
Computer and Information Science; Vol. 15, No. 1; 2022 

ISSN 1913-8989   E-ISSN 1913-8997 

Published by Canadian Center of Science and Education 

57 

 

 

MiniWarner: An Novel and Automatic Malicious Phishing Mini-apps 

Detection Approach 

Junhan Chen
1
 

1
 College of Cyber Security, Jinan University, Guangzhou, China 

Correspondence: College of Cyber Security, Jinan University, Panyu District, Guangzhou, China, 511436.   

 

Received: December 23, 2021        Accepted: January 18, 2022       Online Published: January 21, 2022 

doi:10.5539/cis.v15n1p57            URL: https://doi.org/10.5539/cis.v15n1p57 

 

Abstract 

WeChat mini-apps are “sub-applications” built within the WeChat platform. Unlike full-function native 

applications, they are streamlined, “light” versions of the apps, and enable users to open and use them inside 

WeChat without downloading and installation. Since being introduced by WeChat in 2017, 4.3 million WeChat 

mini-programs have been developed, and they attract around 410 million daily active users Up to 2021. However, 

motivated by financial gains, many malicious mini-app developers use some intended description and icon to 

mislead users to click and open their mini-apps. These mini-apps are full of annoying advertisements and collect 

users’ privacy information stealthily, which can expose users to privacy risks and financial losses. 

Although security personnel of WeChat has enforced various countermeasures to prevent malicious phishing 

mini-apps sneaking into WeChat, rampant malicious leading mini-apps still have been observed recently. In this 

paper, we present MiniWarner, a novel approach that leverages Natural Language Processing and a number of 

reverse engineering techniques to detect whether a mini-app is malicious and phishing when users open it. 

MiniWarner will only ask users whether to continue to open the malicious phishing mini-app, thus it can protect 

users against the intended misleading by attackers, and still preserve the original user experience. Besides, this 

approach is implemented as an Xposed module, making it practical to be quickly deployed on a large number of 

user devices. Our paper will introduce how we developed MiniWarner and the measurement results of 

MiniWarner in detail. 

Keywords: Mini-apps, malware detection, natural language processing, WeChat 

1. Introduction 

In 2017, WeChat introduced a novel program paradigm named mini-apps that enable users to open and use them 

directly inside WeChat without downloading and installing (C. Lee, 2017). Mini-apps are “sub-applications” 

built within the WeChat platform and WeChat allows 3rd party companies to develop mini-apps providing 

advanced features to users that can run within the APP. Normally, mini-apps are streamlined and light versions of 

full-function native applications, and they offer mobile users necessary functions and elevated convenience 

without leaving WeChat. Users can access to Mini Program via 6 ways: (1)WeChat Official Account menu, 

(2)Embedded into WeChat article, (3)Discover tab of WeChat, (4)Sharing card on WeChat groups, (5)Scan of 

Mini Program QR code, (6)Search (THOMAS GRAZIANI, 2019). 

Up to 2021, there are more than 4.3 million WeChat mini-programs attracting around 410 million daily active 

users. Nowadays, the mini-apps are not only applied in WeChat. “Following WeChat’s growth in China, 

companies like Facebook, Google, and Apple began allowing third-party apps and services to plug into their own 

messaging platforms” (L. Eadicicco, 2020). 

Mini-apps are everywhere today, ranging from communication to games and media, from which users can enjoy 

great convenience. Nevertheless, Mini-apps may expose users to security and privacy issues, such as location 

information tracking and economic loss (Prateek Gupta, 2020). Although the risks may be caused by users' 

misuse of the apps, malicious mini-apps are the most intense concerns that expose users to such risks. Our work 

focuses on malicious phishing mini-apps which is one type of malicious mini-apps. This kind of mini-apps can 

not only gain profit from user clicks but also breach the privacy of users (e.g., stealing user location).  

Specifically, a malicious phishing mini-app uses some intended description and icon to mislead users to click and 

open their mini-apps, but the contents inside their mini-apps are totally different from what the description and 



http://cis.ccsenet.org Computer and Information Science Vol. 15, No. 1; 2022 

 

58 

 

 

icon show to users. As shown in Figure 1, the description shows that this mini-app is used to help the teachers to 

manage their classes. However, once the uses open this mini-app, they will find that this mini-app is full of 

annoying game advertisements and also collects users’ privacy information stealthily, which can expose users to 

privacy risks and economic losses. Although the protection of user privacy is always focused on by application 

security researchers, and WeChat has applied my strategy to prevent malicious phishing mini-apps sneaking into 

WeChat, a large number of phishing apps still have been observed by WeChat users in these years. 

 

(a) description 

 

(b) contents 

Figure 1. Malicious phishing mini-app 

 

When users download an installation package of a native application, most anti-virus software will scan this 

package before installation if they were granted permissions (Wu, D. J. et al, 2012). And they will warn users not 

to install the application once they detect it as malware. Although the mini-app has been proposed for many 

years, it is pity that there are still no approaches to detect malicious mini-app and warn the users. The difficulty 

to develop an approach to detect malicious phishing mini-app is twofold.  

First, unlike the malicious native application, malicious phishing mini-apps do not contain any features of virus 

(e.g., control flows and hash values), all their code behavior is the same as normal mini-apps. Thus, it’s not 

workable to detect malicious phishing mini-apps with traditional ways (Black, P., & Opacki, J., 2016; Iadarola et 

al., 2019). Second, for security reasons, mobile systems do not allow apps to access other apps’ data or 

execution flows. Thus, as a part of WeChat, anti-virus software is incapable to access and scan mini-apps. 

Besides, WeChat is not an open system in which developers can only get a small amount of information (e.g. 

Development Guide) and use the public available APIs. 

To overcome the above two problems, we propose MiniWarner, a novel approach that leverages Natural 

Language Processing and some reverse-engineering techniques to detect whether a mini-app is malicious and 

phishing when users open it. We start from a straightforward observation that in order to confuse users, the 

description text of malicious phishing mini-apps is made attractive and totally different from the page contents 

inside the mini-apps. Based on the observation, we leverage Natural Language Processing technique to weigh the 

similarity between description and content inside a mini-app and identify it as a malicious phishing mini-app if 

the similarity is minuscule. 

The next problem is, how do we access WeChat and analyze mini-apps when users open them. For this issue, we 

use reverse-engineer techniques to analyze WeChat and uncover the code functions and execution flows. we 

firstly use reverse-engineered techniques to analyze WeChat static code and found an opening interface that can 



http://cis.ccsenet.org Computer and Information Science Vol. 15, No. 1; 2022 

 

59 

 

 

open a mini-app and a search interface that can download a mini-app and get its description text and wxapkg (the 

packed binary file of mini-app) when provided its ID. Then we developed an Xposed (Saariko, 2019) module to 

hook and change the execution flow of the access interface. The new execution flow first aggressively invokes 

the search interface with provided mini-app ID and gets the description text and wxapkg. Next, we use the 

mini-app unpacking tool to unpack the wxapkg without manual effort and get some resource files including the 

content text we need. The next step is to weigh the similarity between description and content inside the 

mini-app. Once the similarity is minuscule, MiniWarner will warn the user that he/she is opening a malicious 

phishing mini-app and ask for the final decision from the user, who is more capable of making the best decision 

for him/herself based on the warning. 

Contribution. The main contributions in this paper are summarized as follows: 

1. New understanding of the mini-apps security. To the best of our knowledge, we are the first to leverage 

Natural Language Processing and reverse engineering techniques to detect malicious and phishing mini-apps. 

This new understanding can further inspire follow-up research on mobile application security. 

2. Novel and effective Tool. We propose MiniWarner, the first tool which can automatically detect malicious 

phishing mini-apps inside user devices and can be quickly deployed and protect a large number of user devices. 

3. Empirical Results. We measured the effectiveness and accuracy of MiniWarner with a set of malicious 

phishing mini-apps and normal mini-apps we collected. Our experimental results show that MiniWarner can 

recognize malicious phishing mini-app and normal mini-app with 100% and 97.6% average accuracy and takes 

less than 5.03 seconds to analyze a mini-app. 

2. Background 

In this section, we explain the background knowledge about mini-app architecture and mini-app page. 

2.1 Mini-app Architecture 

As shown in Figure 2, a mini-app contains a front-end and an optional back-end to let the users feel like using 

the native app. 

(i) Front-end is a layered architecture that is responsible for user interaction and system resources handling. 

More specifically, WeChat provides a lot of APIs to the front-end of mini-apps, these APIs is capable to handle 

the resources (e.g., Album, Camera, and Location information) inside the mobile system and manipulate the data 

provided by WeChat (API, 2021). Similar to the APK file in the Android platform, the codes and resources of the 

mini-app are also packed in a compressed file named wxapkg. A wxapkg typically contains (Mini Program 

development framework, 2021): (1) a global configuration file named app.json, which determine page file paths 

and window behaviors, set the network timeout, and set multiple tabs; (2) a number of resource files (e.g., videos 

and images) that stored in multiple folders; (3) multiple files which describe Logic Layer (App Service) and 

View Layer (mini-app pages) of the mini-app. 

(ii) Back-end is a server that runs in the cloud to provide various services to end-users. These services are mostly 

related to complex computing tasks and large storage. Moreover, if mini-app developers want to communicate 

with the back-end server(e.g., accessing the storage), they only need to configure their back-end servers and 

invoke the APIs which offered by WeChat (Network, 2021). 

 

Figure 2. Mini-app Architecture 



http://cis.ccsenet.org Computer and Information Science Vol. 15, No. 1; 2022 

 

60 

 

 

2.2 Mini-app Page 

Mini-app page is an essential mini-app component that provides windows to users. Each page contains multiple 

GUI elements to interact with users. The GUI elements are designed by app developers to show images, text 

information, or accept users' input. Most mini-apps consist of multiple pages, one of which can be specified as 

the home page by developers. When a user launches an app, the first page shown on the screen is the home page. 

The Mini-app page is composed of four files including (Directory Structure, 2021) (1) a WXML file, which is 

used to build the page structure and design the UI elements(e.g. buttons and text boxes)with a markup language; 

(2) a JavaScript file, specifying the initial data of a page, the lifecycle callback function, the event processing 

function, and the like of the page.; (3) a WXSS file, which describes WXML component styles, and determine 

how WXML components are displayed with a set of style languages defined by Tencent; and (4) finally a JSON 

file, which is used to configure the window behaviors of a page. 

3. Challenges and Insights 

Our work is aim to build a tool that can brief the user that he/she is opening a malicious phishing mini-app. To 

achieve this goal, we have to design an approach to intercept the mini-app opening process for obtaining the 

wxapkg of this mini-app and analyzing the similarity between description and content. However, it's not an easy 

task, firstly, WeChat is not an open system and it contains a lot of roadblocks for us to intercept the mini-app 

opening process. Second, developers may implement the pages of mini-apps in various ways with different styles 

and texts, by solely viewing the pages of the mini-apps, humans can get confused, no mentioning the 

machine-based detection method. We next introduce our challenges in detail when developing MiniWarner and 

the insights about how to overcome them. 

3.1 Challenges 

C1: Analyze the similarity between description and page content. Humans can easily recognize whether the page 

content of mini-apps is similar to the description, but it is challenging for a machine to recognize it. Prior 

approaches commonly focus on analyzing the codes to implement the page or UI screens (Black, P. , & Opacki, 

J., 2016; Wazid, M. et al. 2019), such as judging the difference between different UI screens with their layout 

structures and program codes. But these approaches cannot be used to analyze the similarity between description 

and page content. The description of mini-apps is text information, and it’s not workable to process with code 

analysis 

C2: Find out the mini-app opening and searching API inside the static code of WeChat. As the opening and 

searching APIs do not disclose by WeChat, and they can’t be invoked by other apps except WeChat, we have to 

use reverse-engineer techniques to analyze the app and seek out the interfaces and codes. However, the size of 

WeChat APK is almost 210 MB, and WeChat consists of a large amount of Java and native codes. More 

specifically, after decompiling the latest version of WeChat APK in the Android platform with tool Jadx (Skylot, 

2015), we find that it includes more than 82,952 files which are composed of 56,867 Java classes and 94 shared 

object (so) files. Moreover, to prevent attackers from reverse-engineering the WeChat to do some malicious 

behavior, WeChat uses many techniques to heavily obfuscate its codes. How to identify the APIs we need, 

intercept them at the right time, invoke these APIs with correct parameters, and get the result data from the 

remote server of WeChat is one of the challenges we need to overcome. 

3.2 Insights 

We proceed to elaborate our insights with regard to our challenges in a one-by-one manner. 

S1: Calculating similarity with Natural Language Processing technique. The key is texts on the description and 

page content of mini-apps contain specific features. Specifically, to attract users, the texts on the description tell 

the category of mini-apps and give a brief introduction to the functions of them. As for the texts on the page 

content, they contain rich semantic information to guide the users on how to use the functions in the mini-apps. 

Thus, we calculate the similarity between description and page content by analyzing its texts by leveraging 

Natural Language Processing. To start with, we extract texts from page contents with static analysis. Then, the 

texts of description and pages content are both processed into word arrays, and this stage consists of two phases, 

text splitting and stop words removal. Afterward, we use Natural Language Processing tool to calculate the 

similarity of these two word arrays. 

S2: Reverse engineering with static and dynamic analysis. To overcome C1, we need to use reverse-engineer 

techniques to analyze the codes of WeChat. To begin with, we discover that if we want to open a mini-app that is 

shared by other users, we need to click a button to open it. Thus, WeChat must contain an interface to handle this 



http://cis.ccsenet.org Computer and Information Science Vol. 15, No. 1; 2022 

 

61 

 

 

click event, and this interface will first construct a request and send it to the remote server of WeChat to search 

and get the description and wxapkg of this mini-app. Then this function will parse the wxapkg and open the 

mini-app. That is, there must be an opening function which we need to hook and intercept (Heuser, S. et al., 

2014), and a server API to search mini-app and we just need to invoke the API with correct parameters. Thus, we 

first used a dynamic instrumentation toolkit Frida (Oleavr, 2016) to hook and trace the interface to handle the 

click event. We next decompiled the static codes of WeChat and located the handler interface with static analysis. 

However, the code heavily uses obfuscations, it’s complicated to find out where to get the description and 

wxapkg. As such, we hook all the functions which are invoked after the handler function is triggered. Through 

printing the parameters and return values of these functions, we finally located the function to return the 

description and wxapkg with a mini-app ID as input. We followed similar practice to identify the function that 

parses the wxapkg and opens the mini-app. 

4. Current Design of MiniWarner 

This section begins with the assumption and scope we are concerned about, and then figure out the design of 

MiniWarner in detail. As shown in Figure 3, MiniWarner consists of three stages: (1) Package Download, which 

intercepts the handle function when users open a mini-app and gets its description and downloads its wxapkg by 

invoking the specific interface inside WeChat. (2) Content Text Extract, which unpacks the wxapkg of target 

mini-app and extracts the content text from its mini-app pages. (3) Malware Detect, which uses natural language 

processing to process the description and content texts and calculate the similarity of them. 

 

 

Figure 3. MiniWarner overview 

 

4.1 Assumption and Scope 

MiniWarner is an Android malicious phishing mini-app detection approach that combines natural language 

processing and reverse-engineering technique. Like most malware, malicious phishing mini-apps may pretend 

harmlessly and do not have any system privileges. They only require little permission and use attractive 

descriptions to confuse users without damaging the Android system and WeChat platform. We assume that 

malicious phishing mini-apps only can use APIs which are available to legitimate mini-apps. Besides, we do not 

consider those malicious phishing mini-apps which build their pages dynamically or use any other techniques to 

escape from our detection purposely, and thus it is out of the scope of our paper. To better implement and 

improve our experiment, we assume that most mini-apps in WeChat are legitimate and we only consider Chinese 

apps here. We implement the MiniWarner as a module for the Xposed framework, a popular code-injection 

framework for rooted Android devices. 

 



http://cis.ccsenet.org Computer and Information Science Vol. 15, No. 1; 2022 

 

62 

 

 

4.2 Package Download 

As mentioned in Assumption and Scope, we implement the MiniWarner as a module for the Xposed framework. 

The Xposed module will be loaded to the Android system once its targeting app (WeChat in this paper) is opened 

by users or the system. In order to change the execution flow of the access interface, MiniWarner hooks the 

opening interface, which means that once users open a mini-app, MiniWarner will intercept this interface and run 

the codes defined by ourselves. Our new codes first get the parameter of the opening interface. This parameter is 

the unique identifier of mini-app and we call it mini-app ID. MiniWarner then invokes the searching interface 

with this mini-app ID. This searching interface will send a request to the remote server of WeChat and get the 

description text and wxapkg matching the mini-app ID searched. The description text will be recorded for further 

use and the wxapkg will be stored in a specific location of the device. 

4.3 Content Text Extract 

In this stage, MiniWarner gets the wxapkg of target mini-app downloaded from the last stage and uses the 

mini-app unpacking tool to unpack the wxapkg without manual effort. This process results in a number of code 

files and resources files of mini-app pages. As we mentioned in the Background, developers need to use four 

kinds of files to construct the mini-app page, a WXML file , a JavaScript file, a WXSS file, and a JSON file to 

configure the window behaviors of a page, we only focus on the WXML files which include the texts drawn on 

the screen and visible to users. The text in the WXML files of all pages will be extracted for further use. Note 

that some developers may use images to show key texts for a better visual experience (e.g. title, prompt). In that 

case, MiniWarner gets all images from the folder where the resource is stored and adopts Optical Character 

Recognition (OCR) (Mithe, R., Indalkar, S., & Divekar, N., 2013) techniques to extract texts from these images. 

The final output of this stage is a set of content texts. 

4.4 Malware Detect 

After intercepting the opening interface in Stage 1 and processing the wxapkg of the target mini-app through 

Stage 2, we gain the description texts and content texts. This Stage detects whether the target mini-app is a 

malicious phishing mini-app based on the similarity of these two sets of texts. As different developers have 

different coding practices, texts in pages are written in all kinds of formats, which can extremely reduce the 

accuracy of similarity calculation. To improve the accuracy, texts extracted from the Stage 1 and Stage 2 need to 

be processed into word arrays whose elements are separate words with the unified format. This process consists 

of two phases, text splitting and stop words removal. 

Texts splitting: In the text splitting phase, we firstly regard all non-Chinese characters as delimiters and split 

texts with those delimiters. For example, “字母/数字” can be split into two separate words “字母” and “数
字”. Besides, texts and strings without any separated characters are also commonly used, such as ”银行账户”. 

For this case, we split such text into separated words by iteratively matching the maximum length word in cacl2 

(Limccn, 2021) until the text can not be split anymore. Thus, “银行账户” can be split into “银行” and “账
户”. 

Stop words removal: Through the Texts splitting phase, description texts and content texts are processed into 

two word arrays. We remove stop words defined in stopwords (goto456, 2019) from the two word arrays, such as 

“我的”, “那些”, which provide worthless information to pages. 

Finally, we use text2vec to calculate the similarity between the two word arrays processed from the Texts 

splitting and Stop words removal phases. If the similarity value is smaller than α (we will discuss in the 

Evaluation section), MiniWarner will warn the user that he/she is opening a malicious phishing mini-app and ask 

for the final decision from the user, who is inherently more capable of making the best decision for him/herself 

based on the context. Otherwise, open the mini-app as usual. 

5. Evaluation 

In this section, we present our evaluation results. We first discuss the parameter α. Then we evaluate the 

detection accuracy and the efficiency of MiniWarner. 

5.1 Evaluation Setup 

We firstly get 36 malicious phishing mini-app wxapkgs which are uncovered by WeChat users and reported in 

the WeChat open community. Then we use mini-app crawler MiniCrawler (Zhang, Y. et al, 2021) to get 500 

normal mini-apps wxapkgs which have been pre-classified into 34 categories in the WeChat platform. To ensure 

that the mini-apps we crawl from WeChat are benign, we send them to VirusTotal (VirusTotal, 2020) and remove 

those flagged as positive by anti-virus engines.  



http://cis.ccsenet.org Computer and Information Science Vol. 15, No. 1; 2022 

 

63 

 

 

All experiments are performed on three Android phones, Google Nexus 6P, a Google Pixel, and a Google Pixel 

XL. In particular, the system of our devices is Android 7.1 and all devices have installed WeChat version 7.1.8. 

5.2 Parameter α Discussion 

In this section, we explore a tunable hyperparameter for MiniWarner, α. In particular, α is an important 

factor that determines whether a mini-app is malicious and phishing. Once the similarity value between the 

description texts and content texts of a mini-app is smaller than α, we regard this mini-app as a malicious 

phishing app. If the parameter α is too big, the accuracy to detect normal mini-apps will be small, but If the 

parameter α is too small, the accuracy to detect malicious phishing mini-apps will be small. Thus, we need to 

set the parameter α to a proper value. 

We unpacked the 36 malicious phishing mini-app wxapkgs and calculate the similarity values between the 

description texts and content texts with our Natural Language Processing method. As shown in Figure 4, all 

similarity values the 36 malicious phishing mini-app are smaller than 20. We also use the same approach to test 

the similarity values of 100 normal mini-apps we collected, as shown in Figure 4, the range of them is between 

50-80. As it is significant to strike a balance between normal mini-apps and malicious phishing mini-apps 

detection accuracy, we finally choose α = 35. 

 

Figure 4. Similarity values between description texts and content texts 

 

Figure 5. Computational efficiency of MiniWarner in different phones 



http://cis.ccsenet.org Computer and Information Science Vol. 15, No. 1; 2022 

 

64 

 

 

5.3 Efficiency of MiniWarner 

We discuss the efficiency of MiniWarner by running with three Android phones in this section. The datasets we 

use in this section include 36 malicious phishing mini-apps and 500 normal mini-apps. We run our MiniWarner 

with these 536 mini-apps in three Android phones, and record the time consumption in every stages. The average 

time costed in these 536 mini-apps is our final result. As shown in Figure 5, in the Package Download stage, for 

a single mini-app, all of the three phones took near the same average time to get a mini-app downloaded, about 

3.3 seconds. And in the Content Text Extract stage, Google Nexus 6P, Google Pixel, and Google Pixel XL took 

1.02 seconds, 0.73 seconds, and 0.54 seconds on average respectively. In the Malware Detect stage, Google Pixel 

XL spent the shortest time, and Similar to it, Google Pixel costs about 0.45 seconds. Google Nexus 6P perform 

the worst, it took about 0.68 seconds. As can be seen from the above analysis, even though Google Nexus 6P, the 

phone with lowest efficiency, only took 5.03 seconds in the whole process, which does not negatively affect the 

user experience. 

5.4 Detection Accuracy of MiniWarner 

We now proceed to the accuracy evaluation of MiniWarner. We manually select 36 malicious phishing mini-apps 

which are uncovered by WeChat users in the WeChat open community and 500 normal mini-apps that are 

crawled by MiniCrawler (Zhang, Y. et al, 2021). As shown in Table 1, 36 malicious phishing mini-apps in our 

dataset can all be detected correctly, but 12 normal mini-apps are detected as malicious phishing mini-apps by 

mistake. After analyzing them manually, we find that these 12 mini-apps are incomplete, which means the 

developers do not finish their development, and these mini-apps contain inadequate description texts and content 

texts or contain lots of meaningless texts. Thus, the similarity value calculated by our NLP process is smaller 

than α. 

 

Table 1. The results of accuracy evaluation 

Mini-apps Types Types after detection  

Accuracy Normal mini-apps malicious phishing mini-apps 

Normal mini-apps 488 12 97.6% 

malicious phishing mini-apps 0 36 100.0% 

 

6. Conclusion 

In this paper, we propose MiniWarner, a novel approach that leverages Natural Language Processing and a 

number of reverse engineering techniques to detect malicious phishing mini-apps. We implement the 

MiniWarner as a module for the Xposed framework. This Module will intercept the opening interface once the 

users open a mini-app. It first dynamically download the wxapkg and description of this mini-app from the 

server of WeChat and unpack the wxapkg with the unpacking tool resulting in a set of resources files. 

MiniWarner then uses static analysis to extract the content texts from these resources files. The description texts 

and content texts will be used to identify whether this mini-app is malicious and phishing or not. Our evaluation 

on a lot of malicious phishing mini-apps and normal mini-apps shows that MiniWarner can effectively detect 

banking malware with high precision and low false alarms. 

In order to analyze the content text, MiniWarner need to extract the text from the WXML files statically. Thus, 

MiniWarner cannot deal with those malicious mini-apps which load their WXML files dynamically (e.g., loading 

WXML files via reflections or downloading WXML files from their server). Moreover, although the Android 

platform are the major damage of phishing attacks, some other kinds of system are still in danger, such as 

Windows and iOS, we do not discuss them in our paper. In our future work, we plan to use dynamic exploration 

to solve the first problem and do more research to make a more generic framework. 

References 

API. (2021). In Weixin Docs. Retrieved from  

https://developers.weixin.qq.com/miniprogram/en/dev/framework/app-service/api.html#API 

Black, P., & Opacki, J. (2016, October). Anti-analysis trends in banking malware. 2016 11th International 

Conference on Malicious and Unwanted Software (MALWARE) (pp. 1-7).  

https://doi.org/10.1109/MALWARE.2016.7888738 



http://cis.ccsenet.org Computer and Information Science Vol. 15, No. 1; 2022 

 

65 

 

 

C. Lee. (2017). WeChat launches mini-app feature. Retrieved from  

https://www.zdnet.com/article/wechat-launches-mini-app-feature/, 012017 

Directory Structure. (2021). In Weixin Docs. Retrieved from  

https://developers.weixin.qq.com/miniprogram/en/dev/framework/structure.html 

goto456. (2019). 中文常用停用词表（哈工大停用词表、百度停用词表等） . Retrieved from 

https://github.com/goto456/stopwords 

Heuser, S., Nadkarni, A., Enck, W., & Sadeghi, A. R. (2014). ASM: A Programmable Interface for Extending 

Android Security. USENIX Association.  

Iadarola, G., Martinelli, F., Mercaldo, F., & Santone, A. (2019, October). Formal methods for android banking 

malware analysis and detection. 2019 Sixth International Conference on Internet of Things: Systems, 

Management and Security (IOTSMS) (pp. 331-336). https://doi.org/10.1109/IOTSMS48152.2019.8939172 

L. Eadicicco. (2020). How facebook, Apple, Google copied china’s WeChat messaging app - business insider. 

Retrieved from  

https://www.businessinsider.com/facebook-apple-google-copied-wechat-app-trump-executive-order-2020-8 

Limccn. (2021). Lexicon for Chinese lexical analyzing, 中 文 语 言 分 词 词 库 . Retrieved from 

https://github.com/limccn/cacl2 

Mini Program development framework. (2021). In Weixin Docs. Retrieved from  

https://developers.weixin.qq.com/miniprogram/en/dev/framework/MINA.html,. 

Mithe, R., Indalkar, S., & Divekar, N. (2013). Optical character recognition. International journal of recent 

technology and engineering (IJRTE), 2(1), 72-75. 

Network. (2021). In Weixin Docs. Retrieved from  

https://developers.weixin.qq.com/miniprogram/en/dev/framework/ability/network.html 

Oleavr. (2016). Clone this repo to build Frida. Retrieved from https://github.com/frida/frida 

Prateek, G. (2020). Researchers listed the most dangerous malware, viruses Android viruses of 2020. Retrieved 

from  

https://gizmeek.com/researchers-listed-the-most-dangerous-malwareviruses-android-viruses-of-2020 

Saariko. (2019). Introduction to android hook framework Xposed. Retrieved from  

https://programmer.ink/think/introduction-to-android-hook-framework-xposed.html, 

Skylot. (2015). Dex to Java decompiler. Retrieved from https://github.com/skylot/jadx 

Thomas, G. (2019). What are WeChat Mini-Programs? A Simple Introduction. Retrieved from 

https://walkthechat.com/wechat-mini-programs-simple-introduction/ 

VirusTotal. (2020). VirusTotal:A free virus, malware and URL online scanning service. Retrieved from 

https://www.virustotal.com/gui/ 

Wazid, M., Zeadally, S., & Das, A. K. (2019). Mobile banking: evolution and threats: malware threats and 

security solutions. IEEE Consumer Electronics Magazine, 8(2), 56-60.  

https://doi.org/10.1109/MCE.2018.2881291 

Wu, D. J., Mao, C. H., Wei, T. E., Lee, H. M., & Wu, K. P. (2012, August). Droidmat: Android malware 

detection through manifest and api calls tracing. 2012 Seventh Asia Joint Conference on Information 

Security (pp. 62-69). https://doi.org/10.1109/AsiaJCIS.2012.18 

Zhang, Y., Turkistani, B., Yang, A. Y., Zuo, C., & Lin, Z. (2021, May). A Measurement Study of Wechat 

Mini-Apps. 2021 ACM SIGMETRICS/International Conference on Measurement and Modeling of 

Computer Systems (pp. 19-20). https://doi.org/10.1145/3410220.3460106 

 

 

Copyrights 

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 

license (http://creativecommons.org/licenses/by/4.0/). 


