the situation, and besides, large trees 

are too difficult to exchange information with stakeholders. 

In certain cases, methods of system dynamics methodology can be applied to clarify the requirements. (e.g., Li, 

2021). They allow comparing alternative change management strategies in terms of project performance 

indicators. Such methods emphasize the formalization of the supported business process, which allows you to 

identify inconsistencies and gaps in this process, and therefore in the requirements. 

These methodologies are very sensitive to the scale of the project and to the temporal evolution of the modeled 

system since they require a lot of effort to rework their models in the event of frequent changes in the business 

process, for example, in the PCDA cycle. In addition, presenting a conceptual diagram of a system as a set of 

specific diagrams, such as the UML, is developer-oriented and, despite their clarity, makes it difficult for the 

interaction of developers and stakeholders, which is contrary to one of the four fundamental principles of Agile. 
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As a rule of thumb, when it comes to formalizing requirements, this usually refers to functional requirements. 

Non-functional requirements are usually considered only informally due to their complexity, high level of 

abstraction, and lack of methodologies and support tools. At the same time, non-functional requirements define a 

significant part of the design decision-making process and limit the way the product functionality is implemented 

by imposing additional constraints in business process models (Shankar, 2020), so they are also known as the 

system’s quality attributes. The approach to requirements management should be sure flexible, especially with 

respect to non-functional requirements, but they are much more difficult to systematically model, analyze and 

change, in contrast to functional requirements, the satisfaction of which can be easily tested (Moradi et al., 2018; 

Jackson et al., 2009). Thus, non-functional requirements should be included in the general scheme of 

requirement formalizing, however, the problem of formalizing such requirements and determining the degree of 

their satisfaction in the final product is still awaiting its solution (Rosa et al., 2004). 

2.1.1 Requirement’s Formalization Automation Issue 

Although publications present many different approaches to automation of the requirement formalization, there 

is still not a fully rigorously substantiated and proven practical solution. The process of informal requirements 

formalization is usually taking to consist of three phases (Cimatti et al., 2009; Fatma Bozyiğit et al., 2021):  

1) Informal analysis phase: informal specifications are structured and categorized using appropriate taxonomies.  

2) Formalization phase: a conceptual model is automatically created from categorized fragments of 

requirements through a transformation model. 

3) Formal validation phase: the resulting conceptual model is validated.  

The transformation model allows you to define the elements of the conceptual model (entities, their attributes, 

and relationships, constraints that determine the conceptual element integrity), relying on the structured data 

obtained in the previous phase. Based on the analysis of publications on this topic, you can distinguish three 

main types of analysis and corresponding models, which are subjected to categorized fragments of requirements 

while transforming into a conceptual model: linguistic analysis, pattern-based analysis, ontology-based analysis. 

A. Linguistic analysis.  

The linguistic analysis focuses on comprehending the subject-logical content of the text, factual and conceptual 

information available in the text and includes morphology, syntax, semantic, and pragmatic analysis, among 

others. Morphology deals with the formations of words from the morphemes. The syntax works similarly to 

morphology but refers to sentence structure. Semantic focuses on studying the meanings of words. Pragmatics is 

like semantics but with words, phrases, and utterances being studied in context rather than independently. 

Natural language text processing may begin with morphological analyses, stemming from the terms involved. 

The aim of syntax analyses is to determine the characteristics of the words, recognition of their parts-of-speech, 

determining the words and phrases, and parsing of the sentences. A parser takes a sentence and turns it to the 

sentence diagrams. Once the sentence is parsed the one can find all the noun phrases, for example, that is 

sentence parsing is just the way to find concepts.  

To determine the meaning of a sentence, semantic parsing is used. Semantic parsing deals with converting 

natural language utterances to a semantic representation. This representation is often referred to as logical forms, 

meaning representations, or programs that can be easily executed on a knowledge base. There are several 

semantic representation formalisms (Kamath & Das, 2018): first-order logic, graph-based formalism, and 

programming languages. The most used logic-based semantic representation is λ-calculus that represents the 

meaning of real-world objects using a set of ontologies and uses syntactic rules for composition. Basic formalism 

(or grammar) is used to obtain valid logical forms. Next, the parser searches for logical forms with suitable 

characteristics in accordance with some model that generates distributions over these valid logical forms. The 

model parameters are updated according to a specific learning algorithm using training examples. 

Let's try to evaluate this scheme of machine-learning-based semantic analysis from the point of view of 

Wittgenstein’s language-game theory, according to which language and actions should be considered as a whole 

and the truth of which hardly anyone doubts today. Language games, according to Wittgenstein, are infinitely 

counted, and their infinite variety creates an abundance of life practices. It is impossible to classify these 

conceptual speech practices and games since there are a huge number of their possible types and varieties. We 

can only try to identify the rules by which this or that language game "works". Wittgenstein wrote that people 

too often fail to notice the obvious. Obvious things are the hardest to understand since they are too close, and it is 

not customary to think about them reflectively. When we use words, each time we carry the meaning of the word 

into a new context, trying to discover new ways to use it. In other words, we are creating a new language game. 

https://en.wikipedia.org/wiki/Morphology_(linguistics)
https://en.wikipedia.org/wiki/Syntax
https://en.wikipedia.org/wiki/Semantics
https://en.wikipedia.org/wiki/Pragmatics
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The same image or word can be perceived differently by different people. For example, in a disputable situation, 

one party may state: "This is my point of view." However, if the opponent has a different mental context for 

using the words that have become the subject of the dispute, then there is no way to resolve the conflict. The 

parties simply operate with different meanings, although they verbally pronounce the same words. Similarly, no 

matter how many times we highlight a certain phrase in the text, we will not be able to accurately assess its 

meaning if we do not know the rules of its original language game. Two disputing parties reach an understanding 

only if they accept the same rules of the game. This usually happens because of discussion and exchange of 

views. This means that to convey the exact meaning of the sentence of the language, it is necessary to bring the 

accompanying rules of the game to the perceiving side. For this, semantic schemes and ontologies are intended, 

but the question is how effective and expressive the formalisms used today to represent them are. 

Semantic representations should be created in parallel with a chain of actions ready for execution, as it happens 

in the human brain while the perception of a phrase or sentence. Instead, learning semantic parsers are created to 

match natural language sentences with use case analysis, formal queries to the knowledge base, or programs in 

formal command languages, and there is little confidence in the validity of these matches. Methods such as deep 

learning add confidence to researchers because they remove all these multi-step transformations and metamodels 

in the process of semantic analysis, but first, you need to teach them how to evaluate the reliability of the 

responses of the semantic parser, learn from the knowledge already gained and work with models that cover at 

least several unrelated domains (Grefenstette et al., 2014). 

Linguistic analysis computer’s tools are concerned with Natural Language Processing (NLP). The most common 

NLP approaches are symbolic, statistical, connectionist, and hybrid (Liddy, 2001). We will not try to dig into the 

details of these approaches but instead focus on the fundamental differences between them, because all of them 

are aimed at teaching the computer to human-like comprehension of natural language, translate and generate 

natural human text and language. They differ in the processes each approach follows, as well as in system 

aspects, robustness, flexibility, and suitable tasks. The symbolic approach to NLP is based on rules and lexicons 

developed by humans according to generally accepted patterns within a given language. Logic-based and 

rule-based systems and semantic networks are examples of symbolic systems. Despite the preferences of 

machine learning in NLP research, symbolic methods are still commonly used when the amount of training data 

is insufficient to successfully apply machine learning methods.  

Statistical and connectionist approaches are based on the machine-learning paradigm. In the case of the statistical 

approach, a computer system can develop its own linguistic rules resulting from using various mathematical 

techniques and actual large text examples. Statistical methods in NLP research have been largely replaced by 

ANN-based machine learning, however, they continue to be relevant for contexts in which statistical 

interpretability and transparency are required. The connectionist models that combine the symbolic and 

statistical approaches operate statistically accepted rules of language, but allow adaptive transformation, 

inference, and manipulation of logic formulae.  

The situation in the NLP body of research can be characterized as a pluralism of approaches and methods against 

the background of universal motivation by neural-network technology. In one case, one approach may be 

sufficient, in another case, to achieve the goal, it will be necessary to combine different approaches, which is the 

essence of the hybrid approach. Hybrid methods take advantage of the strengths of multiple approaches to solve 

NLP problems more effectively. 

Known methods for linguistic analysis of informal natural-language requirements are developing within the NLP 

scope, so they allow a lot of disadvantages, but, in addition, they “miss a methodology for an adequate formal 

analysis of the requirements” (Cimatti et al., 2009). On the contrary, methods that are aimed at creating formal 

model-based specifications and use formal specification notations such as Z-language (Madhan et al., 2017) have 

sufficiently developed means for formal analysis of the functional requirements specifications. Based on set 

theory and first-order predicate logic, such notations are as expressive as they are poor for semantic analyses, 

therefore “they frequently ignore developers’ needs, target specific development models, or require translation of 

requirements into tests for verification; the results can give out-of-sync or downright incompatible artifacts” 

(Naumchev et al., 2017). 

Linguistic analysis of informal requirements in a text form is prone to errors in part due to the quality of the texts 

(sentence parsing and moreover semantic parsing does not work properly when the quality of the text is low), but 

mainly due to ambiguity or incompleteness of the requirements. To reasonably eliminate uncertainty in 

requirements engineering metaheuristic search techniques (Li et al., 2017) are may be used, among which most 

widely applied to software engineering are follows: hill-climbing, simulated annealing, and genetic algorithms. 

https://en.wikipedia.org/wiki/Metaheuristic


http://cis.ccsenet.org Computer and Information Science Vol. 15, No. 2; 2022 

 

22 

 

 

Search-based methods have been used for requirements selection and optimization with the goal of finding the 

best possible subset of requirements that satisfy certain constraints, considering interdependencies between 

requirements. Used in conjunction with machine learning, such methods could become the basis for enforcing 

the requirements engineering, however, the potential of machine learning concerning the formalization of 

informal requirements is clearly exaggerated, therefore, despite many years of history, “the current body of 

research is composed of new ideas, which have not yet been validated to its full extent by the scientific or 

industrial communities” (Iqbal et al., 2019). 

Finally, linguistic analysis is also a 20th-century philosophical movement inspired by L. Wittgenstein and aimed 

at the formal theory of language. Wittgenstein's language-game theory has been used to improve modeling 

techniques within the Logico-Linguistic Modeling (LLM) framework (Gregory F.H. & Warwick Business 

School, 1993). Based on one of the maybe more widely used systems methods – Soft Systems Methodology 

(Burge & Burge Hughes Walsh Limited, n.d.), modal logic, and logic programming languages, LLM represents 

the most consistent, philosophically sound method of formal-logical systems design now. However, LLM models 

turn out to be so complex that you must abandon the operators of modal logic. The problem, in our opinion, lies 

not so much in Soft Systems Methodology, which is obviously also not without its shortcomings, but in the 

reductionist striving of researchers to decompose a complex problem into simpler components and describe their 

causal connections in the terms of formal logic. They forget that any problem can be complex depending on the 

context in question, which, if we talk about the interpretation of the surrounding world in an arbitrary form, is 

usually not limited and is often not unambiguously defined. It should also not be forgotten that a complex system 

is not just the sum of its constituent elements and often reveals properties that the constituent elements do not 

have. In summary, formalizing language games in an open-ended framework “requires a major paradigm shift in 

formal semantics. It doesn’t reject logic, but it applies logic to a broader range of problems with a greater 

sensitivity to the way language is actually used by people at every stage of life” (Sowa, 2007). 

B. Pattern-based analysis. 

Specification patterns capture dependencies and connections between requirements, allowing specifying 

unambiguous requirements in natural language using predefined formalisms (Cimatti et al., 2009; Miao et al., 

2015; Withall, 2010). They allow you to formalize requirements in less time and with less effort, and the 

resulting specifications contain fewer errors compared with other formal methods. However, specification 

templates reduce the entire spectrum of possible solutions to a small set of standardized archetypes, therefore 

they are well suited for formalizing standard requirements that contain functional descriptions of the system at a 

high level of abstraction but turn out to be useless in the case of complex non-standard conceptual schemes. 

C. Ontology-based analysis. 

Parsing software uses automatic mathematical and statistical analysis to extract lexicons that occur in a set of 

documents and the words that make up them. They assume that the distribution and frequency of occurrence of 

specific concepts in documents within a theme are the same. At first glance, these methods are useful for 

comparing documents and identifying similarities between them, which allows the methods to be used to 

categorize documents. Moreover, statistical models such as the Hidden Markov Model, which introduce 

probabilistic solutions based on attaching real weights to the characteristics of the input data (such models are 

currently used by many speech recognition systems), tend to be more robust when entering unfamiliar input data 

and input data containing errors. But if the goal is to understand the essence of the document, that is, information 

retrieval, as well as the most important elements or relationships in the document, then a method that reproduces 

or tries to reproduce human understanding will naturally be preferable to a method that based on word frequency 

statistics. 

Semantic analysis software focuses on the meaning of words and how they are perceived by humans. This 

approach involves understanding the context in which words appear. The importance of understanding context is 

especially evident in natural language idioms. The key to understanding idioms is to never take them literally 

because the individual words do not fit together at all. They must be taken into context to understand their true 

meaning. However, understanding the context requires semantic models. Such models create a natural language 

environment that is used to conceptualize problem knowledge, integrate data from different resources, and link 

concepts to this data, computational models, and control structures to further expand the area of knowledge. 

Semantic modeling is provided by ontology engineering that is “the set of activities that concern the ontology 

development process, the ontology life cycle, and the methodologies, tools, and languages for building 

ontologies” (Corcho et al., 2007). Ontology engineering is widely used to model the semantics of complex 

systems in a wide variety of areas, including software development activities such as requirement engineering 

https://en.wikipedia.org/wiki/Logic_programming
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(including nonfunctional requirements), domain modeling, and process refinement (Pan et al., 2015; Ameller & 

Xavier, 2014).  

The term "ontology" itself is an example of the contextual dependence of the meaning of a word. In the 

knowledge representation context, “ontology” is “a catalog of the types of things that are assumed to exist in a 

domain of interest D from the perspective of a person who uses a language L for the purpose of talking about D” 

(Sowa, 2012). In the artificial intelligence context, “ontology” is defined as “an explicit specification of a 

conceptualization” (Gruber, 1993). In software engineering, “ontologies are reusable and sharable artifacts that 

have to be developed in a machine-interpretable language” (Corcho et al., 2007). Finally, in the context of 

Wittgenstein's language-game theory, ontology could be defined as the prerequisites for semantic representation 

of linguistic communication rules. 

Manual ontology development is a rather laborious and complex process aimed at integrating formalized 

knowledge and data obtained from different sources. The automatic or semi-automatic creation of ontologies is 

known as ontology learning (Maedche & Staab, 2001). Ontology learning approaches can be categorized 

according to data types (Lehmann & Völker, 2014): ontology learning from text, linked data mining, concept 

learning in description logics, and OWL, сrowdsourcing. Today, the pressing problems of ontology learning are 

associated with progress in solving the problem of automated acquisition of ontology from unstructured text. 

Even though a lot of methods have been developed to solve this problem in such areas as machine learning, text 

mining, knowledge representation and reasoning, information retrieval, and natural language processing, 

ontology learning remains an intensively developing area of scientific research. Summarizing all the main 

disadvantages of these methods, then in ontology learning, you can achieve the desired result “by showing 

directions for answer validation, language-independent ontology generation and crowdsourcing usage for 

automatic ontology post-processing” (Asim et al., 2018). 

There is an approach known as Ontology-Driven Software Development (ODSD) in software engineering. This 

approach, as well as Domain-Driven Design (DDD) approach (Evans, 2015), follows the concept of 

Model-Based Software Development, the main idea of which is how to better integrate high-level domain 

models into the software development life cycle (Valiente et al., 2011). The purpose of the ODSD is the same, 

but unlike DDD, it applies this idea in a much more radical way: domain models are used not only to generate 

code but also as executable artifacts at runtime (Knublauch, 2004; Lavbič & Bajec, 2011). The idea of 

executable (interpreted) semantic models seems especially promising in the context of extracting knowledge 

from textual data, since such models, together with the use of ontological design patterns (e.g., Almeida Falbo et 

al., 2013; Gangemi et al, 2007) can significantly reduce the influence of the human factor both on ontology 

learning and ODSD (Bhatia et al., 2018; Siddiqui & Alam, 2013).  

Ontology Design Patterns (ODP), like architectural patterns, simplify the design process and ensure its quality. 

The ODP Master Directory is developed and maintained by the Association for Ontology Design & Patterns and 

contains several basic types of patterns that collectively constitute an ontological design framework (Association 

for Ontology Design & Patterns, n.d.): structural, correspondence, content, reasoning, presentation, and 

lexico-syntactic ODPs. 

The semantic analysis of an arbitrary text should be sure based on the use of linguistic ontologies developed with 

respect to lexico-syntactic patterns and, above all, cross-linguistic discipline ontology, which is a network of 

concepts used to describe and analyze natural language (Schalley, 2019). However, it should be borne in mind 

the linguistic ontology’s role in interpreting the meaning of the text is secondary to the domain ontology’s role of 

specifying the requirements, but the two working together significantly improves information retrieval and the 

understanding of the information retrieved (Zyl & Corbett, 2001).  

Although the problem of unsupervised ontology induction from text is still relevant (Poon & Domingos, 2010), 

some progress has been made in the field of semantic parsing based on the joint use of ontology learning and 

machine learning (e.g., Choi et al., 2015; Starc, & Mladenic, 2016; Cheng et al., 2018). Nevertheless, 

unsupervised machine-learning solutions are commonly very noisy, so they need predefined natural-language 

templates, moreover “supervised learning requires labeled data, which itself is costly and infeasible for 

large-scale, open-domain knowledge acquisition” (Poon & Domingos, 2010). Thus, up to date, there is not a 

fully automated unsupervised semantic parsing method for open domains. 

If sum up, no matter what approach is used to formalize informal requirements, truly flexible adaptive software 

development is impossible without effective management of both subject knowledge and project knowledge, in 

other words, a universal semantic formalism is needed to formalize both. Traditionally, first-order logic and 

computer languages are used to formally represent ontologies, but their very limited capabilities to support 
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conceptual schemes create insurmountable obstacles to creating an enterprise-sized requirements model, which 

provides informality especially during early requirements analysis. 

2.1.2 Validation of Software Requirements 

Another important aspect of the requirements formalization concerns that requirements are to be confirmed to 

guarantee their correctness. The requirements validation is a fundamental step in the development process, 

especially for safety-critical systems (Cimatti et al., 2009). Unlike formal code validation methods, informal 

requirements validation methods are poorly understood. Here we can note an approach based again on ontologies 

(Chen et al., 2020). Difficulties in this aspect are because the correct requirements must be adequate to the real 

situation, therefore the formalization and verification of requirements usually require the active participation of 

experts. In other words, the correctness of the formulation of requirements in a document, formal or informal, is 

determined by the adequacy of understanding the subject area and the needs of users (Kulyamin et al., n.d.). It 

would not be difficult to solve this problem if the requirements are described initially according to the 

representation formalism of domain knowledge. Ideally, requirements development, especially at the 

conceptualization stage, should use the same methodologies and tools which are used for domain knowledge 

management. For this, it is necessary, at least, to have a single knowledge representation model. Semantic models 

are the most accurate in representing knowledge but the existing approaches and methods for their creation, 

described above, are poorly compatible with the task of displaying the dynamic interaction of domain essences.  

We use here the term “essence” to denote the interacting elements of the domain instead of the term “object”, 

assuming that the essence is the internal basis, the true nature of anything, without which it is unable to exist, 

whereas an object is a realized essence in its specific embodiment, that is, an essence that manifests itself in a 

context. Each essence can have many such implementations, depending on the context of use, for example, the 

car essence can be implemented as a trade item, a production item, a property item, etc. Understanding the 

etymology of these terms is essential for formalizing the knowledge contained in informal requirements 

specifications and for understanding the fundamental difference between object-oriented modeling and 

ontology-oriented modeling. In contrast to the object-oriented approach, the ontology-oriented one just allows 

considering the meaning context and different points of view on the mental concepts. 

2.1.3 Software Requirements Models 

The use of any intellectual methods for the analysis of texts is faced with the insurmountable problem of the 

existence of an almost unlimited set of contexts of their formal representation. The existence of verbal and 

situational contexts allows one to describe different and even contradictory knowledge. Again, elements of 

knowledge can be reused in different contexts, allowing different points of view to be synthesized in the overall 

context of the project. For example, in every project, we must clearly define at least three points of view and, 

accordingly, three types of requirements: requirements for the end-user, requirements for the customer, and 

requirements for the developer among others. However, much depends on what is meant by the context and how 

it is represented in conceptual and semantic schemes. The generally accepted definition of context is as follows 

(Dey, 2001): “Context is any information that can be used to characterize the situation of an entity. An entity is a 

person, place or object that is considered relevant to the interaction between a user and an application, including 

the user and the application themselves.” This is the definition of context in a narrow sense, it is often used for 

ontological modeling in context-awareness computing and “depends on the interpretation of the operations 

involved on an entity at a particular time and space rather than the inherent characteristics of the entity.” (Ejigu 

et al., 2007). If we are talking specifically about the inherent characteristics of the entity, the context should be 

understood in a broad sense, that is as something that arises always and everywhere where there are mental 

concepts that enable to change their identity since only in the context we can talk about any concepts or the 

meaning of something. Statements, judgments, actions are the use of concepts in context. Wittgenstein's 

language games are contextual because they are tied to reality, being its reflective image. 

Among the various methods of context modeling, ontology is the most popular approach. In the structure of 

context ontologies, upper ontology and domain-specific ontologies are usually distinguished (e.g., Gu et al., 

2020). The upper ontology is a high-level ontology that captures general context knowledge about the 

surrounded environment. An important function of the upper ontology is to support the semantic interoperability 

of many domain-specific ontologies. The terms of domain-specific ontologies are subordinate to the terms of the 

upper one. The domain-specific ontologies are a collection of low-level ontologies which define the details of 

general concepts and their properties in each subdomain. The low-level ontology contains interpretations of 

concepts from upper ontology and other low-level ontologies in the context of a particular domain, in other 

words, low-level ontologies can be related to each other and form a hierarchical structure in which each 
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low-level ontology has her super ontology. 

The main weakness of such a context ontology model is context reasoning, which should provide a semantic 

interpretation of contexts, including the choice of the context within the meaning of the expression if it is not 

explicitly indicated. Ontology-based systems have disadvantages just because the relation expression between 

domain entities can be complex a great. As a rule, an ontology inference engine is a logic system that reasons 

over the semantic model of an ontology. In the case of context ontologies in OWL, for example, an ontology 

inference engine should provide a set of rules for interpreting the semantic model and detecting inconsistency in 

the knowledge base. In a situation of uncertainty if insufficient knowledge, the truth value of a statement is not 

binary, so other models of context-aware ontology can be applied, for example, the Bayesian network (Mok & 

Min, 2015). 

The absence of upper ontology will make the task of semantic analysis very difficult. Regarding the task of 

formalizing requirements in a software project, in this case, you will have to build a separate context model for 

each project and track conflict situations when knowledge elements from different contexts are shared in the text 

of requirements. It looks as if all stakeholders in the project have entered into an agreement of intent, which 

indicates the boundaries and degree of interest of each participant. To a certain extent, requirements 

specifications serve as such an agreement. The question is what to choose as this upper ontology. You can limit 

yourself to creating an ontology of the requirements specification, which, like ontologies for context-awareness 

systems, will consist of several classes of contexts each of which will correspond to one of the project artifacts. 

But you can go further and link this ontology directly to the basis domain ontology. In this case, any artifact in 

the project can be a context for arbitrarily many concepts from the domain ontology, and any changes in this or 

that concept will be automatically reflected on the associated artifacts. So it could be in theory, but in practice, in 

the process of developing and managing requirements, developers, like many years ago, are guided mainly by 

common sense and rely on their own experience. At the same time, the implementation of such an obvious 

scheme of their interaction can certainly fully provide such standard properties of requirements as adequacy, 

unambiguity, consistency, and completeness. The current situation in ontology engineering, unfortunately, does 

not allow for the direct dynamic connection of domain and project knowledge. This at least requires a universal 

upper ontology based on the process of cognizing the surrounding world in which people use both a priori 

knowledge and a posteriori knowledge. 

In requirements engineering, both researchers and practitioners are struggling with the problem of the 

contextualization of knowledge. Something that can connect their efforts is the use of requirement models, 

proposed by Beatty and Chen (Beatty & Chen, 2015). They identify four major classes of requirement models: 

those dealing with objectives, people, systems, and data. In the context ontology for a software project, the 

classes of requirement models are low-level ontologies of subdomains of the software requirements domain, for 

which the ontology of requirements specifications will be as a super ontology. 

Table 1. The major classes of requirements models (borrowed from (Beatty & Chen, 2015)). 

Class Description Models Bounding model 

Objectives Describe the business value of the 
system and help you prioritize 
features and requirements based on 
their value. 

Business Objectives  
Objective Chain 
Key Performance Indicator 
Feature Tree 
Requirements Mapping Matrix 

Business Objectives  

People Describe who is using the system, 
along with their business processes 
and goals 

Org Chart 
Process Flow 
Use Case 
Roles and Permissions Matrix 

Org Chart 

Systems Describe what systems exist, what 
the user interface looks like, how the 
systems interact, and how they 
behave. 

Ecosystem Map 
System Flow 
User Interface Flow 
Display-Action-Response 
Decision Table 
Decision Tree 
System Interface Table 

Ecosystem Map 
 

Data Describe the relationships between 
business data objects from an 
end-user perspective, the life cycle 
of the data, and how that data is used 
in reports to make decisions 

Business Data Diagram 
Data Flow Diagram 
Data Dictionary 
State Table 
State Diagram 
Report Table 

Business Data Diagram  
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Table 1 contains brief descriptions of these classes of models, a list of constituent models, as well as the main 

models (bounding model), on which all other models of this category depend and which are bounds the 

corresponding space: objective space, people space, system space, and data space. 

Beatty and Chen provided a detailed description of software requirements models and their mutual influences. 

The reliability of their taxonomy is not in doubt, since it is the result of many years of practical work with 

projects, but perhaps the most significant result of the work is the conclusion that different requirements models 

are needed to identify, verify, and analyze requirements, combined into a multi-tier requirements architecture. 

Given an example of such an architecture that includes all kinds of models, Beatty and Chen note that the 

relationships between the requirements models are not fixed. The relations depend on the situation in the project, 

so there may be other relationships between the models in addition to those indicated in this example, or, 

conversely, there may be fewer of them if some models were not included in the requirements architecture. Also, 

besides the selected models a requirements architecture can include functional requirements, business rules, test 

cases, screens, or model elements such as process flow steps.  

Thus, it's talking about a high-level view of the requirement architecture, which must be detailed for a more 

complete view. However, to do this it is necessary to have a clear unambiguous understanding of the nature of 

the interrelationships between models in such an architecture. Models can influence each other in different ways. 

For example, some models are based on others, if there are causal relationships between their elements or models 

can provide information for other models, if there is a certain sequence of actions in the process flow. In addition, 

there can be several levels of relationships (cascading relationships) in a project, where one model is linked to 

another model, which in turn is linked to one more model. All this leads to the need of creating a requirements 

architecture ontology that would describe the semantics of relations between at least the main requirements 

models, that is, those are often found in projects. Such an ontology can serve as a framework for building a 

requirements architecture in a specific project. 

2.2 Categorizing Domain Knowledge 

Consideration of the process of formalizing requirements in a software system development project cannot be 

complete without discussing the problem of formalizing organizational (domain) knowledge, which is based on 

the process of categorizing knowledge. The most complete picture of the situation in this area is provided most 

likely by the project of the W3 Semantic Web Consortium with its basic concepts based on the categorization of 

knowledge. Ontologies used in the Semantic Web are built using description logics, many of which can be 

viewed as fragments of predicate logic. Domain knowledge represented using description logic is subdivided 

into general knowledge about concepts and their interrelationships (intensional knowledge), and knowledge 

about individual entities, their properties, and relationships with other entities (extensional knowledge). 

Understanding the difference between intensional and extensional contexts is still the subject of philosophical 

discussions, since the essence of the semantic analysis of these contexts involves, first, identifying the features of 

their logical structure. This fact largely explains the difficulties that the implementation of the Semantic Web 

concept faces, up to its complete rejection. So, to the question "Is the Semantic Web dead?" Google's search 

engine replies: “Semantic technologies have long been heralded as the best way to add linked data to your site. 

But since the rise of AI, many are now asking, “Is the Semantic Web dead?” In short, yes." This conclusion is 

rather hasty, if only for the simple reason that the creation of artificial general intelligence is still far from 

completion, and there is no more or less substantiated alternative for a semantic approach to knowledge 

representation. The stumbling block for this approach, in general, seems to be the use of description logics for 

ontology reasoning.  

Even though description logic is the most popular model for representing knowledge, there have been few 

studies of the disadvantages of description logics, understanding the cognitive difficulties presented by them 

(Warren et al., 2014). In these studies, attention is paid mainly to the issues of OWL syntax, the difficulties in 

using commonly used features due to the relationship between rule-based and model-based approaches in human 

reasoning. Indeed, a person in his reasoning uses both rules (logics) and mental models, but much more 

important is the question of how many a priori and post prior forms of thinking are in this reasoning, that is, 

what's the balance between formal logic and transcendental logic. The problem of such languages of knowledge 

representation as OWL is precisely in the complete absence of means of expressing transcendental relations. 

Such relationships do not provide an idea of the properties of entities but allow exposure of the properties and 

relationships of experience objects in general, limiting the search space within which the search for logical 

inference is conducted. They can’t be used directly in logical judgments but each of them may be represented as 

a set of a formal logic operators. Other experience-grounded categorization models as that in which “all relations 
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are variations of categorical relations, such as Inheritance and Similarity” (Wang & Hofstadter, 2006) (that is 

essentially based on predicate logic), also does not appeal to a priori forms of thinking.  

In cognitive theory, categorization is a fundamental cognitive process that involves assigning objects to a 

particular category. A category is usually understood as mental and linguistic groups of elements, distinguished 

by one or another attribute (attributes) and generality of functions. Since the category is not only the result of a 

mental reflection of reality but also expresses the specifics of its understanding, the categorization process, being 

part of the cognition process, is closely related to the mechanisms of coding knowledge. Thus, categorization 

reflects not only what knowledge we possess and how we apply it but the forms and methods of preserving this 

knowledge. As you know, cognitive categorization is the process of human cognitive activity, which includes: 

the formation of categories, the correlation of new knowledge about the structure of the world with already 

formed and a priori categories, the structuring of knowledge according to the chosen model of knowledge 

representation, as well as the classification of linguistic forms of the mental representations (concepts) arose 

from the categorization. 

Thus, at the output of the categorization process, we must receive mental representations structured following the 

chosen model of knowledge representation. These mental representations are usually distributed over three levels: 

superordinate level (the highest level of abstraction, indicating generic concepts or essences), basic level 

(average level of abstraction, including a perceptually salient, easy to detect and memorize object-type concepts), 

and subordinate level (the lowest level of abstraction, which includes units that characterize in detail individual 

sides of any phenomenon or naming specific objects of reality). Basic level mental representations are most 

suitable for identifying domain-specific properties since they demonstrate great similarity within a category and 

large differences between categories, and category samples have a generalized identifiable form that is most 

convenient for perception. Therefore, in a true cognitive process-based ontology, one should distinguish not two 

levels, but three: upper-level ontology, which corresponds to the superordinate level and contains categorical 

knowledge; middle-level ontology, which corresponds to the basic level and contains mental concepts that form 

the semantic core of domain; and low-level ontology, which corresponds to the subordinate level and contains 

individual concepts and facts that are different factual knowledge in a context. 

There are two main approaches to categorization: the classical approach based on the teachings of Aristotle and 

Plato, and the approach called the theory of family resemblance, based on the works of L. Wittgenstein. The 

essence of the classical approach is that all samples included in one category, or another must have the same set 

of essential features, have the same status in the process of categorization. This approach is usually used to create 

various kinds of taxonomies in science. This is the classical model of categorization. It does not consider the 

peculiarities of understanding the world by a person, that is, it does not reflect which objects and phenomena a 

person considers to be more typical, and which - to less typical. 

The essence of the theory of family resemblance lies in the fact that identical signs may not be found in all 

specimens of the category, but only in some, and the set of signs may vary. For example, among the 

characteristics of members of one human family, some relatives have common character traits, others – external 

similarities, etc. The teachings of L. Wittgenstein gave impetus for the development of similarity-based theories 

of categorization, such as prototype theory and exemplar theory as well as appropriate formal models of 

categorization (Cohen & Lefebvre, 2017). Compared to classical theory, similarity-based theories have an 

advantage. In the prototype theory, a categorization decision is made by comparing a new sample with a category 

prototype, which is understood as the best, i.e., its most characteristic and illustrative example. Under the 

exemplar theory all known instances of a category are stored in memory as exemplars, so, if assessing 

membership in a category of an unfamiliar entity, samples from potentially relevant categories are retrieved from 

memory, and the entity's similarities with these samples are summed up to formulate a categorization decision. 

The disadvantage of similarity-based theories is that they either ignore the properties of individual members of 

the category, focusing on the criteria for their membership in the category, or, on the contrary, blur the 

boundaries of the categories. As a result, the same instance can be attributed to several categories, or entities that 

have only a few common properties fall into the same category. Of course, cognitive analysis admits that natural 

categories tend to be fuzzy along their boundaries and inconsistent in the status of their constituent members, but 

the necessary and sufficient conditions on which the logic of predicates is built is rarely found in the categories 

of natural things, especially when it comes to such manifestations of human life as feelings, emotions, relations 

of modality, etc., and the question of whether a given mental entity belongs to one category or another is decided 

in the context. The question of the comparative merits and applicability of various categorization theories is also 

still controversial. The classical approach, especially enhanced by machine learning and fuzzy set theory (Fisher, 
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1987) applies to the categorization of scientific knowledge and uniquely identifiable objects (data). As applied to 

everyday life (open domain), it is better to rely on similarity-based theories due to their more grounded 

psychological foundation. 

Above mentioned theories of categorization are focused on the inner content of categories, their essence. The 

internal knowledge structures of the various categorization models reflect the specific representations they use in 

the categorization process, which typically include patterns, prototypes, and rules. However, this is only one 

aspect of the problem. Theories of categorization do not consider the impact of knowledge transformation being 

produced both individually and collectively in the practice of organizations on the categorization process (Moroz, 

2020) The mutual transformation of tacit and explicit knowledge in the process of formalization of both 

individual and collective knowledge is sure to play, under certain conditions, the role of constraints for the 

categorization process. 

3. Semantic Representation of Software Requirements Architecture 

3.1 Relationships between Models in Software Requirements Architecture 

According to the well-known definition, a project ontology is a formalized description of knowledge about the 

design process of new or modernization of already known artifacts, including knowledge about the design object 

itself and artifacts close to it in properties, as well as a thesaurus or domain ontology. So, the project ontology 

should ensure the collection and processing of information about the design object as a system based on the 

study of the conceptual apparatus of the domain, analysis of deductive and inductive rules, and functioning 

models of the system. The model-driven development approach provides creating a domain model. Based on the 

domain model, a project requirements architecture can be created, including objectives, people, systems, data, 

and risk models. A software development model provides a systematic approach to software development, 

however, among the models of the software product life cycle known today, none of them has an absolute 

advantage, although in most cases the agile model is preferred. The choice of the correct software development 

model depends on many factors, among which the main ones include: the maturity of the development team, the 

requirements for the project such as goals and budget of the project, and a singularity of the target system. 

 

Figure 1. A software development technology stack centered on the software requirements architecture 
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In the software development technology stack, requirements are a key artifact, it influences all other project 

artifacts and is directly related to domain knowledge (figer 1). Nevertheless, the development of project 

requirements seems is not given due attention, at least we are not aware of other publications, except (Beatty & 

Chen, 2015), where a system analysis of the architecture of requirements would be carried out. It may look a 

little bit confusing that Beatty and Chen did not include risk models in their taxonomy of requirements classes. 

However, considering the numerous cascading relationships of risk models with the listed requirements models, 

especially with people models, this would significantly complicate their task, which is already quite complex 

though they handled it flawlessly. Without saying, risk models in a software project make a separate topic for 

research. Nevertheless, the above four main classes of requirements models should be surely added by one more 

– the risk models. 

Software development process is based on the chain of artifacts: <objectives> – <features> – <processes> – <use 

cases> – <user interface> – <data>. Indeed, a software system is known to be created to achieve certain goals, 

providing functional support for a certain technological process, for which users of this system must perform 

certain actions within this process, using the interface of the software system and the necessary data for this. At 

the same time, creating such a system as well as the achievement of its goals may be associated with overcoming 

certain risks. This chain defines a mainstream of the requirements architecture. 

Like the architecture of the system itself, the requirements architecture is obviously multi-level. Inside it, models 

form a hierarchy, which is rooted in objectives models (figer 2). Objectives models’ level is followed by risk 

models’ level. Closely interconnected people and systems models depend on risk models, although the human 

factor is dominant in terms of project risk management. And data models occupy the lowest level of the 

hierarchy. In figer 2, solid lines show the main dependencies, creating the core of the requirements architecture 

that covers most of the relationships between the requirements models. The dotted lines correspond to auxiliary 

dependencies, which additionally characterize the main links. Within the model categories, component models 

also form hierarchical structures rooted in the above-mentioned bounding models. Each bounding model bounds 

the corresponding space: objective space, people space, system space, data space, and risks space. 

 

Fig. 2. Hierarchy of model types in requirements architecture 

 

3.2 Software Requirements Ontological Framework 

Ontology is a metaknowledge, linking element between non-formalized knowledge and its formal representation. 

The presence of such a link is inevitable if knowledge is in a passive form concerning knowledge processing 

programs. The situation is complicated by the need to use ontologies of several levels, that is, 

meta-metaknowledge, and the coordination of different languages of ontology representation and ontology 

pattern languages (Almeida Falbo et al., 2013), as well as due to the problem of combining several ontologies 

into one. This article suggests using instead of multilevel semantic metamodels a model of self-organizing 

knowledge tree (Moroz, 2020), which is based on the emergent ability of knowledge to self-organize in the 

permanent cognitive process of creating new knowledge. The knowledge tree represents the conceptual model of 

knowledge representation, arising from the hypothesis about collective interaction of a lot of intellectual atomic 
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elements of knowledge (the knowledge quanta), which are combined into clusters like neurons in the brain. The 

knowledge quanta are elementary concepts and facts, from which more complex concepts are formed. 

Semantically closed concepts are combined into clusters, and, finally, the clusters are tied to specific nodes of the 

knowledge tree. Knowledge quanta, clusters, and knowledge tree nodes correspond to the mental representations 

of accordingly subordinate, basic, and superordinate levels of categorization. For binding the elements of 

knowledge at all levels, transcendental logic-based ontological relations are used. Using the universal principle 

of self-organization of knowledge allows solving the problem of ontology reasoning arising from the traditional 

use of formal logic. In other words, the knowledge tree is an executable transcendental logic-based ontology 

framework that can provide a solution to the problem of ontology learning automation. And in this paper, this 

knowledge representation model is used to develop an executable semantic framework for automated ontology 

generation from informal software requirements text. To describe the semantics relations between requirements 

models, "ontological predicates" are used, which are transcendental logic-based ontological relations followed 

from the I. Kant's categories of reason. Their peculiarity is that they do not show the properties of objects they 

relate to but indicate how we should, guided by them, reveal the properties and connections of experience objects 

in general. The philosophical rationale for all "ontological predicates" and a more detailed discussion of them 

with examples are described in the paper (Moroz, 2021). 

Thereby, a precedent of semantic representation formalism for the requirements architecture, based on the 

knowledge representation model in the form of a knowledge tree, is created. The main benefit of this model is its 

flexibility, it ensures the accumulation of knowledge without the need to change the initial infrastructure to 

enable semantic interoperability, as well as that the ontology inference engine is part of the mechanism of 

collective interaction of active elements of knowledge, and not some externally programmed system of rules that 

imitate the process of thinking. 

As an example of a requirements architecture for identifying semantic relationships between individual models 

both within and between categories, an instance of the requirements architecture borrowed from (Beatty & Chen, 

2015). It contains typical relationships between requirements models that are most often encountered in practice. 

It is hard, if it is possible at all, to characterize these relationships using descriptive logic formalism due to their 

diversity and contextual dependence. One can only speak of the influence of some models on others, which did 

in (Beatty & Chen, 2015). The resulting ontology chart of a typical requirements architecture based on the 

"ontological predicates" is shown in figure 3. A brief description of those "ontological predicates" that were 

identified because of the analysis of relationships between models in the selected requirement architecture as 

well as corresponding color marking of the connections are given in table 2. It must be noted that only the most 

common relationships are presented in figure 3. Those relationships between models that are much less common 

can be attributed to another type of ontological relation setting the randomness of the established relationship, 

i.e., the relation of chaos. Such relations are not shown in figure 3 not to overload the drawing. 

Finally, the requirements architecture ontology in the form of a knowledge tree may look like this. Each type of 

requirements model forms a cluster in such a knowledge tree. The individual requirements models form 

sub-clusters that are made up of context-sensitive instances of these models.  The instances of requirements 

models combine a set of concepts represented by knowledge quanta or clusters. Both knowledge quanta and 

clusters are related through "ontological predicates". Binding requirements models to each other is implemented 

by placing a copy of the dependent model into the cluster of the model on which it depends. However, due to the 

ability of the knowledge quanta to independently search for the concepts necessary by the meaning of the 

problem being solved in the knowledge tree (knowledge quanta and clusters), this linking occurs directly, 

without using any external search mechanisms, except for the "native" tool of the knowledge quantum itself to 

search relevant information in the knowledge tree. 
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Figure 3. The ontological chart of the typical requirement architecture 

 

Table 2. Transcendental logic-based ontological relations 

Ontological 

relation 

Description Color 

marking 

Relation of 

aggregation 

Part-whole or part-of relation.   

Relation of  

order 

More–less, higher–lower, or previous–subsequent relation.  

Relation of 

causality 

Cause–effect relation.   

Relation of 

tactility 

Sets degree of semantic proximity between different concepts.  

Relation of 

wisdom 

Sets influence on mental abilities in a broad sense like logical–illogical, 

reasonable–stupid etc.  

 

Relation of 

variability 

Sets the ability to change the concept itself that is its state or properties.   

Relation of 

effectiveness 

Sets the ability to generate control instructions, the desire to be first, to make 

others dependent on yourself or others.  

 

 

4. Conclusion 

Agile methodology has already proven its usefulness and productivity for software development, but it has not 

fully unleashed its full potential yet, so there is some work to be done for researchers and practitioners alike. For 

an Agile approach to be successful, it must be backgrounded by the three “elephants”: continuous workflow 
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process improvement (or Kaizen), team self-organizing, and knowledge self-organizing. Though it is relatively 

clear concerning the first two, and they are already in work, the latter still awaits its development. The constantly 

growing interest of researchers and practitioners in the use of artificial intelligence methods in the software life 

cycle indicates the need to develop an approach to knowledge management in a project that would not only 

provide decision support at different stages of the product life cycle but also create preconditions and context for 

the interaction of project artifacts (requirements, design, source code, test cases, and others) with the domain 

knowledge management system. To achieve this goal, it is necessary, first, to unify the methods of formalizing 

both project knowledge and domain knowledge. However, for this, an appropriate knowledge representation 

model is needed. Such a model can be created based on the principle of self-organization of knowledge, that is if 

knowledge has an inherent emergent ability to create new knowledge from existing knowledge and form a 

treelike structure in memory, a knowledge tree, to store the knowledge. Nodes of this knowledge tree consist of 

semantically closed concepts connected by transcendental logic-based ontological relations. In this paper, this 

knowledge representation model is used to develop an executable semantic framework for automated ontology 

generation from unstructured informal software requirements text. To describe the semantics relations between 

requirements models, "ontological predicates" are used, thereby creating a precedent of semantic representation 

formalism for the requirements architecture, based on the knowledge representation model in the form of a 

knowledge tree. The main benefit of this model is that it is flexible and ensures the accumulation of knowledge 

without the need to change the initial infrastructure to enable semantic interoperability, as well as that the 

ontology inference engine is part of the mechanism of collective interaction of active elements of knowledge, 

and not some externally programmed system of rules that imitate the process of thinking. 

5. Discussion 

In the field of using artificial intelligence for the development and maintenance of complex software systems, the 

current state of research is characterized by an abundance of different approaches and methods and an almost full 

absence of completed end-to-end enterprise solutions. This indirectly indicates weakness of fundamental 

concepts and models of knowledge representation and knowledge-based management and even more from 

models of thinking. Thus, the statement by John Searle about narrow AI that it “would be useful for testing 

hypotheses about minds but would not actually be minds” (Frankish & Ramsey, 2014) is relevant still now. 

The knowledge representation model is key to the concept of artificial intelligence, however, knowledge is 

inherently an active substance, and, like thinking, it is a form of the existence of the mind as a being. The 

processes of knowledge accumulation and thinking are inextricably linked with each other; therefore, the 

artificial intelligence model should combine these two forms of being of the mind. Our initial hypothesis is that 

knowledge has an emergent ability to self-organize in the process of human cognition of the world. The 

knowledge tree model, used in this paper as a formalism for the semantic representation of the requirements 

architecture of a software project, is an instance of such a model. Exactly, this type of model is needed to create a 

fully automated unsupervised semantic parsing tool and, finally, a knowledge-driven system, which would be 

able to provide knowledge and control over the development process of a software system adapted to 

evolutionary changes in the domain knowledge associated with the system. However, this is surely no longer a 

task of the scope of narrow AI but of general AI. 
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