
http://cis.ccsenet.org Computer and Information Science Vol. 13, No. 3; 2020

Riemannian Proximal Policy Optimization
Shijun Wang1, Baocheng Zhu2, Chen Li2, Mingzhe Wu2, James Zhang3, Wei Chu4 & Yuan Qi4

1 Dept. of Artificial Intelligence, Ant Financial Services Group, Seattle, USA
2 Dept. of Artificial Intelligence, Ant Financial Services Group, Shanghai, China
3 Dept. of Artificial Intelligence, Ant Financial Services Group, New York, USA
4 Dept. of Artificial Intelligence, Ant Financial Services Group, Hangzhou, China

Correspondence: Shijun Wang, Dept. of Artificial Intelligence, Ant Financial Services Group, Seattle, USA.

Received: June 22, 2020 Accepted: July 20, 2020 Online Published: July 30, 2020

doi:10.5539/cis.v13n3p93 URL: https://doi.org/10.5539/cis.v13n3p93

Abstract

In this paper, we propose a general Riemannian proximal optimization algorithm with guaranteed convergence to solve
Markov decision process (MDP) problems. To model policy functions in MDP, we employ Gaussian mixture model
(GMM) and formulate it as a non-convex optimization problem in the Riemannian space of positive semidefinite matrices.
For two given policy functions, we also provide its lower bound on policy improvement by using bounds derived from the
Wasserstein distance of GMMs. Preliminary experiments show the efficacy of our proposed Riemannian proximal policy
optimization algorithm.

Keywords: Markov decision process, Riemannian proximal policy optimization, Gaussian mixture model, Wasserstein
distance

1. Introduction

Reinforcement learning studies how agents explore/exploit environment, and take actions to maximize long-term reward.
It has broad applications in robot control and game playing(Mnih et al., 2015; Silver et al., 2016; Argall et al., 2009; Silver
et al., 2017). Value iteration and policy gradient methods are mainstream methods for reinforcement learning (Sutton &
Barto, 2018; Li, 2017).

Policy gradient methods learn optimal policy directly from past experience or on the fly. It maximizes expected discounted
reward through a parametrized policy whose parameters are updated using gradient ascent. Traditional policy gradient
methods suffer from three well-known obstacles: high-variance, sample inefficiency and difficulty in tuning learning
rate. To make the learning algorithm more robust and scalable to large datasets, Schulman et al. proposed trust region
policy optimization algorithm (TRPO)(Schulman et al., 2015). TRPO searches for the optimal policy by maximizing
a surrogate function with constraints placed upon the KL divergence between old and new policy distributions, which
guarantees monotonically improvements. To further improve the data efficiency and reliable performance, proximal policy
optimization algorithm (PPO) was proposed which utilizes first-order optimization and clipped probability ratio between
the new and old policies (Schulman et al., 2017). TRPO was also extended to constrained reinforcement learning. Achiam
et al. proposed constrained policy optimization (CPO) which guarantees near-constraint satisfaction at each iteration
(Achiam et al., 2017).

Although TRPO, PPO and CPO have shown promising performance on complex decision-making problems, such as
continuous-control tasks and playing Atari, as other neural network based models, they face two typical challenges:
the lack of interpretability, and difficult to converge due to the nature of non-convex optimization in high dimensional
parameter space. For many real applications, data lying in a high dimensional ambient space usually have a much lower
intrinsic dimension. It may be easier to optimize the policy function in low dimensional manifolds.

In recent years, many optimization methods are generalized from Euclidean space to Riemannian space due to manifold
structures existed in many machine learning problems(Absil et al., 2007, 2009; Vandereycken, 2013; Huang et al., 2015;
Zhang et al., 2016). In this paper, we leverage merits of TRPO, PPO, and CPO and propose a new algorithm called Rie-
mannian proximal policy optimization (RPPO) by taking manifold learning into account for policy optimization. In order
to estimate the policy, we need a density-estimation function. Options we have include kernel density estimation, neural
networks, Gaussian mixture model (GMM), etc. In this study we choose GMM due to its good analytical characteristics,
universal representation power and low computational cost compared with neural networks. It is well-known that the
covariance matrices of GMM lie in a Riemannian manifold of positive semidefinite matrices.

93

http://cis.ccsenet.org Computer and Information Science Vol. 13, No. 3; 2020

To be more specific, we model policy functions using GMM first. Secondly, to optimize GMM and learn the optimal
policy functions efficiently, we formulate it as a non-convex optimization problem in the Riemannian space. By this
way, our method gains advantages in improving both interpretability and speed of convergence. Please note that our
RPPO algorithm can be easily extended to any other non-GMM density estimators, as long as their parameter space is
Riemannian. In addition, GMM has been applied to reinforcement learning previously by embedding GMM in the Q-
learning framework(Agostini & Celaya, 2010). But it also suffers from the headache of Q-learning that it can hardly
handle problems with large continuous state-action space.

2. Preliminaries

2.1 Reinforcement Learning

In this study, we consider the following Markov decision process (MDP) which is defined as a tuple (S , A, P, r, γ), where
S is the set of states, A is the set of actions, P : S ×A×S → [0, 1] is the transition probability function, r : S ×A×S → R
is the reward function, and γ is the discount factor which balances future rewards and immediate ones.

To make optimal decisions for MDP problems, reinforcement learning was proposed to learn optimal value function
or policy. A value function is an expected, discounted accumulative reward function of a state or state-action pair by
following a policy π. Here we define state value function as vπ (s) = Eτ∼π [r(τ) | s0 = s] where τ = (s0, a0, s1, ...) denotes
a trajectory by playing policy π, at ∼ π (at | st), and st+1 ∼ P (st+1 | st, at). Similarly we define state-action value function
as: qπ (s, a) = Eτ∼π [r(τ) | s0 = s, a0 = a]. We also define advantage function as Aπ (s, a) = qπ (s, a) − vπ (s).

In reinforcement learning, we try to find or learn an optimal policy π which maximizes a given performance metric J (π).
Infinite horizon discounted accumulative return is widely used to evaluate the performance of a given policy which is
defined as: J (π) = E

τ∼π

[∑∞
t=0 γ

tr (st, at, st+1)
]
, where r (st, at, st+1) is the reward from st to st+1 by taking action at. Please

note that the expectation operation is performed over the distribution of trajectories.

In the work of (Kakade & Langford, 2002; Schulman et al., 2017), for two given policies π and π′, their expected accu-
mulative returns over infinite horizon can be linked by the advantage functions: J (π′) = J (π) + E

τ∼π′

[∑∞
t=0 γ

tAπ (st, at)
]
.

By introducing discounted visit frequencies ρπ(s) = P(s0 = s) + γP(s1 = s) + γ2P(s2 = s) + ... (Schulman et al., 2015;
Achiam et al., 2017), where s0 ∼ ρ0 , ρ0 : S → R is distribution of initial state s0, we have J (π′) = J (π) + Σ

s
ρπ′ (s)Σ

a
π′(a |

s)Aπ (st, at). To reduce the complexity of searching for a new policy π′ which increases J (π′), we replace discounted visit
frequencies ρπ′(s) to be optimized with old discounted visit frequencies ρπ(s):L (π′) = L (π) + Σ

s
ρπ(s)Σ

a
π′(a | s)Aπ (st, at).

Assume that the policy functions π(a | s) are parametrized by a vector θ, π(a | s) = πθ(a | s) . Searching for new policy π′

is equivalent to searching new parameters θ′ in the parameter space. So we have L (π′) = L (θ′) = L (θ) + Σ
s
ρπθ (s)Σ

a
πθ′ (a |

s)Aπθ (s, a).

2.2 Riemannian Space

Here we give a brief introduction to Riemannian space, for more details see (Eisenhart, 2016).Let M be a connected and
finite dimensional manifold with dimensionality of m. We denote by TpM the tangent space of M at p. Let M be endowed
with a Riemannian metric ⟨., .⟩, with corresponding norm denoted by ∥ . ∥, so that M is now a Riemannian manifold
(Eisenhart, 2016). We use l (γ) =

∫ b
a ∥ γ

′(t) ∥ dt to denote length of a piecewise smooth curve γ : [a, b] −→ M joining
θ′ to θ, i.e., such that γ (a) = θ′ and γ (b) = θ. Minimizing this length functional over the set of all piecewise smooth
curves passing θ′ and θ, we get a Riemannian distance d (θ′, θ) which induces original topology on M. Take θ ∈ M, the
exponential map expθ : TθM −→ M is defined by expθv = γv (1, θ) which maps a tangent vector v at θ to M along the
curve γ. For any θ′ ∈ M we define the exponential inverse map exp−1

θ′ : M −→ Tθ′M which is C∞ and maps a point θ
′
on

M to a tangent vector at θ with d (θ′, θ) =∥ exp−1
θ′ θ ∥. We assume (M, d) is a complete metric space, bounded and all closed

subsets of M are compact. For a given convex function f : M → R at θ′ ∈ M, a vector s ∈ Tθ′M is called subgradient of f
at θ′ ∈ M if f (θ) ≥ f (θ′) +

⟨
s, exp−1

θ′ θ
⟩
, for all θ ∈ M. The set of all subgradients of f at θ′ ∈ M is called subdifferential

of f at θ′ ∈ M which is denoted by ∂ f (θ′). If M is a Hadamard manifold which is complete, simply connected and has
everywhere non-positive sectional curvature, the subdifferential of f at any point on M is non-empty (Ferreira & Oliveira,
2002).

3. Modeling Policy Function Using Gaussian Mixture Model

To model policy functions, we employ the Gaussian mixture model which is a widely used and statistically mature method
for clustering and density estimation. The policy function can be modeled as π(a | s) = ΣK

i=1α(s)N(a; µi(s), S i(s)), where
N is a (multivariate) Gaussian distribution with mean µ ∈ Rd and covariance matrix S ≻ 0, K is number of components
in the mixture model, α = (α1, α2, ..., αK) are mixture component weights which sum to 1. In the following, we drop s in

94

http://cis.ccsenet.org Computer and Information Science Vol. 13, No. 3; 2020

GMM to make it simple and parameters of GMM still depend on state variable s implicitly.

Let’s define θ = ((α1, µ1, S 1), (α2, µ2, S 2), ..., (αK , µK , S K)) which parametrizes the policy function. For a given policy
function πθ(a | s), we would like to find a new policy π′θ′ (a | s) which has higher performance evaluated by L (π′) =
L (π) + Σ

s
ρπ(s)Σ

a
π′(a | s)Aπ (s, a) within close proximity of the old policy to avoid dramatic policy updates.

Define g(θ′) = −L(θ′), and φ(θ′) = β
2 d2(θ′, θ) which searches new θ′ near the proximity of the old parameter θ. d(θ′, θ)

is a similarity metric which can be Euclidean distance, KL divergence, J-S divergence or the 2nd Wasserstein dis-
tance(Arjovsky et al., 2017).

We would like to optimize the following problem with corresponding constraints from GMMs:

min
θ′=((α′1,µ

′
1,S
′
1),(α′2,µ

′
2,S
′
2),...,(α′K ,µ

′
K ,S

′
K))

f (θ′) = g
(
θ′
)
+ φ(θ′) (1)

= −L (θ) − Σ
s
ρπθ (s)Σ

a

(
ΣK

i=1α
′
iN(a; µ′i , S

′
i)
)

Aπθ (s, a) +
β

2
d2(θ′, θ),

s.t. ΣK
i=1α

′
i = 1, S ′i ≻ 0, i = 1, 2, ...,K.

We employ a reparametrization method to make the Gaussian distributions zero-centered. We augment action variables

by 1 and define a new variable vector as a = [a, 1]⊤ with new covariance matrix S =
[

S + µµ⊤ µ
µ⊤ 1

]
(Hosseini & Sra,

2015).

In the Optimization Problem (1), there is a simplex constraint α ∈ ∆K . To convert it to a unconstrained problem, we first
define ηk = log(αk

αK
), for k = 1, 2, ...,K − 1, and let ηK = 0 be a constant (Hosseini & Sra, 2015). Then we have the

following unconstrained optimization problem:

min
θ′={η′={η′i }K−1

i=1 ,S
′={S ′i≻0}Ki=1}

f (θ′) = g
(
θ′
)
+ φ(θ′) (2)

= −L(θ) − Σ
s
ρπθ (s)Σ

a

ΣK
i=1

exp(η′k)

ΣK
j=1exp(η′j)

N(a; S ′i)

 Aπθ (s, a) +
β

2
d2(θ′, θ).

4. Riemannian Proximal Method for Policy Optimization

4.1 Riemannian Proximal Method for a Class of Non-convex Problems

In this section, following the work of (Khamaru & Wainwright, 2018), we tackle a more general class of functions of the
form: f (θ) = g (θ) − h (θ) + φ (θ). We assume the following assumptions hold:

Assumption 1:

a) The function g is continuously differentiable and its gradient vector field is Lipschitz continuous with constant
L ≥ 0.

b) The function h is continuous and convex.

c) The function φ (θ) is proper, convex and lower semi-continuous.

d) The function f is bounded below over a complete Riemannian manifold M of dimension m.

e) Solution set of min f (θ) is non-empty and its optimum value is denoted as f ∗.

Lemma 1. Under Assumption 1, assume uk and vk are subgradients of the convex functions h and φ, respectively. We
have θk+1 = expθk (−αk(∇g(θk) − uk + vk+1)), and f (θk) − f (θk+1) ≥ 1

2αk
d2(θk, θk+1), where αk is the step size.

Proof of Lemma 1 can be found in the Appendix.

Theorem 1. Under Assumption 1, the following statements hold for any sequence {θk}k≥0 generated by Algorithm 1:

a) Any limit point of the sequence {θk}k≥0 is a critical point, and the sequence of function values { f (θk)}k≥0 is strictly
decreasing and convergent.

95

http://cis.ccsenet.org Computer and Information Science Vol. 13, No. 3; 2020

b) For k = 0, 1, 2, ...,N, we have
∑N

k=0 d2(θk, θk+1) ≤ 2(f (θ0)− f ∗)
L . In addition, if the function h is Mh-smooth: ∥uk+1−uk∥ ≤

Mh × d(θk, θk+1) where Mh is a constant, then

N∑
k=0

1
(L + Mh +

1
αk

)2
∥∇ f (θk+1)∥22 ≤

2(f (θ0) − f ∗)
L

(3)

Proof of Theorem 1 can be found in the Appendix.

Algorithm 1: Riemannian proximal optimization algorithm

1. Given an initial point θ0 ∈ M and choose step size αk ∈ (0, 1
L], k ∈ {0, 1, 2, ...}.

2. For k = 0, 1, 2, ..., do

Choose subgradient uk ∈ ∂h (θk), where ∂h (θ) denotes subdifferential (or subderivatives) of the convex function h
at the point θ. Update

θk+1 = min
θ∈M

{
φ(θ) +

1
2αk

d2(θ, θk − αk (∇g (θk) − uk))
}
. (4)

4.2 Lower Bound of Policy Improvement

Assume we have two policy functions π′(a | s) = Σiα
′
iN(a; S ′i) and π(a | s) = ΣiαiN(a; S i) parameterized by GMMs

with parameters θ′ = {α′ = {α′i }Ki=1, S
′ = {S ′i ≻ 0}Ki=1} and θ = {α = {αi}Ki=1, S = {S i ≻ 0}Ki=1}, we would like to bound the

performance improvement of π′(a | s) over π(a | s) under limitation of the proximal operator.

In this study, we choose the Wasserstein distance to measure discrepancy between policy functions π′(a | s) and π(a | s)
due to its robustness. For two distributions µ0 and µ1 of dimension n, the Wasserstein distance is defined as W2(µ0, µ1) =

in f
p∈Π(µ0,µ1)

∫
Rn×Rn ∥ x − y ∥2 p(x, y)dxdy which seeks a joint probability distribution Π in R2n whose marginals along co-

ordinates x and y coincide with µ0 and µ1 , respectively. For two Gaussian distributions N0(µ0, S 0) and N1(µ1, S 1), its
Wasserstein distance is W2(N0,N1)2 =∥ µ0 − µ1 ∥2 +trace(S 0 + S 1 − 2(S 1/2

0 S 1S 1/2
0)1/2).

First we have the following lemma:

Lemma 2. Given two policies parametrized by GMMs π′(a | s) = Σiα
′
iN(a; S ′i) and π(a | s) = ΣiαiN(a; S i), let f (π′) =

βΣ
s
ρπ(s)Σ

a

(
ΣK

i=1
exp(η′i)
ΣK

j=1exp(η′j)
N(a; S ′i)

)
Aπ (s, a) − DπW2

(π′, π), where DπW2
(π′, π) =

∑
s ρ
π(s)W2(π′, π), W2 defines Wasserstein

distance between two GMMs. Then exist
∼
π = arg max

π′
f (π′), and f (

∼
π) ≥ f (π) = 0.

Lemma 2 can be simply proved by applying Theorem 1.

To reduce computational complexity, we employ discrete Wasserstein distance by embedding GMMs to a manifold of
probability densities with Gaussian mixture structure as proposed by (Chen et al., 2019). To be more specific, the discrete
Wasserstein distance between two GMMs π′(a | s) and π(a | s) is:

W2(π′, π)2 =
∑
i, j

c∗(i, j)W2(N(a; S ′i),N(a; S j))2, (5)

where c∗(i, j) = arg min
c∈∏(α′,α)

∑
i, j c(i, j)W2(N(a; S ′i),N(a; S j))2.

Lemma 3. Given two policies parametrized by GMMs π′(a | s) = Σiα
′
iN(a; S ′i) and π(a | s) = ΣiαiN(a; S i) , their total

variation distance can be bounded as follows:

DTV (π′(a | s), π(a | s)) ≤ BTV (π′, π) =
∑
i, j

d∗(i, j)BTV (N(a; S π
′

i),N(a; S πj)), (6)

where BTV (N0(µ, S 0),N1(µ, S 1)) = 3
2 min{1, ∥ S −1

0 S 1 − I ∥F} for Gaussian distributions N0(µ, S 0) and N(µ, S 1)(Devroye
et al., 2018), and d∗(i, j) = arg min

d∈∏(α′,α)

∑
i, j d(i, j)BTV (N(a; S ′i),N(a; S j)). Please note the bound BTV (π′, π) actually is

96

http://cis.ccsenet.org Computer and Information Science Vol. 13, No. 3; 2020

the Wasserstein distance between the discrete distributions α′ = {α′1, α′2,..., α′K} and α = {α1, α2,..., αK} with pairwise
cost defined by the bound of total variation distance between two Gaussian distributions BTV (Ni(µ, S i),N j(µ, S j)), i, j =
1, 2, ...,K.

With Lemma 2 and Lemma 3, we have the following theorem:

Theorem 2. Given two policy functions π′ and π parametrized by GMMs π′(a | s) = Σiα
′
iN(a; S ′i) and π(a | s) =

ΣiαiN(a; S i), assume policy
∼
π is parametrized by

∼
θ = arg max

π′
f (π′) as shown in Lemma 2, then we have the following

bound for any π′ within proximity of
∼
π:

J(π′) − J(π) ≥ −2Bπ
′

TV (π′,
∼
π)M

∼
π +

1
β

DπW2
(
∼
π, π) − 2γϵ

∼
π
π

(1 − γ) BπTV (
∼
π, π), (7)

where ϵ
∼
π
π = maxs | Ea∼∼πA

π(s, a) |, M
∼
π = maxs,a |A

∼
π(s, a)|, Bπ

′

TV (π′,
∼
π) =

∑
s ρ
π′ (s)BTV (π′,

∼
π) and BπTV (

∼
π, π) =

∑
s ρ
π(s)BTV (

∼
π, π)

(BTV (π′,
∼
π) and BTV (

∼
π, π) follow the bound definition BTV (π′, π) in Lemma 3), BπW2

(
∼
π, π) =

∑
s ρ
π(s)Wd2(

∼
π, π).

Proofs of Lemma 3 and Theorem 2 are shown in the appendix.

4.3 Implementation of the Riemannian proximal policy optimization method

Recall that in the optimization problem (2), we are trying to optimize the following objective function:

min
θ′={η′={η′i }K−1

i=1 ,S
′={S ′i≻0}Ki=1}

f (θ′) = g
(
θ′
)
+ φ(θ′).

1) Riemannian Gradient

gradS′i g(θ′) =
∂g(θ′)
∂S ′i

= −ΣK
i=1(Σ

s
ρπθ (s)Σ

a
Aπθ (s, a))

exp(η′i)

ΣK
j=1exp(η′j)

×
∂N(a; S ′i)
∂S ′i

, (8)

∂N(a; S ′i)
∂S ′i

= N(a; S ′i) ×
1
2

[
−S ′−1

i + S ′−1
i aa⊤S ′−1

i

]
, i = 1, 2, ...,K. (9)

Let ai = −(Σ
s
ρπθ (s)Σ

a
Aπθ (s, a))N(a; S ′i), m = 1, 2, ...,K,

gradη′m g(θ′) =
∂g(θ′)
∂η′m

=
amexp(η′m)
(Σ jexp(η′j)

− Σi
1

(Σ jexp(η′j))
2

{
aiexp(η′i) × exp(η′m)

}
. (10)

For Euclidean distance d(θ′, θ) = β2 ∥ θ′ − θ ∥22, we have

∂S ′iφ(θ′) =
∂

∂S ′i
(
β

2

K∑
i=1

d2(S ′i , S i)) = β(S ′i − S i), i = 1, 2, ...,K. (11)

For discrete Wasserstein distance d = W2
d2(θ′, θ), we have

∂S ′iφ(θ′) =
β

2
∂

∂S ′i
(
∑
i, j

c∗(i, j)trace(S ′i + S j − 2(S ′1/2i S jS
′1/2
i)1/2)), (12)

where c∗(i, j) = arg min
c∈∏(α′,α)

∑
i, j c(i, j)W2(N(a; S ′i),N(a; S j))2, i = 1, 2, ...,K.

2) Retraction

With S ′i,t and gradS ′i,t g(θ′) shown above at iteration t, we would like to calculate S ′i,t+1 using retraction. From (Cheng,
2013), for any tangent vector η ∈ TW M, where W is a point in Riemannian space M, its retraction RW (η) := arg min

X∈M
∥

W + η− X ∥F . For our case RS ′i,t

(
−αt(gradS ′i,t g(θ′) + ∂S ′i,tφ(θ′))

)
= Σn

i=1σiqiq⊤i , where σi and qi are the i-th eigenvalues and
eigenvector of matrix S ′i,t − αt(gradS ′i,t g(θ′) + ∂S ′i,tφ(θ′)).

ηi, i = 1, 2, ...,K − 1 are updated using standard gradient decent method in the Euclidean space. The calculation and
retraction shown above are repeated until f (θ′) converges.

97

http://cis.ccsenet.org Computer and Information Science Vol. 13, No. 3; 2020

5. Experimental Results

5.1 Simulation Environments and Baseline Methods

We choose TRPO and PPO, which are well-known excelling at continuous-control tasks, as baseline algorithms. Each al-
gorithm runs on the following 3 environments in OpenAI Gym MuJoCo simulator (Todorov et al., 2012): InvertedPendulum-
v2, Hopper-v2, and Walker2d-v2 with increasing task complexity regarding size of state and action spaces. For each run,
we compute the average reward for every 50 episodes, and report the mean reward curve and parameters statistics for
comparison.

5.2 Preliminary Results

Table 1. Number of parameters of each algorithm on each environment with dimensions listed.

Environments Number of parameters Dim. of states Dim. of actions
RPPO TRPO PPO

InvertedPendulum-v2 104 124,026 124,026 4 1
Hopper-v2 599 5,281,434 5,281,434 11 3
Walker2d-v2 599 40,404,522 40,404,522 17 6

In Fig. 1 we show mean reward (column1) for PPO, RPPO and TRPO algorithms on three MuJoCo environments,
screenshots (column2) and probability density of GMM (column3) for RPPO on each environment. From the learning
curves, we can see that as the state-action dimension of environment increases (shown in Table 1), both the convergence
speed and the reward improvement slow down. This is because the higher dimension the environment sits, the more
difficult the optimization task is for the algorithm. Correspondingly, in the GMM plot, S, A represent the state and the
action dimensions respectively, and the probability density is shown in z axis. In the density plot, we can see that as the
environment complexity increases, the density pattern becomes more diverse, and non-diagonal matrix terms also show
its importance. The probability density of GMM shows that RPPO learns meaningful structure of policy functions.

TRPO and PPO are pure neural-network-based models with numerous parameters. This makes the model highly vulnera-
ble to overfitting, poor network architecture design and the hyper-parameters tuning. RPPO achieves better robustness by
having much fewer parameters. In Table 1 we compare the number of parameters of each algorithm on each environment.
It can be seen that GMM has 103 ∼ 105 order fewer parameters as compared with TRPO and PPO.

Figure 1. Comparison of PPO, RPPO and TRPO on three MuJoCo environments.

98

http://cis.ccsenet.org Computer and Information Science Vol. 13, No. 3; 2020

6. Conclusion

We proposed a general Riemannian proximal optimization algorithm with guaranteed convergence to solve Markov deci-
sion process (MDP) problems. To model policy functions in MDP, we employed the Gaussian mixture model (GMM) and
formulated it as a non-convex optimization problem in the Riemannian space of positive semidefinite matrices. Prelimi-
nary experiments on benchmark tasks in OpenAI Gym MuJoCo (Todorov et al., 2012) show the efficacy of the proposed
RPPO algorithm.

In Sec. 4.1, the algorithm 1 we proposed is capable of optimizing a general class of non-convex functions of the form
f (θ) = g (θ) − h (θ) + φ (θ). Due to page limit, in this study we focus on f (θ) = g (θ) + φ (θ) as shown in the Optimization
problem (2). In the future, it would be interesting to incorporate constraints in MDP problems like constrained policy
optimization (Achiam et al., 2017) and encode them as a concave function −h(θ) in our RPPO algorithm.

References

Absil, P. A., Baker, C. G., & Gallivan, K. A. (2007). Trust-region methods on riemannian manifolds. Foundations of
Computational Mathematics, 7(3), 303-330. https://doi.org/10.1007/s10208-005-0179-9

Absil, P. A., Mahony, R., & Sepulchre, R. (2009). Optimization algorithms on matrix manifolds. Princeton University
Press. https://doi.org/10.1515/9781400830244

Achiam, J., Held, D., Tamar, A., & Abbeel, P. (2017). Constrained policy optimization. In Proceedings of the 34th
International Conference on Machine Learning, 70, 22-31. JMLR. org.

Agostini, A., & Celaya, E. (2010). Reinforcement learning with a gaussian mixture model. In The 2010 International
Joint Conference on Neural Networks (IJCNN), (pp. 1-8). IEEE. https://doi.org/10.1109/IJCNN.2010.5596306

Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from demonstration. Robotics
and autonomous systems, 57(5), 469-483. https://doi.org/10.1016/j.robot.2008.10.024

Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein gan. arXiv preprint arXiv:1701.07875.

Chen, Y., Georgiou, T. T., & Tannenbaum, A. (2019). Optimal transport for gaussian mixture models. IEEE Access, 7,
6269-6278. https://doi.org/10.1109/ACCESS.2018.2889838

Cheng, L. (2013). Riemannian similarity learning. In International Conference on Machine Learning (pp. 540-548).

Devroye, L., Mehrabian, A., & Reddad, T. (2018). The total variation distance between high-dimensional gaussians.
arXiv preprint arXiv:1810.08693.

Eisenhart, L. P. (2016). Riemannian geometry. Princeton university press.

Ferreira, O., & Oliveira, P. (2002). Proximal point algorithm on riemannian manifolds. Optimization, 51(2), 257-270.
https://doi.org/10.1080/02331930290019413

Hosseini, R., & Sra, S. (2015). Matrix manifold optimization for gaussian mixtures. In Advances in Neural Information
Processing Systems (pp. 910-918).

Huang, W., Gallivan, K. A., & Absil, P. A. (2015). A broyden class of quasi-newton methods for riemannian optimization.
SIAM Journal on Optimization, 25(3), 1660-1685. https://doi.org/10.1137/140955483

Kakade, S., & Langford, J. (2002). Approximately optimal approximate reinforcement learning. In Proceedings of the
19th International Conference on Machine Learning, (pp. 267-274).

Khamaru, K., & Wainwright, M. J. (2018). Convergence guarantees for a class of non-convex and non-smooth optimiza-
tion problems. arXiv preprint arXiv:1804.09629.

Li, Y. (2017). Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland,
A. K., Ostrovski, G., et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540),
529. https://doi.org/10.1038/nature14236

Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015). Trust region policy optimization. In International
Conference on Machine Learning (pp. 1889-1897).

99

http://cis.ccsenet.org Computer and Information Science Vol. 13, No. 3; 2020

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization algorithms.
CoRR, abs/1707.06347.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., ... Lanctot, M. et al. (2016). Mastering
the game of go with deep neural networks and tree search. nature, 529(7587), 484.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., ... Bolton, A., et al. (2017). Mastering
the game of go without human knowledge. Nature, 550(7676), 354. https://doi.org/10.1038/nature24270

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Todorov, E., Erez, T., & Tassa, Y. (2012). Mujoco: A physics engine for model-based control. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, (pp. 5026-5033). IEEE.
https://doi.org/10.1109/IROS.2012.6386109

Vandereycken, B. (2013). Low-rank matrix completion by Riemannian optimization. SIAM Journal on Optimization,
23(2), 1214-1236. https://doi.org/10.1137/110845768

Wang, Q., Xiong, J., Han, L., Liu, H., & Zhang, T., et al. (2018). Exponentially weighted imitation learning for batched
historical data. In Advances in Neural Information Processing Systems (pp. 6288-6297).

Zhang, H., Reddi, S. J., & Sra, S. (2016). Riemannian svrg: Fast stochastic optimization on riemannian manifolds. In
Advances in Neural Information Processing Systems (pp. 4592-4600).

100

http://cis.ccsenet.org Computer and Information Science Vol. 13, No. 3; 2020

Appendix

1. Proof of Lemma 1:

First let’s define a convex majorant q(w, θk) of the function f as follows:

q(w, θk) = g(θk) − h(θk) + ⟨∇g(θk) − uk,w⟩ +
1

2αk
∥w∥22+φ(expθk (w)), (13)

where w ∈ Tθk M. Note that minimizer of q(w, θk) is the same as θk+1 = min
θ∈M

{
φ(θ) + 1

2αk
d2(θ, θk − αk (∇g (θk) − uk))

}
.

The optimality condition of θk+1 guarantees that there exists subgradient vk+1 ∈ ∂φ(θk+1) satisfying the following equation:

∇g(θk) − uk + vk+1 +
1
αk

w = 0. (14)

Let w = exp−1
θk
θk+1, we have

θk+1 = expθk (−αk(∇g(θk) − uk + vk+1)). (15)

From convexity of the function φ, for any θ ∈ M and vk+1 ∈ ∂φ(θk+1) we have φ(θk) ≥ φ(θk+1) + ⟨vk+1,w⟩, w ∈ Tθk+1 M.

To prove the second inequality in Lemma 1, we have

f (θk) − q(wk, θk) =g(θk) − h(θk) + φ(θk) − q(wk, θk) (16)
≥ g(θk) − h(θk) + φ(θk+1) + ⟨vk+1,w⟩ − q(wk, θk)

≥ g(θk) − h(θk) + φ(θk+1) + ⟨vk+1,w⟩ − (g(θk) − h(θk) + ⟨∇g(θk) − uk,wk⟩ +
1

2αk
∥wk∥22+φ(expθk (wk)))

≥ φ(θk+1) + ⟨vk+1,w⟩ − (⟨∇g(θk) − uk,wk⟩ +
1

2αk
∥wk∥22+φ(expθk (wk))).

Since w = −wk = αk(∇g(θk) − uk + vk+1), we have

f (θk) − q(wk, θk) ≥ ⟨−∇g(θk) + uk − vk+1,wk⟩ −
1

2αk
∥wk∥22≥

1
αk
⟨wk,wk⟩ −

1
2αk
∥wk∥22=

1
2αk
∥wk∥22. (17)

Recall that q(wk, θk) is a majorant for the function f , so

f (θk) − f (θk+1) ≥ f (θk) − q(wk, θk) ≥ 1
2αk
∥wk∥22=

1
2αk

d2(θk, θk+1). (18)

2. Proof of Theorem 1:

First we would like to prove the convergence of function value. Since the sequence { f (θk)}k≥0 is bounded below, if
θk = θk+1 for some k, the convergence of the sequence { f (θk)}k≥0 is trivial. Let’s assume that θk , θk+1 for all k = 0, 1, 2,
Under the above assumption, Lemma 1 ensures that f (θk) > f (θk+1). Consequently, there must exist some scalar f̄ which
is the limit of f (θk), lim

k→∞
f (θk) = f̄ .

Due to page limit, the proof of stationarity of limit points is omitted.

Now let’s establish the bound. Since f ∗ = min f (θ) is finite, by utilizing Lemma 1, we have

f (θ0) − f ∗ ≥ f (θ0) − f (θN+1) =
N∑

k=0

(f (θk) − f (θk+1)) ≥
N∑

k=0

1
2αk

d2(θk, θk+1). (19)

Note that αk ∈ (0, 1
L], k ∈ {0, 1, 2, ...}, so

∑N
k=0 d2(θk, θk+1) ≤ 2(f (θ0)− f ∗)

L .

Recall that the function h is Mh-smooth,

∥∇ f (θk+1)∥2 =∥∇g(θk+1) − uk+1 + vk+1∥2 = ∥∇g(θk+1) − uk+1 − (∇g(θk) − uk +
1
αk

d(θk, θk+1))∥2 (20)

≤ ∥∇g(θk+1) − ∇g(θk)∥ + ∥uk+1 − uk∥ +
1
αk

d(θk, θk+1) ≤ (L + Mh +
1
αk

)d(θk, θk+1)

(21)

101

http://cis.ccsenet.org Computer and Information Science Vol. 13, No. 3; 2020

So
2(f (θ0) − f ∗)

L
≥

N∑
k=0

d2(θk, θk+1) ≥
N∑

k=0

1
(L + Mh +

1
αk

)2
∥∇ f (θk+1)∥22 (22)

3. Proof of Lemma 3:

For two Gaussian distributions N0(µ, S 0) and N1(µ, S 1) with the same mean, their total variation distance is bounded by
(Devroye et al., 2018):

DTV (N0(µ, S 0),N1(µ, S 1)) ≤ BTV (N0(µ, S 0),N1(µ, S 1)) =
3
2

min{1, ∥ S −1
0 S 1 − I ∥F}. (23)

By using Wasserstein metric, we have

DTV (π′(a | s), π(a | s)) =
1
2

∫
| Σiα

′
iN(a; S ′i) − ΣiαiN(a; S i) | da ≤

∑
i, j

d∗(i, j)BTV (N(a; S ′i),N(a; S j)), (24)

where d∗(i, j) = arg min
d∈∏(α′,α)

∑
i, j d(i, j)BTV (N(a; S ′i),N(a; S j)).

4. Proof of Theorem 2:

Our proof follows the idea proposed by Wang et al. (Wang et al., 2018). From Corollary 1 in (Achiam et al., 2017), we
have

J(π′) − J(π) ≥ Lπ(π′) −
2γϵπ

′
π

(1 − γ) DπTV (π′, π), (25)

where ϵπ
′
π = maxs | Ea∼π′Aπ(s, a) |, DπTV (π′, π) = Σ

s
ρπ(s)DTV (π′(a | s), π(a | s)) and Lπ(π′) = Σ

s
ρπ(s)Σ

a
π
′
(a|s)Aπ (s, a).

Similarly, we also have

|J(π′) − J(π)| = Σ
s
ρπ(s)|Σ

a
(π′(a|s) − π(a|s))Aπ (s, a) | ≤ Σ

s
ρπ(s)Σ

a
|π′(a|s) − π(a|s)||Aπ (s, a) | ≤ 2Dπ

′

TV (π′, π)Mπ, (26)

where Mπ = maxs,a |Aπ(s, a)|. Then

J(π′) − J(π) = (J(π′) − J(
∼
π)) + (J(

∼
π) − J(π)) ≥ −2Dπ

′

TV (π′,
∼
π)M

∼
π + Lπ(

∼
π) − 2γϵ

∼
π
π

(1 − γ) DπTV (
∼
π, π) (27)

≥ −2Dπ
′

TV (π′,
∼
π)M

∼
π +

1
β

DπW2
(
∼
π, π) − 2γϵ

∼
π
π

(1 − γ) DπTV (
∼
π, π).

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

102

