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Abstract 

In recent years, with the development of the Internet, the data on the network presents an outbreak trend. Big 

data mining aims at obtaining useful information through data processing, such as clustering, clarifying and so 

on. Clustering is an important branch of big data mining and it is popular because of its simplicity. A new trend 

for clients who lack of storage and computational resources is to outsource the data and clustering task to the 

public cloud platforms. However, as datasets used for clustering may contain some sensitive information (e.g., 

identity information, health information), simply outsourcing them to the cloud platforms can't protect the 

privacy. So clients tend to encrypt their databases before uploading to the cloud for clustering. In this paper, we 

focus on privacy protection and efficiency promotion with respect to k-means clustering, and we propose a new 

privacy-preserving multi-user outsourced k-means clustering algorithm which is based on locality sensitive 

hashing (LSH). In this algorithm, we use a Paillier cryptosystem encrypting databases, and combine LSH to 

prune off some unnecessary computations during the clustering. That is, we don't need to compute the Euclidean 

distances between each data record and each clustering center. Finally, the theoretical and experimental results 

show that our algorithm is more efficient than most existing privacy-preserving k-means clustering. 

Keywords: k-means clustering, privacy protection, homomorphic encryption, locality sensitive hashing 

1. Introduction 

Clustering analysis is one of the most commonly used tasks in data mining area (Kriegel et al., 2009). It is worth 

noting that our clustering analysis is very different from clustering coefficient (Li, Y. , Shang, Y. , & Yang, 

Y. ,2017). The former is a method for data analysis, while the latter is an important concept in network topology, 

describing the degree to which vertices in a graph cluster together. The traditional clustering analysis methods 

mainly include hierarchical clustering, partitioning clustering, density-based clustering, grid-based clustering and 

model-based clustering algorithm. Actually, k-means clustering is a kind of partitioning clustering, it is popular 

owing to its simple characteristics. In addition, k-means algorithm is of great importance in various fields, 

including image retrieval (Yin & Zhang, 2017), machine learning, pattern recognition, social participatory 

sensing (Xing, Hu, Yu, Cheng & Zhang, 2017), knowledge discovery and text mining (MUstafi & Sahoo, 2019). 

K-means clustering (Jain, Murty & Flynn, 1999) is a typical distance-based clustering algorithm, whose goal is 

to assign each data record into a cluster which has the shortest distance from it. As a result, similar records will 

be classified into the same group while different records into different groups. But as the amount of data 

increases, clients with limited storage and computation resources usually prefer to outsource their datasets and 

clustering task to the cloud service providers. However, the cloud platform can't be fully trusted, and they may 

want to gather clients' sensitive information. Thus, we prefer to encrypt the datasets before sending them to the 

cloud, on which performs clustering without getting any useful information in the end. 

The original privacy-preserving k-means clustering schemes (Xia, Hua, Tong & Zhong, 2020; Yu, Luo, Chen & 

Ding, 2016; Chen, Wang, Zhang, Zhong & Chen, 2018; Su, Cao, Li, Bertiino, Lyu & Jin, 2017) protected the 

data privacy by adding noises. Then some scholars constructed privacy schemes for k-means clustering (Jiang, 

Guo, Jin, Lv, Wu, Liu, Fang, Yiu, & Wang, 2020; Rong, Wang, Liu, Hao & Xian, 2017; Yuan & Tian, 2017; Zou, 

Zhao, Shi, Wang, Peng, Ping & Wang, 2020) with different encryption cryptosystems to improve the accuracy of 

k-means clustering, but also leaded to low efficiency. To address this problem, we propose a new 
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privacy-preserving multi-user outsourced k-means algorithm, which is based on locality sensitive hashing (LSH) 

(Datar, Immorlica, Indyk & Mirrokni, 2004) for pruning off unnecessary computations in clustering. Our 

contributions are showed as follows:   

1) We propose a LSH-based privacy-preserving multi-user outsourced k-means clustering (LSH-PPMOC) 

algorithm, whose main idea is to prune off the unnecessary computations during clustering task. 

2) We combine the privacy-preserving techniques with LSH to guarantee the security of users' datasets and 

clustering results. 

3) The experiments on real-world datasets show that we improve the clustering efficiency greatly. 

The remainder of this paper is organized as follows. In Section 2, we discuss the existing related work. Section 3 

presents some definitions and properties related to k-means clustering algorithm, Paillier cryptosystem and 

Locality Sensitive Hashing as a background. In Section 4, we discuss our proposed LSH-PPMOC solutions in 

detail. Also, we analyze the security guarantees and complexities of our solution in Section 5. Section 6 presents 

our experimental results on a real-world dataset under different parameter settings. Finally, we conclude the 

paper along with the scope for future research in Section 7. 

2. Related Work 

Privacy-preserving k-means clustering has been widely used in data mining.The private data mining algorithms 

can be categorized as, 1) data perturbation based, 2) secure multiparty computation (SMC) based and  

3)cryptography technologies based. In perturbation, data records are randomized by adding noises, and the work 

by (Liu, Kargupta & Ryan, 2005) showed that the clustering results based on multiplicative perturbation only 

had below 5% error rate compared to the results on the original data. However, data perturbation cannot 

guarantee privacy in any formal sense (Liu, Giannella & Kargupta, 2006; Wong, Cheung, Kao & Mamoulis, 

2009). For example, if an adversary gets a few data records in plaintext, he may recover the rest records though 

they are perturbated (Liu, Giannella & Kargupta, 2006).  

Algorithms based on secure multiparty computation (SMC) (Goldreich, 2009) can preserve the security and 

privacy of users' data. There existed literatures utilizing SMC like (Lindell & Pinkas, 2008; Mohassel, Rosulek 

& Trieu, 2020; Upmanyu, Namboodiri, Srinathan & Jawahar, 2010), in which algorithms were proposed to 

perform distributed data mining without revealing private inputs of participants. In addition, Clifton et al. 

(Clifton, Kantarcioglu, Vaidya, Lin & Zhu, 2002) proposed that a relatively small set of cryptography primitive 

should be utilized to generate the SMC protocol. However, these solutions suffered from high levels of 

communication and computing cost. We can conclude that, though the private clustering algorithms based on 

SMC can provide better security protection, it is too costly to applied in practical applications (Jagannathan & 

Wright, 2005). 

There are also literatures those propose privacy-preserving clustering algorithms using the semantically secure 

additive or multiplicative homomorphic encryption schemes. Liu et al. (Liu, Bertino & Yi, 2014) first leveraged 

fully homomorphic encryption technique (Gentry, 2009) to perform clustering outsourcing. However, the 

encryption scheme adopted in their scheme was not secure according to (Wang, 2015). Besides, this algorithm 

needed clients to participate and provide some information during each iteration, thus leading to heavy overhead 

on clients. To reduce the interaction with users, Almutairi et al. (Almutairi, Coenen & Dures, 2017) presented an 

efficient mechanism by using the concept of an Updatable Distance Matrix (UDM). But, their work revealed 

partial privacy to the cloud servers, such as the size of each cluster and the distances between data objects and 

centroids.  

Similarly, Samanthulat et al.(Samanthula, Rao, Bertino, Yi & Liu, 2014) proposed a secure and outsourced 

k-means clustering scheme using the Paillier cryptosystem. Unfortunately, this scheme has a high computation 

cost because of using the bit array-based comparison. Then Rong et al. (Rong, Wang, Liu, Hao & Xian, 2017) 

put forward a privacy outsourced k-means clustering under multiple keys based on public key cryptosystem with 

double decryption (Youn, Park, Kim & Lim, 2005). However, the addition protocol in their scheme was not 

secure because the assistant server could extract the ratio of messages. To address this problem, (Zou, Zhao, Shi, 

Wang, Peng, Ping & Wang, 2020) proposed a highly secure outsourced k-means clustering scheme using BCP 

cryptosystem which had the additive homomorphic property. 

To better the clustering performance in cloud computing environment, many scholars proposed MapReduce 

(Dean & Ghemawat, 2008) based k-means clustering schemes to handle large-scale dataset in parallel (Cui, Zhu, 

Yang, Li & Ji, 2014; Sardar & Ansari, 2020), but they all didn't consider privacy protection. Yuan et al. (Yuan & 

Tian, 2017) proposed a privacy-preserving scheme using a lightweight cryptosystem basing on the hardness of 
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learning with errors (LWE) (Brakerski, Gentry & Halevi, 2013), and incorporated MapReduce to improve the 

efficiency. However, the scheme was not fully outsourced and didn't support multiple users. Similarly, in (Rong, 

Wang, Liu, Hao & Xian, 2017), the clustering was executed under the Spark framework. 

Besides, there are also other ways to improve efficiency for k-means clustering. Bhaskara et al. (Bhaskara & 

Wijewardena, 2018) proposed a variant of Locality sensitive hashing (LSH) (Indyk & Motwani, 1998) to speed 

up the clustering. Similarly, (Li, Wang, Wang, Hu, Li & Li, 2014) utilized the local sensitive property of LSH to 

prune off unnecessary computations during clustering and carried out the experiment with the help of 

MapReduce. However, the both schemes did not take privacy into consideration. 

Inspired by literature (Li, Wang, Wang, Hu, Li & Li, 2014), we propose a new and efficient LSH-based 

privacy-preserving outsourced k-means clustering. We consider a scenario, in which there are two cloud service 

providers and multiple users. We explicitly assume the two cloud servers will never collude during clustering, 

then our proposed scheme protects all users' data confidentiality. 

3. Preliminaries 

In this section, we will first introduce the definition of typical k-means clustering. Then we give a brief overview 

of additive homomorphic Paillier cryptosystem and some basic cryptographic preliminaries for securely 

performing clustering. At last, we briefly introduce LSH which we use as the basis for our solution. 

3.1 K-means Clustering  

K-means clustering is an unsupervised clustering algorithm, and it is widely used in various application 

scenarios. Supposing given d-dimension data records 𝒕_1, … , 𝒕_𝑛, the goal of k-means clustering algorithm is to 

divide these records into k disjoint groups. That is to say, the objects in the same group are similar, while objects 

in different groups have low similarity. We use 𝑐_1, … , 𝑐_𝑘  to denote k  clusters, and 𝝁_1, … , 𝝁_𝑘 , the 

corresponding centroids. To cluster one data record 𝒕_𝑖, 𝑖 ∈ ,1, 𝑛- into correct cluster, what we should do first is 

to compute the distance between it and k centroids 𝝁_𝑗, j ∈ ,1, 𝑘-. We use squared Euclidean distance here, 

which is given as 

                         𝐷𝑖𝑠𝑡(𝒕_𝑖, 𝝁_𝑗 ) = ∑_(𝑚 = 1)^𝑙▒〖(𝒕_𝑖 ,𝑚- − 𝝁_𝑗 ,𝑚-)〗^2 .            (1) 

 

Then we assign 𝑡_𝑖 to the cluster 𝑐_, if 𝑡_𝑖 has the smallest distance with 𝝁_,  ∈ ,1, 𝑘- among k distances. 

A traditional k-means clustering has three stages, (1) Initialization; (2) Clustering; (3) Updating new centroids. 

For Stage (1), initial k records are selected randomly as cluster centroids 𝝁_1, … , 𝝁_𝑘. In Stage (2), we first 

compute k distances between every one record 𝒕_𝑖 and k centroids, then cluster them according to the distances. 

Later, new centroids 𝝁_𝑖′ can be derived as the mean values of attributes of records belonging to 𝑐_𝑖  in Stage 

(3). If the given maximum iteration number is not reached or the cluster results differ from that getting before, 

next iteration will restart from Stage (2) to (3) with the new centroids, otherwise, the algorithm terminates. 

3.2 The Paillier Cryptosystem 

In this paper, we use the Paillier encryption (Paillier, 1999), which is a probabilistic asymmetric encryption 

scheme. Without loss of generality. Let 𝐸𝑛𝑐(∙) and 𝐷𝑒𝑐(∙) denote the encryption and decryption function 

under the Paillier cryptosystem and 𝑁 denote the RSA modulus. 

We denote the encryption scheme as a triple *𝐾𝑒𝑦𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐+. 

𝑲𝒆𝒚𝑮𝒆𝒏(𝟏^𝜿) → (𝒑𝒌, 𝒔𝒌) 

Choose two large prime numbers 𝑝 and 𝑞 which satisfy that gcd (𝑝𝑞, (𝑝 − 1)(𝑞 − 1)) = 1. 

Calculate 𝑁 = 𝑝𝑞, and 𝜆 = 𝑙𝑐𝑚(𝑝 − 1, 𝑞 − 1). 

Randomly choose an integer 𝑔 ∈ 𝑍_(𝑁^2 ). 

Check whether there exists 𝑢 = 〖(𝐿(𝑔^𝜆 𝑚𝑜𝑑 𝑁^2))〗^(−1)  𝑚𝑜𝑑 𝑁  where function 𝐿  is  𝐿(𝜇) = (𝜇 −
1)/𝑁. Then 𝑝𝑘 is (𝑁, 𝑔) and 𝑠𝑘 is (𝜆, 𝜇). 

𝑬𝒏𝒄(𝒑𝒌, 𝒙) → 𝒄 

Select a random value 𝑟 ∈ 𝑍_𝑁^ ∗ for the message 𝑥 and the ciphertext is c=𝑔^𝑥 𝑟^𝑁  𝑚𝑜𝑑 𝑁^2. 

𝑫𝒆𝒄(𝒔𝒌, 𝒄) → 𝒙 

Decrypt the message by 𝑥 = 𝐿(𝑐^𝜆  𝑚𝑜𝑑 〖𝑁^2 〗)𝜇 𝑚𝑜𝑑 𝑛. 
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Then, for any 𝑎, 𝑏 ∈ 𝑍_𝑁, the encryption scheme is additive homomorphic: 

𝐸(𝑎 + 𝑏) = 𝐸(𝑎) × 𝐸(𝑏)  𝑚𝑜𝑑 𝑁^2 = 𝐸(𝑎 + 𝑏  𝑚𝑜𝑑 𝑁), 

〖𝐸(𝑎)〗^𝑏  𝑚𝑜𝑑 𝑁^2 = 𝐸(𝑎 ∙ 𝑏 𝑚𝑜𝑑 𝑁) 

Where the symbol " × " denotes the multiplication on ciphertexts, and " ∙ " means the multiplication on 

plaintext. Besides, we will omit the term 𝑚𝑜𝑑 𝑁^2 from homomorphic operations in the rest of the paper.  

3.3 Basic Cryptographic Primitives 

In this part, we propose some cryptographic primitives as the basis of our methods. 

(1) Secure Multiplication (SM) Protocol 

Given that Alice holds ⌌𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑥), 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑦)⌍, and Bob holds 〖𝑠𝑘〗_𝑢, the goal of Alice 

and Bob is to securely compute 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑥 ∙ 𝑦). During the execution of SM, no information regarding 

the contents of 𝑥 and 𝑦 is revealed to Alice or Bob. More details are shown in Algorithm 1.   

Algorithm 1: 𝑆𝑀(𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑥), 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑦)) → 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑥 ∙ 𝑦) 

Input: Alice has 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑥), 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑦), Bob has 〖𝑠𝑘〗_𝑢 

Output: 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑥 ∙ 𝑦) 

1. Alice: (a) Picks any two different numbers 𝑟_𝑥, 𝑟_𝑦 ∈ 𝑍_𝑁 randomly. 

(b) Computes 𝑥′ ← 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑥) × 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑟_𝑥) 

 𝑦′ ← 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑦) × 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑟_𝑦) 

(c) Sends 𝑥′, 𝑦′ to Bob 

2. Bob: (a) Computes _𝑥 ← 𝐷𝑒𝑐(〖𝑠𝑘〗_𝑢, 𝑥^′ ), _𝑦 ← 𝐷𝑒𝑐(〖𝑠𝑘〗_𝑢, 𝑦^′ ),  ← _𝑥 ∙

_𝑦  𝑚𝑜𝑑 𝑁, 

^′ ← 𝐸𝑛𝑐(〖𝑝𝑘〗_𝑢, ) 

      (b) Sends ^′ to Alice 

3. Alice: (a) Computes s ← ^′ × 〖𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑥)〗^(𝑁 − 𝑟_𝑦 ) , 

𝑠′ ← 𝑠 × 〖𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑦)〗^(𝑁 − 𝑟_𝑥 ) 

       (b) Gets 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑥 ∙ 𝑦) ← 𝑠′〖𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑟_𝑥 𝑟_𝑦)〗^(𝑁 − 1) 

(2) Secure Squared Euclidean Distance (SSED) Protocol 

For k-means algorithm, there are many ways to compute the similarity scores between the data record 

𝒕_𝑖, 1 ≤ 𝑖 ≤ 𝑛 and cluster centroid 𝝁_𝑗, 1 ≤ 𝑗 ≤ 𝑘, such as Euclidean distance, Cosine similarity and Jaccard 

coefficient. In this paper, we use squared Euclidean distance for its simplicity, denoted by ‖𝒕_𝑖 − 𝝁_𝑗 ‖^2. 

Note that 𝝁_𝑗 is a vector, and its components may be rational numbers. However, the ring 𝑍_𝑁 doesn't support 

rational division operation, so we use a new form of expression to represent the cluster center like (Rong, Wang, 

Liu, Hao & Xian, 2017). Let ⌌ 𝒔_𝑗, |𝑐_𝑗 |⌍ denotes the new form of cluster center, where 𝒔_𝑗 and |𝑐_𝑗 | 

represent the sum vector and the total number of records belonging to cluster 𝑐_𝑗, respectively. Now we define 

Ω_(𝑖, 𝑗) as the scaled squared Euclidean distance between 𝒕_𝑖 and 𝝁_𝑗, which satisfies that ‖𝒕_𝑖 − 𝝁_𝑗 ‖ =

√(Ω_(𝑖, 𝑗) )/(|𝑐_𝑗 |). So Ω_(𝑖, 𝑗) can be calculated as follows: 

                  

Ω_(𝑖, 𝑗) = 〖(‖𝒕_𝑖 − 𝝁_𝑗 ‖ ∙ |𝑐_𝑗 |)〗^2 = ∑_(𝑙 = 1)^𝑑▒〖(|𝑐_𝑗 | ∙ 𝒕_𝑖 ,𝑙- − 𝒔_𝑗 ,𝑙-)〗^2 ,                                

(2) 

where 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑘, 𝑚 and 𝑑  are the total number of objects and dimension size, respectively. 

Taking 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝒕_𝑖)  and ⌌𝐸_(〖𝑝𝑘〗_𝑢 ) (𝒔_𝑖 ), 𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑗 |)⌍  as inputs, the output of 

SSED protocol is ⌌𝐸_(〖𝑝𝑘〗_𝑢 ) (Ω_(𝑖, 𝑗) ), 𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑗 |)⌍which is actually the distance between 

record 𝒕_𝑖 and the centroid of 𝑗_𝑡 cluster. We present this protocol in Algorithm 2. 
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(3) Secure Comparison (SC) Protocol 

Given that Alice has two encrypted values 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑥), 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑦), and Bob has 𝑠𝑘_𝑢, the goal 

of SC protocol is to securely compare 𝑥 and 𝑦 without knowing both of them. To be specific, Alice generates 

an arbitrary value 𝑟  firstly, and then encrypts it as 𝐸_(𝑝𝑘_𝑢 ) (𝑟) . After that, Alice computes 

𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑡_0 ) = 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑥 + 𝑟)  and 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑡_1 ) = 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑦 + 𝑟) 

utilizing the additive homomorphic property of the Paillier cryptosystem. Alice flips a coin 𝑏 where 𝑏 = 0/1, 

then sends two ciphertexts in the order of 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑡_𝑏 ), 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑡_(1 − 𝑏) ) to Bob. Bob 

decrypts with 𝑠𝑘_𝑢  and gets 𝑡_𝑏  and 𝑡_(1 − 𝑏).  If 𝑡_𝑏 < 𝑡_(1 − 𝑏) , Bob sends 𝐸_(〖𝑝𝑘〗_𝑐 ) (𝛾) =

𝐸_(〖𝑝𝑘〗_𝑐 ) (1) to Alice, else sends 𝐸_(〖𝑝𝑘〗_𝑐 ) (𝛾) = 𝐸_(〖𝑝𝑘〗_𝑐 ) (0). This protocol will return 

𝐸_(〖𝑝𝑘〗_𝑐 ) (𝛾) if 𝑏 = 0, otherwise 𝑆𝐵𝑁(𝐸_(〖𝑝𝑘〗_𝑐 ) (𝛾)). 

(4) Privacy-preserving Minimum (PMIN) Protocol 

In this protocol, we aim at comparing two squared Euclidean distances and output the minimum one. To achieve 

this, we use the privacy-preserving maximum protocol proposed by Liu et al. (Liu, Lu, Ma, Chen & Qin, 2015). 

However, we will give a slight change to it to transfer the maximum value to the minimum value. 

To be specific, Alice has two encrypted squared Euclidean distances between one record 𝒕_𝑖, 𝑖 ∈ ,1, 𝑚- and two 

clusters 𝑐_𝑎 and 𝑐_𝑏, 

𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑑_𝑎 ) = (𝐸_(〖𝑝𝑘〗_𝑢 ) (Ω_𝑎 ), 𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑎 |)),𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑑_𝑏 ) =

(𝐸_(〖𝑝𝑘〗_𝑢 ) (Ω_𝑏 ), 𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑏 |)), their secrets are 

𝐸_(〖𝑝𝑘〗_𝑢 ) (𝜆_𝑎 ) = 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑎), 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝜆_𝑏 ) = 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑏). Bob has 𝑠𝑘_𝑢. After 

finishing the protocol, Alice will get 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑑_𝑚𝑖𝑛) whose corresponding distance is relatively small, 

along with 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝜆_𝑚𝑖𝑛 ). 

To get 𝑑_𝑚𝑖𝑛, Alice first computes 

𝐸_(〖𝑝𝑘〗_𝑢 ) (𝜉_1 ) = 𝑆𝑀(𝐸_(〖𝑝𝑘〗_𝑢 ) (Ω_𝑎 ), 𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑏 |^2 )), 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝜉_2 ) =

𝑆𝑀(𝐸_(〖𝑝𝑘〗_𝑢 ) (Ω_𝑏 ), 𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑎 |^2 )), then 

𝐸_(〖𝑝𝑘〗_𝑢 ) (𝐻_1 ) = 〖𝐸_(〖𝑝𝑘〗_𝑢 ) (𝜉_1 )〗^2 × 𝐸_(〖𝑝𝑘〗_𝑢 ) (1) = 𝐸_(〖𝑝𝑘〗_𝑢 ) (2Ω_𝑎 ∙

|𝑐_𝑏 |^2 + 1), 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝐻_2 ) = 𝐸_(〖𝑝𝑘〗_𝑢 ) (2Ω_𝑏 ∙ |𝑐_𝑎 |^2 ). After that, Alice chooses some 

random values 𝑅, 𝑟_1, 𝑟_2, 𝑟_3, 𝑟_4 ∈ 𝑍_𝑁^ ∗, 𝜃 ∈ 𝐺, 2^𝐿 < 𝑁^2. If 𝜃 is an odd number, Alice computes 

𝐶_1 = 〖(𝐸_(〖𝑝𝑘〗_𝑢 ) (𝐻_1 ))〗^𝑅 × 〖(𝐸_(〖𝑝𝑘〗_𝑢 ) (𝐻_2 ))〗^(𝑁 − 𝑅) × 𝑔^(2^𝐿 ) 〖𝑟_4〗^𝑁 =

𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑅(𝐻_1 − 𝐻_2 ) + 2^𝐿 ), 

𝐶_2 = 𝐸_(〖𝑝𝑘〗_𝑢 ) (Ω_𝑎 − Ω_𝑏 + 𝑟_1), 𝐶_3 = 𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑎 |^2 − |𝑐_𝑏 |^2 + 𝑟_2 ), 𝐶_4 =

Algorithm 2: 𝑆𝑆𝐸𝐷 

Input: Alice has 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝒕_𝑖) , 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝝁_𝑗 ) = ⌌𝐸_(〖𝑝𝑘〗_𝑢 ) (𝒔_𝑖 ), 𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑗 |)⌍, 𝑖 ∈

,1, 𝑛-, 𝑗 ∈ ,1, 𝑘-, 

     Bob has 〖𝑠𝑘〗_𝑢 

𝐸_(〖𝑝𝑘〗_𝑢 ) (Ω_(𝑖, 𝑗) ) = 𝐸_(〖𝑝𝑘〗_𝑢 ) (0) 

Γ^′ ← Γ × 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑠_𝑗 ,𝑚-)^(𝑁 − 1), Γ^′′ ← 𝑆𝑀(Γ^′, Γ^′) 

𝐸_(〖𝑝𝑘〗_𝑢 ) 〖(Ω〗_(𝑖, 𝑗)) = 𝐸_(〖𝑝𝑘〗_𝑢 ) 〖(Ω〗_(𝑖, 𝑗)) × Γ^′′ 

for 𝑙 = 1 𝑡𝑜 𝑑 

Alice and Bob jointly compute Γ ← 𝑆𝑀(𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑗 |), 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑡_𝑖 ,𝑙-)), 

end for 

Alice and Bob jointly compute 𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑗 |) ← SM(𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑗 |), 𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑗 |)) 

Output (𝐸_(〖𝑝𝑘〗_𝑢 ) 〖(Ω〗_(𝑖, 𝑗)), 𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑗 |)) 
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𝐸_(〖𝑝𝑘〗_𝑢 ) (𝜆_𝑎 − 𝜆_𝑏 + 𝑟_3 ). else if 𝜃 is even, Alice computes 

𝐶_1 = 〖(𝐸_(〖𝑝𝑘〗_𝑢 ) (𝐻_2 ))〗^𝑅 × 〖(𝐸_(〖𝑝𝑘〗_𝑢 ) (𝐻_1 ))〗^(𝑁 − 𝑅) × 𝑔^(2^𝐿 ) 〖𝑟_4〗^𝑁 =

𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑅(𝐻_2 − 𝐻_1 ) + 2^𝐿 ), 𝐶_2 = 𝐸_(〖𝑝𝑘〗_𝑢 ) (Ω_𝑏 − Ω_𝑎 + 𝑟_1),𝐶_3 =

𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑏 |^2 − 〖|𝑐_𝑎 |〗^2 + 𝑟_2),𝐶_4 = 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝜆_𝑏 − 𝜆_𝑎 + 𝑟_3 ). Then 

𝐶_1, 𝐶_2, 𝐶_3  and 𝐶_4 are sent to Bob.  

After receiving 𝐶_1, 𝐶_2, 𝐶_3  and 𝐶_4, Bob generates 𝑟_5, 𝑟_6 ∈ 𝑍_𝑁 randomly, and decrypts 𝐶_1 to get M. 

If 𝑀 > 2^𝐿,  assuming 𝛼 = 0 , Bob computes 

𝐸_(〖𝑝𝑘〗_𝑢 ) (𝛼) ,  𝐴 = 𝐸_(〖𝑝𝑘〗_𝑢 ) (0) ,  𝐵 = 𝐸_(〖𝑝𝑘〗_𝑢 ) (0) , 𝐶 = 𝐸_(〖𝑝𝑘〗_𝑢 ) (0) , else if 

𝑀 < 2^𝐿 ,assuming 𝛼 = 1,  Bob computes  𝐸_(〖𝑝𝑘〗_𝑢 ) (𝛼), 𝐴 = 𝐶_2 × 𝑟_5^𝑁 ,  𝐵 = 𝐶_3 × 𝑟_6^𝑁 ,  𝐶 =

𝐶_4 × 𝑟_7^𝑁. After that, Bob sends 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝛼), 𝐴, 𝐵, 𝐶 back to Alice. 

For Alice, if 𝜃  is odd, she will compute 

𝐸_(〖𝑝𝑘〗_𝑢 ) (Ω_𝑚𝑖𝑛 ) = 𝐸_(〖𝑝𝑘〗_𝑢 ) (Ω_𝑏 ) × 𝐴 × 〖𝐸_(〖𝑝𝑘〗_𝑢 ) (𝛼)〗^(𝑁 − 𝑟_1 ) , 

𝐸_(〖𝑝𝑘〗_𝑢 ) (〖|c〗_𝑚𝑖𝑛 |) = 

𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑏 |^2 ) × 𝐶 × 〖𝐸_(〖𝑝𝑘〗_𝑢 ) (𝛼)〗^(𝑁 − 𝑟_2 ), 

𝐸_(〖𝑝𝑘〗_𝑢 ) (𝜆_𝑚𝑖𝑛) = 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝜆_𝑏 ) × 𝐵 × 〖𝐸_(〖𝑝𝑘〗_𝑢 ) (𝛼)〗^(𝑁 − 𝑟_3 ). Else if 𝜃 is 

even, Alice will compute 

𝐸_(〖𝑝𝑘〗_𝑢 ) (Ω_𝑚𝑖𝑛 ) =

𝐸_(〖𝑝𝑘〗_𝑢 ) (Ω_𝑎 ) × 𝐴 × 〖𝐸_(〖𝑝𝑘〗_𝑢 ) (𝛼)〗^(𝑁 − 𝑟_1 ), 𝐸_(〖𝑝𝑘〗_𝑢 ) (〖|c〗_𝑚𝑖𝑛 |) =

𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑎 |^2 ) × 𝐶 × 〖𝐸_(〖𝑝𝑘〗_𝑢 ) (𝛼)〗^(𝑁 − 𝑟_2 ), 

𝐸_(〖𝑝𝑘〗_𝑢 ) (𝜆_𝑚𝑖𝑛) = 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝜆_𝑏 ) × 𝐵 × 〖𝐸_(〖𝑝𝑘〗_𝑢 ) (𝛼)〗^(𝑁 − 𝑟_3 ). Then the output 

of this protocol is 〖𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑑〗_𝑚𝑖𝑛) = (𝐸_(〖𝑝𝑘〗_𝑢 ) (Ω_𝑚𝑖𝑛 ), 𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑚𝑖𝑛 |)), 

𝐸_(〖𝑝𝑘〗_𝑢 ) (𝜆_𝑚𝑖𝑛). 

Algorithm 3: ESDC 

Input: Alice has 

(𝐸_(〖𝑝𝑘〗_𝑢 ) 〖(Ω〗_𝑎), 𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑎 |)) ,(𝐸_(〖𝑝𝑘〗_𝑢 ) 〖(Ω〗_𝑏), 𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑏 |)),〖𝑠𝑘〗_𝑐 , Bob 

has 〖𝑠𝑘〗_𝑢,〖𝑝𝑘〗_𝑐 

Output: 𝐸_(〖𝑝𝑘〗_𝑐 ) (𝜆_2) 

𝐸_(〖𝑝𝑘〗_𝑐 ) (𝜆_1) ← 𝑆𝐶(𝐸_(〖𝑝𝑘〗_𝑢 ) (〖Ω′〗_𝑎 ), 𝐸_(〖𝑝𝑘〗_𝑢 ) (〖Ω′〗_𝑏 )) 

Alice and Bob jointly compute: 

𝐸_(〖𝑝𝑘〗_𝑢 ) (〖|𝑐_𝑏 |〗^2 ) ← 𝑆𝑀(𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑏 |), 𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑏 |)), 

𝐸_(〖𝑝𝑘〗_𝑢 ) (〖|𝑐_𝑎 |〗^2 ) ← 𝑆𝑀(𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑎 |), 𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑎 |)) 

𝐸_(〖𝑝𝑘〗_𝑢 ) (〖Ω′〗_𝑎) ← 𝑆𝑀(𝐸_(〖𝑝𝑘〗_𝑢 ) (Ω_𝑎 ), 𝐸_(〖𝑝𝑘〗_𝑢 ) (〖|𝑐_𝑏 |〗^2 )), 𝐸_(〖𝑝𝑘〗_𝑢 ) (〖Ω′〗_𝑏) ←

𝑆𝑀(𝐸_(〖𝑝𝑘〗_𝑢 ) (Ω_𝑏 ), 𝐸_(〖𝑝𝑘〗_𝑢 ) (〖|𝑐_𝑎 |〗^2 )) 

𝐸_(〖𝑝𝑘〗_𝑢 ) (Θ) ← 𝑆𝑀(𝐸_(〖𝑝𝑘〗_𝑢 ) (〖|𝑐_𝑏 |〗^2 ), 𝐸_(〖𝑝𝑘〗_𝑢 ) (〖|𝑐_𝑎 |〗^2 )), 𝐸_(〖𝑝𝑘〗_𝑢 ) (Θ′) ←

〖(𝑆𝑀(𝐸_(〖𝑝𝑘〗_𝑢 ) (Θ), 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝜀)))〗^(𝑁 − 2) 

Alice decrypts 𝜆_1 ← 𝐷𝑒𝑐(〖𝑠𝑘〗_𝑐, 𝐸_(〖𝑝𝑘〗_𝑐 ) (𝜆_1 )) 

    if  𝜆_1 = 1 , computes 

𝐸_(〖𝑝𝑘〗_𝑐 ) (𝜆_2) =

𝑆𝐶(𝐸_(〖𝑝𝑘〗_𝑢 ) (〖Ω′〗_𝑏) × 〖(𝐸_(〖𝑝𝑘〗_𝑢 ) (〖Ω^′〗_𝑎))〗^(𝑁 − 1), 𝐸_(〖𝑝𝑘〗_𝑢 ) (Θ′)) 

else, computes 

𝐸_(〖𝑝𝑘〗_𝑐 ) (𝜆_2) =

𝑆𝐶(𝐸_(〖𝑝𝑘〗_𝑢 ) (〖Ω′〗_𝑎) × 〖(𝐸_(〖𝑝𝑘〗_𝑢 ) (〖Ω^′〗_𝑏))〗^(𝑁 − 1), 𝐸_(〖𝑝𝑘〗_𝑢 ) (Θ′)) 
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(5) Enhanced Secure Distance Comparison (ESDC) Protocol 

However, the PMIN protocol can’t meet the requirement we need for pruning strategies in section 3.5.3, so we 

design a protocol, enhanced secure distance comparison (ESDC) protocol, the goal of which is to compare the 

absolute value of the difference between two encrypted Euclidean distance, 〖𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑑〗_𝑎), 

〖𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑑〗_𝑏)  and an encrypted constant value 𝜀,  where 

〖𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑑〗_𝑎) = (𝐸_(〖𝑝𝑘〗_𝑢 ) (Ω_𝑎 ), 𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑎 |)),  〖𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑑〗_𝑏) =

(𝐸_(〖𝑝𝑘〗_𝑢 ) (Ω_𝑏 ), 𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑏 |)). As a result, we can get 𝜆 , where 𝜆 = 1  means |𝑑_𝑎 −

𝑑_𝑏 | > 𝜀, and vice versa. We show it in Algorithm 3. 

(6) Privacy-Preserving Minimum Among k Distances (𝑃𝑀𝐼𝑁_𝑘) Protocol 

The goal of 𝑃𝑀𝐼𝑁_𝑘 protocol is to gain the encrypted minimum distance and its corresponding secret from 𝑘 

encrypted square Euclidean distances. Assume Alice has 𝑘  distances in ciphertext along with their 

secrets , *⌌𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑑_1 ), 𝐸_(〖𝑝𝑘〗_𝑢 ) (1)⌍, … , ⌌𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑑_𝑘 ), 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑘)⌍+ , where 

〖𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑑〗_𝑖) = (𝐸_(〖𝑝𝑘〗_𝑢 ) (Ω_𝑖), 𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑖 |)),1 ≤ 𝑖 ≤ 𝑘  and Bob has the 

corresponding secret key 𝑠𝑘_𝑢. To get the minimum value, Alice and Bob need to execute PMIN with two 

inputs in a sequential fashion. This process is straightforward, so we omit it here. 

3.4 Locality Sensitive Hashing 

Locality sensitive hashing (LSH) was introduced in the seminal work (Indyk & Motwani, 1998), which gave an 

efficient algorithm for nearest neighbor searching in high dimensional space. The main idea of LSH is to use a 

few special hash functions, called function family to map objects into different buckets, and the objects that are 

close to each other may be mapped into the same bucket (collision) with higher probability than objects those are 

far apart. Assume 𝑆 is the domain of objects, and 𝐷 is the distance measure between objects. 

Definition 1. A function family ℋ = *: 𝑆 → 𝑈+ is called (𝑟_1, 𝑟_2, 𝑝_1, 𝑝_2 )-sensitive for D if for any 

𝑎, 𝑏 ∈ 𝑆, it holds   

𝑖𝑓 ‖𝑎 − 𝑏‖ ≤ 𝑟_1，then 𝑝,(𝑎) = (𝑏)- ≥ 𝑝_1 

𝑖𝑓 ‖𝑎 − 𝑏‖ ≥ 𝑟_2，then 𝑝,(𝑎) = (𝑏)- ≤ 𝑝_2 

where 𝑝_1, 𝑝_2 are both probability value, and 0 < 𝑟_1 ≤ 𝑟_2,0 ≤ 𝑝_2 < 𝑝_1 ≤ 1. 

We know different LSH families are adopted for different distance functions. (Datar, Immorlica, Indyk & 

Mirrokni, 2004) has proposed LSH families for 𝑙_𝑝 norms based on 𝑝-stable distributions. If 𝑝 is 1, it is 

Manhattan distance, while 𝑝 is equal to 2, it is Euclidean distance. As we use Euclidean distance in this paper, 

we use the hash function in Eq. (3). 

𝒉_(𝒂, 𝒃) (𝒗) = ⌊(𝒂 ∙ 𝒗 + 𝒃)/𝒓⌋                     (3) 

 

3.5 LSH Based Privacy-Preserving Multi-User Outsourced K-Means Clustering for Massive Datasets 

This section discusses a new LSH based privacy-preserving multi-user outsourced k-means clustering algorithm 

(LSH-PPMOC) which includes two optimization strategies for large-scale high-dimensional data clustering. Our 

target is to minimize the cost in the process for k-means clustering while we won't reveal any information about 

users' data records or distances between data records and centroids. Firstly, we use a LSH function family which 

is determined by all users to get the data skeleton, where the similar points are reduced to the same bucket. Then 

we can save unnecessary computations or comparisons between k encrypted distances during the work through 

performing clustering on the data skeleton and utilizing efficient strategies. 

3.5.1 Data Skeleton 

In this section, we will firstly briefly introduce data skeleton proposed by Li et al. (Li, Wang, Wang, Hu, Li & Li, 

2014), and then illustrate what we can do on data skeleton. 

Each element of data skeleton is a 2-tuple (𝑝_𝑟, 𝐿_𝑝), where 𝑝_𝑟 represents a list of points in 𝐿_𝑝. To get data 

skeleton, we first use 𝑚 hash functions to map the original datasets into different buckets, where the bucket 

value is an 𝑚-dimension value as the result of 𝑚 hash functions. Then we select the center point of each bucket 

as a representative data point 𝑝_𝑟. Initially, we set 𝐿_𝑝 for each representative data point to null. The distances 
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between 𝑝_𝑟 and all other points in this bucket are computed, and if the distance is smaller than 𝑑, the 

according point will be added into 𝐿_𝑝, where 𝑑 is a user-defined threshold. For the point which further away 

from 𝑝_𝑟 is also an element of data skeleton, whose corresponding 𝐿_𝑝 is null. An example is given as Figure 

1. It is worth noting that all the data skeletons in each bucket form a hash table(HT).   

It is well known that, as the dataset grows, the cost of distance computing between each point and centroid pair 

becomes unbearable, especially when the number of clusters is large. And we know that the points in one data 

skeleton are close in distance, and they may belong to the same cluster with high probability. Then we might 

save some unnecessary calculations based on this. 

We demonstrate that in Figure 2. We say that 𝑐_1  and 𝑐_2 are two center points, 𝑝_1 and 𝑝_2 are two 

different data records, 𝑟_1, 𝑟_2 are the distances between 𝑝_1 and 𝑐_1, 𝑐_2, while 𝑟_1′, 𝑟_2′ are distances of 

𝑝_2, 𝑑 is the distance between 𝑝_1 and 𝑝_2. If we know that 𝑟_1 is much smaller than 𝑟_2, and 𝑑 is near 

to zero, it is very likely that 𝑟_1^′ <  𝑟_2′, which means that 𝑝_2 shares the same cluster with 𝑝_1. We can 

generalize it to Theorem 1. 

Theorem 1. Given 𝒄_𝟏 and 𝒄_𝟐 as two center points, 𝒑_𝟏 and 𝒑_𝟐 are two points with the distance 𝒅. 

𝒓_𝟏, 𝒓_𝟏^′, 𝒓_𝟐 and 𝒓_𝟐′ are distances between 𝒑_𝟏, 𝒑_𝟐 and 𝒄_𝟏, 𝒄_𝟐 respectively. If 𝒓_𝟏 < 𝒓_𝟐 and 

𝒓_𝟐 − 𝒓_𝟏 > 𝟐 ∗ 𝒅, then it holds that  𝒓_𝟏^′ <  𝒓_𝟐′.  

The proof was given in (Li, Wang, Wang, Hu, Li & Li, 2014), and we wouldn't go into details here. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Data Skeleton                              Figure 2. Points and Centers 

 

3.5.2 Privacy-Preserving Pruning Strategies Using LSH 

In this section, we explain how we make use of the low bound property of LSH to prune off the unnecessary 

computations during privacy k-means clustering. 

There are two pruning strategies, and both of them are based on Theorem 1. The first one aims at reducing the 

number of data records that need to find the nearest centers. For each representative point 𝑝_𝑟 in one bucket, it 

represents the points in 𝐿_𝑝, and the distance between any 𝑝_𝑖 and 𝑝_𝑟 is less than 𝑑. We first compute k 

distance between 𝑝_𝑟  and 𝑘  centroids *𝑐_1, … , 𝑐_𝑘+  using SSED protocol. Let 𝑑(𝑝_𝑟, 𝑐_1 )  and 

𝑑(𝑝_𝑟, 𝑐_2 )  be the smallest and the second smallest distances among 𝑘  distances. If 𝑑(𝑝_𝑟, 𝑐_2 ) −

𝑑(𝑝_𝑟, 𝑐_1 ) ≥ 2𝑑, we can say that all points 𝑝_𝑖 represented by 𝑝_𝑟 have a shortest distance with 𝑐_1. In 

this case, we need not compute the distances between 𝑝_𝑖 and 𝑘 centroids in this iteration. 

The second strategy is to reduce the number of centroids to be compared for each point 𝑝_𝑖 in 𝐿_𝑝. Let's think 

about a situation, we have computed 𝑘 distances for 𝑝_𝑟, represented by 𝑟_1, … , 𝑟_𝑘 and 𝑟_1 is the smallest 

distance, then 𝑝_𝑖 is a point represented by 𝑝_𝑟. When we tend to assign 𝑝_𝑖 to a proper cluster, we need to 

compare 𝑟_𝑖 − 𝑟_1 and 2𝑑, 𝑖 ∈ ,2, 𝑘-. Only the cluster 𝑐_𝑖 which holds 𝑟_𝑖 − 𝑟_1 ≤ 2𝑑 will be marked, 

and added into a set closeSet. That is to say, for 𝑝_𝑖, we only need compute distances between it and centroids in 

the closeSet which is obviously the subset of 𝑘 centroids. 
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In Algorithm 4, we give the pseudo-code of privacy-preserving LSH-based multi-user outsourced k-means 

clustering. 

Algorithm 4. Privacy-Prserving LSH-Based Multi-User Outsourced K-Means Clustering 

Input: 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝐷) = *𝐸_(〖𝑝𝑘〗_𝑢 ) (𝒑_𝑖 )+, 𝑖 ∈ ,1, 𝑚-, 𝐶 = *𝐸_(〖𝑝𝑘〗_𝑢 ) (𝝁_𝑗 )+ =
⌌𝐸_(〖𝑝𝑘〗_𝑢 ) (𝒔_𝑗 ), 𝐸_(〖𝑝𝑘〗_𝑢 ) (〖|𝑐〗_𝑗 |)⌍, 𝑗 ∈ ,1, 𝑘- 

Combined blinded hash table (HT), 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝜖) 

for 𝒑_𝑟 in each bucket in HT： 

for each center 𝝁_𝑗 in C:  

   compute the distance between 𝒑_𝑟 and 𝝁_𝑗 

〖𝑑𝑖𝑠〗_𝑗 = (𝐸_(〖𝑝𝑘〗_𝑢 ) (Ω_(𝑝_𝑟, 𝑗) ), 𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑗 |))
= 𝑆𝑆𝐸𝐷(𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑝_𝑟), 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝝁_𝑗)), 

get closest encrypted center 𝝁_𝑗′ for 𝒑_𝑟 in 𝐶  

*𝑚𝑖𝑛, 𝑙𝑎𝑏𝑒𝑙+ = *(𝐸_(〖𝑝𝑘〗_𝑢 ) (Ω_(𝑝_𝑟, 𝑗^′ ) ), 𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_(𝑗^′ ) |)), 𝑙𝑎𝑏𝑒𝑙+
← 〖𝑃𝑀𝐼𝑁〗_𝑘 (𝐸_(〖𝑝𝑘〗_𝑢 ) (𝒑_𝑟 ), 𝐶) 

〖𝐸_(〖𝑝𝑘〗_𝑢 ) (𝒔〗_𝑗′) =
〖𝐸_(〖𝑝𝑘〗_𝑢 ) (𝒔〗_𝑗′) × 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝒑_𝑟 ), 𝐸_(〖𝑝𝑘〗_𝑢 ) |𝑐_𝑗′ | =
𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑗′ |) × 𝐸_(〖𝑝𝑘〗_𝑢 ) (1)      

Set 𝑐𝑙𝑜𝑠𝑒𝑆𝑒𝑡 = 𝑛𝑢𝑙𝑙 

for 𝑗 ∈ ,1, 𝑘-  and 𝑗 ≠ 𝑗′ 

CS and AS jointly compute 

𝐸_(〖𝑝𝑘〗_𝑐 ) (𝜆_1) ← 𝐸𝑆𝐷𝐶(𝑚𝑖𝑛,〖𝑑𝑖𝑠〗_𝑗, 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑑)) 

CS gets 𝜆_1 ← 𝐷𝑒𝑐(〖𝑠𝑘〗_𝑐, 𝐸_(〖𝑝𝑘〗_𝑐 ) (𝜆_1 )) 

if 𝜆_1 = 0, compute 𝑐𝑙𝑜𝑠𝑒𝑆𝑒𝑡 = 𝑐𝑙𝑜𝑠𝑒𝑆𝑒𝑡 + *𝐸_(〖𝑝𝑘〗_𝑢 ) (𝜇_𝑗)+ 

if 𝑐𝑙𝑜𝑠𝑒𝑆𝑒𝑡 = 𝑛𝑢𝑙𝑙 

   for each 𝒑_𝑖 in 𝐿_𝑝 do 

〖𝐸_(〖𝑝𝑘〗_𝑢 ) (𝒔〗_𝑗′)
= 〖𝐸_(〖𝑝𝑘〗_𝑢 ) (𝒔〗_𝑗′) × 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝒑_𝑖 ), 𝐸_(〖𝑝𝑘〗_𝑢 ) |𝑐_𝑗′ |
= 𝐸_(〖𝑝𝑘〗_𝑢 ) |𝑐_𝑗′ | × 𝐸_(〖𝑝𝑘〗_𝑢 ) (1) 

else 

   for each 𝒑_𝑖 in 𝐿_𝑝 do 

       get closet center 𝜇_𝑗′′ for each record 𝑝_𝑖 from 𝑐𝑙𝑜𝑠𝑒𝑆𝑒𝑡  

〖𝐸_(〖𝑝𝑘〗_𝑢 ) (𝒔〗_𝑗′′)
= 〖𝐸_(〖𝑝𝑘〗_𝑢 ) (𝒔〗_𝑗′′) × 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝒑_𝑖 ), 𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑗′′ |)
= 𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑗′′ |) × 𝐸_(〖𝑝𝑘〗_𝑢 ) (1) 

Then CS and AS will update the bitmap matrix according to 𝑎𝑏𝑒𝑙 , and they cooperatively judge 

the termination conditions. 

4. The Proposed Solution 

4.1 System Model 

In our setting, we assume that there are two types of entities: users and cloud service providers as given in Figure 

3. There are 𝑛 users denoted by 𝑈_1, … , 𝑈_𝑛. Suppose that 𝑈_𝑖 holds a dataset 𝑇_𝑖 with d-dimension 𝑚_𝑖 

data records, ∑_(𝑖 = 1)^𝑛▒𝑚_𝑖 = 𝑚. We use a Computation Server (CS) and an Assistant Server (AS) to 

excute the k-means clustering task, which are both semi-honest and don't collude. Let AS generate two 

public-secret key pair (〖𝑝𝑘〗_𝑢,〖𝑠𝑘〗_𝑢), (〖𝑝𝑘〗_𝑐,〖𝑠𝑘〗_𝑐) based on the Paillier cryptosystem and 

the public key 〖𝑝𝑘〗_𝑢  is sent to all users and CS, while AS remains 〖𝑠𝑘〗_𝑢 , while 

(〖𝑝𝑘〗_𝑐,〖𝑠𝑘〗_𝑐 ) is sent to CS.  
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Figure 3. System architecture 

 

When clustering starts, all users first use the same LSH function family to get their own hash table (Data 

Skeleton) , and then blind the bucket values through MD5 to preserve the privacy of buckets. After that, each 

user 𝑈_𝑖  encrypts his/her own dataset attribute-wise using 〖𝑝𝑘〗_𝑢, and sends hash table and encrypted 

dataset to CS. Then CS will first aggregate all received hash tables into one hash table (HT), in this process, 

buckets with the same value will be merged. Next, CS performs k-means clustering on ciphertexts with the help 

of AS. When the clustering results do not change anymore or a predefined number of the iteration is reached, the 

clustering is finished. The results will be send to users. 

4.2 The Proposed LSH-PPMOC Protocol 

In this section, we will discuss our proposed LSH-PPMOC algorithm. There are three steps in our proposed 

algorithm. Specifically, our algorithm is composed of the following: 1) Data uploading, 2) LSH-based pruning 

clustering, 3) Termination. 

Data uploading. At the beginning, AS generates two public/private key pairs (〖𝑝𝑘〗_𝑐,〖𝑠𝑘〗_𝑐) , 

(〖𝑝𝑘〗_𝑢,〖𝑠𝑘〗_𝑢) based on the Paillier cryptosystem, then 〖𝑝𝑘〗_𝑢 is sent to all users and CS, 

〖𝑠𝑘〗_𝑢 remains secret, while (〖𝑝𝑘〗_𝑐,〖𝑠𝑘〗_𝑐) are sent to CS for decrypting intermediate results. 

Then each user generates their own key pair (〖𝑝𝑘〗_𝑣,〖𝑠𝑘〗_𝑣) for decrypting the final clustering 

centroids. Before clustering, all users agree on a hash function family, and generate their own hash tables. The 

table is made up of different buckets. Unfortunately the bucket value is gotten from users' original data records, 

it needs to be blinded by a one-way hash function (SHA5, MD5 and so on) to protect information about data 

records from leaking. The hash table will be sent to CS. Besides, each user encrypts their dataset using 

〖𝑝𝑘〗_𝑢 before sending to CS. 

LSH-based pruning clustering. After receiving encrypted hash tables, and encrypted original datasets, CS will 

aggregate tables firstly and then perform the clustering work cooperating with AS. This process can be divided 

into four steps. 

(1) CS chooses initial k centroids randomly from all encrypted objects for k clusters, denoted as 

𝐸_(〖𝑝𝑘〗_𝑢 ) (𝜇_𝑖 ) = ⌌𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑠_𝑖 ), 𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑖 |)⌍, (𝑖 ∈ ,1, 𝑘-), where 𝑠_𝑖  equals 

𝑝_𝑗,𝑗 ∈ ,1, 𝑚- and 𝐸_(〖𝑝𝑘〗_𝑢 ) (|𝑐_𝑖 |) = 𝐸_(〖𝑝𝑘〗_𝑢 ) (1). 

(2) For every representative point 𝑝_𝑟 in each bucket, CS and AS perform original privacy-preserving k-means 

clustering on them. In other words, they compute k squared Euclidean distances as 𝑟_1,…, 𝑟_𝑘 for each point 

using SSED, where we always assume 𝑟_1 is the smallest distance, then we assign this point to proper cluster 

through running PMIN_k protocol on the k distances. After clustering, we update the bitmap vector.  

(3) For any point 𝑝_𝑖 in 𝐿_𝑝 in each bucket, whose distance to representative point 𝑝_𝑟 in this bucket is 

smaller than 𝜀, we add cluster 𝑗 into a set closeSet if 𝑟_𝑗 − 𝑟_1 ≤ 2𝑑, 𝑗 ∈ ,2, 𝑘-. The next step we should do is 

to compute distances between 𝑝_𝑖 and centroids in closeSet, cluster 𝑝_𝑖 accurately, and update according 

bitmap vector. 

(4) Update the new cluster centroids. 

Termination.The Step (2)-(4) in LSH-based pruning clustering process will be executed repeatedly until the 

clustering results do not change any more or the given maximum iteration number is reached. 
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5. Security Analysis 

In this section, we will give a security proof of our LSH-PPMOC protocol under the semi-honest model. Since 

the proof of preliminaries we utilize in this paper are similar, we only take the SM protocol as an example and 

give a formal proof under ``Real-versus-Ideal'' framework  (Goldreich, 2009). 

Theorem 2. The SM Protocol securely computes the multiplication on ciphertexts using the Paillier 

cryptosystem under two semi-honest but passive cloud servers. 

Proof. Our SM protocol is performed by two semi-honest parties, Alice and Bob. We need to prove that SM is 

secure against both of semi-honest attacker Alice 𝒜_𝐴 and Bob 𝒜_𝐵. 

(1) Security against 𝒜_𝐴 : In Step (1), the real world view of 𝒜_𝐴  includes inputs 

*𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑥), 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑦)+ , random values *𝑟_𝑥, 𝑟_𝑦 +  and outputs 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑥 +

𝑟_𝑥), 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑦 + 𝑟_𝑦). In Step (2), the real world view includes 𝐸_(〖𝑝𝑘〗_𝑢 ) ((𝑥 + 𝑟_𝑥)(𝑦 +

𝑟_𝑦))  and 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑥 ∙ 𝑦). However, 𝒜_𝐴 can't decrypt these ciphertexts without 〖𝑠𝑘〗_𝑢. Then 

we can construct a simulator 𝒮_𝐴  in the ideal world. 𝒮_𝐴  generates ciphertexts 

*𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑚_1 ), 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑚_2 ), 𝐸_(〖𝑝𝑘〗_𝑢 ) ((𝑚_1 ) ̂ ), 

𝐸_(〖𝑝𝑘〗_𝑢 ) ((𝑚_2 ) ̂ )+  and random values 𝑟_1, 𝑟_2  by randomly selecting from 𝑍_𝑁 . Then 𝒮_𝐴 

executes SM protocol. Considering the Paillier cryptosystem is semantic secure, it is computationally difficult 

for 𝒮_𝐴 to distinguish ideal world and the real world, which means that  

                    〖〖𝐼𝑑𝑒𝑎𝑙〗_(〖𝑓, 𝒮〗_𝐴 )  〗_ ≈ ^𝑐 〖  𝑅𝑒𝑎𝑙 〗_(𝑆𝑀〖, 𝒮〗_𝐴 )           (4) 

where the symbol 𝑓 means multiplication function on 

𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑚_1 ), 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑚_2 ), 𝐸_(〖𝑝𝑘〗_𝑢 ) ((𝑚_1 ) ̂ ), 𝐸_(〖𝑝𝑘〗_𝑢 ) ((𝑚_2 ) ̂ ), 𝑟_1, 𝑟_2
and  

 _ ≈ ^𝑐 means computationally indistinguishable. 

(2) Security against 𝒜_𝐵: In Step (2), the real world view of 𝒜_𝐵 comprises of input 𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑥 +

𝑟_𝑥) ,  𝐸_(〖𝑝𝑘〗_𝑢 ) (𝑦 + 𝑟_𝑦) , and output 𝐸_(〖𝑝𝑘〗_𝑢 ) ((𝑥 + 𝑟_𝑥)(𝑦 + 𝑟_𝑦)) . Though 𝒜_𝐵  can 

decrypt the ciphertexts and get the messages 𝑥 + 𝑟_𝑥, 𝑦 + 𝑟_𝑦 with 〖𝑠𝑘〗_𝑢, it is still hard for 𝒜_𝐵 to get 

any useful information about the original data records 𝑥 and 𝑦. Since 𝑟_𝑥, 𝑟_𝑦 are random values which are 

chosen by Alice, they are random values in the point of view of 𝒜_𝐵. Then we can build a simulator 𝒮_𝐵 in 

ideal world, where we just choose random messages as ciphertexts. There is no doubt that it is computationally 

hard for 𝒜_𝐵 to distinguish the ideal world and the real world. That is to say 

      〖〖𝐼𝑑𝑒𝑎𝑙〗_(〖𝑓, 𝒮〗_𝐵 )  〗_ ≈ ^𝑐 〖  𝑅𝑒𝑎𝑙 〗_(𝑆𝑀〖, 𝒮〗_𝐵 )                   (5) 

Combine the above two analyses, we prove the correctness of Theorem 2. 

In the data uploading process, even though CS holds the data records in ciphertexts form, it can't get any 

information about original datasets due to the semantic security of Paillier cryptosystem. As for blinded hash 

tables, though it may disclose the relationship among user's data records, it is a compromise for efficiency. 

During the clustering process, AS with decryption key will assist CS to perform various computation operations. 

It is worth noting that the plaintexts obtained by AS are randomized. Considering Paillier cryptosystem is 

semantic secure, and blinding factors are all randomly chosen, no additional information regarding users' data or 

clusters is revealed to the cloud servers. Besides, (Liu, Lu, Ma, Chen & Qin, 2015) has given security proof of 

PMIN and PMIN_k. Then preliminaries utilized in our paper are proven to be privacy-protected, according to 

Composition Theorem (Goldreich, 2009), we conclude the sequential composition in proposed LSH-PPMOC 

protocol is secure against the semi-honest cloud servers. 

6. Performance Analysis 

In this section, we give the performance analysis of LSH-PPMOC protocol from the view of theory and 

experiment. 

6.1 Theoretical Analysis 

To better illustrate the computational cost and communicational cost of our LSH-PPMOC protocol, we use the 
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symbol 𝑒𝑥𝑝, 𝑚𝑢𝑙 being the modular exponentiation and multiplication operations. We assume 𝑔 = 𝑁 + 1 in the 

Paillier cryptosystem which is a common setting like (Samanthula, Rao, Bertino, Yi & liu, 2014), then 

                  𝐸_𝑝𝑘 (𝑎) = (𝑁 + 1)^𝑎 ∙ 𝑟^𝑁  𝑚𝑜𝑑 𝑁^2 = (𝑎 ∙ 𝑁 + 1) ∙ 𝑟𝑁 𝑚𝑜𝑑 𝑁2       (6) 

From Equation (6), we can conclude that the computational cost for one encryption is 1𝑒𝑥𝑝 + 2𝑚𝑢𝑙,, also the 

same cost for decryption. The computational overheads and communicational cost in one iteration for our main 

preliminaries are given in Table 1. Here 𝑑 is the dimension of a data record, k is the number of predefined 

clusters and m is number of all users' records. Besides, we use 𝑁 to denote the size (in bits) of the Paillier 

encryption key. It is worth noting that the Stage 1 of our proposed algorithm is run only once, while the Stage 2 

and Stage 3 are run in an iterative fashion until the clustering is finished. 

 

Table 1. Computational and communication costs of primary algorithms 

Algorithm Computational cost Communicational cost (in bits) 

SM 7𝑒𝑥𝑝 + 6𝑚𝑢𝑙 3|𝑁| 

SSED 15𝑙 𝑒𝑥𝑝 + 14𝑙 𝑚𝑢𝑙 4|𝑁| 

SC 3𝑒𝑥𝑝 + 6𝑚𝑢𝑙 6|𝑁| 

ESDC 57𝑒𝑥𝑝 + 111𝑚𝑢𝑙 55|𝑁| 

PMIN 19𝑒𝑥𝑝 + 38𝑚𝑢𝑙 14|𝑁| 

6.2 Experimental Analysis 

In this part, we will conduct our experiments on local terminals, the server running Windows10 has Intel(R) 

Core(TM) i7-8700 CPU @ 3.20GHz 3.19GHz and 8.00 GB RAM. We compare our proposed LSH-PPOMC with 

PPOCM (Rong, Wang, Liu, Hao & Xian, 2017), because our models are similar and both under public key 

cryptosystem, what's more, we have the same security goal for outsourced k-means clustering. We choose the 

key size |𝑁| as 1024-bit. 

For authenticity of our experiments, we choose a real dataset, KEGG Metabolic Reaction Network dataset, 

which consists of 65,554 data records and 28 attributes, to perform our algorithm. But we find some data records 

are missing attribute values or repeating, we delete these corresponding records. And because some of the 

attribute values are decimal, we normalize all records so that each attribute value is scaled into integer which 

maintains [0,1000]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Original Dataset and Data Skeleton for KEGG 

 

Before we perform k-means clustering work on the dataset, we want to illustrate the significant decrease between 

data points in original dataset and data skeleton in the form of a chart. The results are shown in Figure 4. From 
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this chart, we can see that, after users' preprocessing, the number of data points falls off drastically. 

As for the secure k-means clustering on KEGG dataset, there are few factors affecting the final effect: the 

number of clusters (k), the size of aggregated dataset (m), and the number of attributes (d). We first asset the 

performance of PPOCM and LSH-PPMOC on the datasets of different sizes with dimension d=10, while k=10 

and 20. The results was given in Figure 5. We can see that, the cloud running time grows almost linearly with k 

for both algorithms. Besides, we can also see that our LSH-PPOMC outperforms PPOCM with an increase in the 

number of clusters k owing to our pruning strategies. 

Then we compare two k-means algorithms, with or without pruning strategies, while keeping everything else the 

same. Notably, the algorithm with pruning technique is exactly our LSH-PPMOC. More specifically, we change 

the size of aggregated dataset and the size of attribute values $d$ respectively, and we assume k=10. The result is 

given in Figure 6. From the former diagram, we can learn that the pruning strategies can save about half the 

cloud running time compared with the algorithm without pruning strategies, while from the latter, we observe 

that our LSH-PPMOC can save nearly 70% time in terms of distance calculation. For example, when m=10000, 

d=10 and k=10, the time of distance calculation is 92min after pruning, while 275min without pruning operation. 

The difference can be attributed to the pruning strategies, whose goal is to reduce unnecessary distance 

calculation during the clustering. Besides, we can also learn that, as the amount of data increasing, the pruning is 

more effective. 

 

 

 

 

 

 

 

 

 

 

Figure 5. Cloud Running Time 

 

 

 

 

 

 

 

 

 

 

 

 

 (a) Time for Complete Algorithm                            (b) Time for Distance Computing 

Figure 6. Cloud Running Time for Complete Algorithm and Distance Computing 
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Figure 7. Cloud Running Time 

 

Similarly, we give Figure 7 to show the effect of various k on performing clustering with two methods. It is 

obvious that the cloud running time saved is proportion to the number of clusters k, that is to say, when k is 

larger, the pruning effect is more obvious. So our LSH-PPMOC is suitable for k-means clustering on big dataset 

even though k is large. 

7. Conclusion 

In this paper, we proposed an efficient and privacy-preserving outsourced k-means clustering algorithm 

(LSH-PPMOC) for big data mining. For that purpose, we gave a series of building blocks to help achieve 

ciphertext multiplication, squared Euclidean distances computation, comparison and so on, which would never 

leak any useful information. The main idea in our algorithm is utilizing the local sensitivity of locally sensitive 

hash to prune some unnecessary computations when clustering. Besides, the experiments on KEGG dataset show 

that our algorithm is more efficient than some existing job. In the future, we are more willing to focus on the data 

integrity verification during k-means clustering and achieve strong secure under malicious model. 
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