# Evaluation of Hajj Instrument (HAJI) Psychometric Properties Using Rasch Measurement

Muhammad Iqbal Tariq Idris<sup>1</sup>, Abdul Hafidz Omar<sup>2</sup>, Dayang Hjh Tiawa Awang Hj Hamid<sup>1</sup> & Fahmi Bahri Sulaiman<sup>1</sup>

Correspondence: Muhammad Iqbal Tariq Idris, Sports Innovation & Technology Center, Faculty Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia. Tel: 60-7555-8535. E-mail: tariq363@gmail.com

Received: May 14, 2016 Accepted: May 26, 2016 Online Published: July 7, 2016 doi:10.5539/ass.v12n8p212 URL: http://dx.doi.org/10.5539/ass.v12n8p212

# **Abstract**

Hajj Instrument (HAJI) was developed to determine hajj pilgrim's wellness. This study used Rasch measurement to evaluate the psychometric properties including validity and reliability of the HAJI. The respondents involved in this study were 300 comprised of Malaysian hajj pilgrims. HAJI consists of eight constructs namely physical care, physical activity, healthy eating, knowledge, mental toughness, intrapersonal, interpersonal and relationship with Creator and natures. Validity of each construct and content was determined through dimensionality, item fit and item polarity while the reliability was achieved by administered person and item separation. The results showed that the reliability for both item and person were 0.99 and 0.96 respectively. Besides, there were no items need to be dropped based on PTMEA CORR and INFIT MNSQ results. The study revealed that the items of HAJI fit the Rasch model as well as able to measure hajj pilgrim's wellness.

Keywords: wellness, hajj, Rasch measurement, validity, reliability

# 1. Introduction

There are extensive literatures on the definition of wellness but few researches about the wellness assessment (Anspaugh, Hamrick, & Rosato, 2008). Wellness assessment is a tool to assist human in establishing positive lifestyle behaviors, execute early health interventions or reduce other health risks (Haddad, Owies, & Mansour, 2009). Several researchers have discussed on the difficulty of assessing the dynamic nature of wellness as well as insufficiently of the existing measurement tools (Rachele et al., 2013; Renger et al., 2000). There are several methods have been developed to measure wellness such as Life Assessment Questionnaire (LAQ) (Tearnan & Ross, 2012), TestWell (Brown, Applegate, & Yildiz, 2015), Perceived Wellness Survey (Rothmann & Ekkerd, 2007), Optimal Living Profile (von Guenthner & Hammermeister, 2007) and Wellness Inventory (Roscoe, 2009). However, those methods assess wellness in general which means not specific to certain events and age. Therefore, the results will not fully representative the general population and may not accurately address pilgrims' wellness issues or needs at all if use those assessments. Nevertheless, there is argument that some of these assessments have either good reliability or validity (Brent & Carlson, 2014). Thus, study aims to evaluate HAJI reliability and validity in order to be used as a measurement instrument for hajj ritual.

#### 2. Method

This study used questionnaire and were distributed to 300 respondents consist of hajj pilgrims. The respondents were randomly chosen from six mosques which organized Hajj courses in Johor Bahru district. The questionnaire consist of 72 questions that were divided into eight construct namely physical care, physical activity, healthy eating, knowledge, mental toughness, intrapersonal, interpersonal and relationship with Creator and natures. Rasch measurement (RM) was used to analyze the validity and reliability of HAJI based on psychometric standard criteria including item dimensionality, item polarity and item fit analysis. Instrument calibration scale also was administered to assess the suitability of the scale used in HAJI. Four Likert scale was used in HAJI consist of Strongly Agree (4), Agree (3), Disagree (2) and Strongly Disagree (1).

<sup>&</sup>lt;sup>1</sup> Sports Innovation & Technology Center (SITC), Universiti Teknologi Malaysia, Johor, Malaysia

<sup>&</sup>lt;sup>2</sup> Institute of Human Centered Engineering (IHCE), Universiti Teknologi Malaysia, Johor, Malaysia

# 3. Findings & Discussion

Validity and reliability of HAJI were analyzed using Winsteps version 3.68.2. The analysis results are as followed.

# 3.1 Dimensionality Analysis

Dimensionality is important aspect to ensure the HAJI measured in one direction and dimension. Satisfactory dimensionality define by raw variance explained where the recommended value is more than 40% while unexplained variance in  $1^{st}$  contrast value is  $\leq 15$  (Bond & Fox, 2015; Linacre, 2006). Figure 1 shows the dimensionality of HAJI.

```
Table of STANDARDIZED RESIDUAL variance (in Eigenvalue units)
                                                                    Empirical
                                                                                           Modeled
                                                               139.0
                                                                       10<del>0.0%</del>
48.2%
Total raw variance in observations
  Raw variance explained by measures
                                                                                             18.9%
    Raw variance explained by persons
                                                                 25.9
                                                                         18.
  Raw Variance explained by items
Raw unexplained variance (total)
                                                                 41.0
72.0
                                                                         29.5%
                                                                                              29.9%
                                                                             8% 100.0%
                                                                                             51.2%
    Unexplined variance in 1st contrast =
Unexplined variance in 2nd contrast =
                                                                 10.5
                                                                           7.6%
                                                                                  14.6%
    Unexplined variance in 3rd contrast
Unexplined variance in 4th contrast
                                                                  5.6
                                                                          3.9%
    Unexplned variance in 5th contrast
                                                                  5.0
                                                                          3.6%
                                                                                    6.9%
```

Figure 1. Analysis of dimensionality

It can be seen in Figure 1 that raw variance explained by measures of HAJI was 48.2% as well as value for unexplained variance was 7.6% which not exceed the RM control limit. This means HAJI have good dimensional characteristic and HAJI constructs was proven to measured only one dimension (Aziz et al., 2008).

# 3.2 Reliability Analysis

RM analyzes both person and item reliability. Reliability defined as consistency of respondents' answer to the items scale (Mofreh et al., 2014). RM measures reliability including person separation reliability. This statistic shows the ability of the item to separate persons with different levels of the concept measured. According to Linacre (2006) and Bond & Fox (2015), value for accepting reliability in RM is should be more than 0.50 while acceptable separation value should be more than two (Fisher, 2010). Figure 2 and 3 show the item reliability and person reliability respectively.

SUMMARY OF 72 MEASURED ITEM

|                              | TOTAL                            |                               |                              | MODEL                    | INF                       | ΙΤ                         | OUTF                      | IT                         |
|------------------------------|----------------------------------|-------------------------------|------------------------------|--------------------------|---------------------------|----------------------------|---------------------------|----------------------------|
|                              | SCORE                            | COUNT                         | MEASURE                      | ERROR                    | MNSQ                      | ZSTD                       | MNSQ                      | ZSTD                       |
| MEAN<br>S.D.<br>MAX.<br>MIN. | 949.9<br>94.6<br>1137.0<br>464.0 | 300.0<br>.0<br>300.0<br>300.0 | .00<br>1.38<br>6.08<br>-3.30 | .13<br>.01<br>.15<br>.10 | .97<br>.45<br>2.36<br>.35 | -1.1<br>4.9<br>9.9<br>-9.2 | .96<br>.54<br>2.84<br>.29 | -1.1<br>4.8<br>9.9<br>-9.7 |
| REAL<br>MODEL<br>S.E.        |                                  | TRUE SD<br>TRUE SD<br>N = .16 |                              | ARATION 10<br>ARATION 10 |                           |                            | IABILIT<br>IABILIT        |                            |

Figure 2. Analysis of item reliability

#### SUMMARY OF 300 MEASURED PERSON

|                                    | TOTAL                           |                                |                             | MODEL                        | INF                        | IT                      | OUTI                      | -IT                           |
|------------------------------------|---------------------------------|--------------------------------|-----------------------------|------------------------------|----------------------------|-------------------------|---------------------------|-------------------------------|
|                                    | SCORE                           | COUNT                          | MEASURE                     | ERROR                        | MNSQ                       | ZSTD                    | MNSQ                      | ZSTD                          |
| MEAN<br>  S.D.<br>  MAX.<br>  MIN. | 228.0<br>22.0<br>276.0<br>194.0 | 72.0<br>.0<br>72.0<br>72.0     | 2.54<br>1.47<br>6.08<br>.32 | . 26<br>. 02<br>. 36<br>. 24 | 1.03<br>.58<br>2.73<br>.19 | 2<br>3.1<br>6.9<br>-6.1 | .96<br>.53<br>1.93<br>.15 | 5  <br>2.8  <br>4.2  <br>-6.2 |
| MODEL                              |                                 | TRUE SD<br>TRUE SD<br>AN = .08 |                             |                              |                            |                         | IABILIT                   |                               |

PERSON RAW SCORE-TO-MEASURE CORRELATION = 1.00 CRONBACH ALPHA (KR-20) PERSON RAW SCORE "TEST" RELIABILITY = .97

Figure 3. Analysis of person reliability

Results show that value of item reliability was 0.99 whereas item separation value is more than two (10.04) as shown in Figure 2. While, Figure 3 shows person reliability was 0.96 whereas for the person separation the value was five. Thus, it can be conclude that HAJI has strong and acceptable reliability ( $\geq 0.8$ ) as suggested by Aziz et al., (2008), Bond & Fox (2015) and Mamat, Maidin, & Mokhtar (2014). This means respondents involved represent actual characters that need to be tested. Besides, result for separation was good and it shows variety of skills in answering HAJI (Smith, 2000).

# 3.3 Item Polarity Analysis

Item polarity is necessary in measuring the constructs validity. It is similar to factor analysis function where it is used to access the relationship of the items in measuring the construct. The criteria of good correlation are the values PTMEA should be > 0.20 (Bond & Fox, 2015). Table 1 shows there were no value of negative correlation and all PTMEA of each items is > 0.20. This indicates that there are no mistakes in data entry or miscoded items. Table 2 shows the summary of item polarity analysis.

# 3.4 Item Fit Analysis

In order to analyze appropriateness of HAJI items, each item were analyzed separately. Each measured item shows the information of mean square (MNSQ) which can used to identify misfit item. According to Bond & Fox (2015), acceptance value of MNSQ for infit analysis should be 0.4 < x < 1.5 and ZSTD values range between -2 and 2. Table 1 shows analysis of item fit for all items. From the table, it can be seen that infit MNSQ values for all items was within the standard range of RM. It means all the 72 items fit the construct and may not be drop. Table 3 shows the summary of item fit analysis.

Table 1. Analysis of item polarity and item fit

|                 | m . 1 | T . 1          |         |               | In   | fit  | Ou   | tfit | РТ-Ме | easure | Exact    | Match    |             |
|-----------------|-------|----------------|---------|---------------|------|------|------|------|-------|--------|----------|----------|-------------|
| Entry<br>Number | •     | Total<br>Count | Measure | Model<br>S.E. | MNSQ | ZSTD | MNSQ | ZSTD | Corr. | EXP.   | OBS<br>% | EXP<br>% | Item        |
| 22              | 464   | 300            | 6.08    | .12           | 1.20 | .9   | 2.33 | 9.9  | .62   | .65    | 43.3     | 68.3     | CN22        |
| 13              | 684   | 300            | 3.61    | .10           | .49  | 56   | .79  | 3    | .64   | .46    | 60.6     | 51.0     | K13         |
| 62              | 745   | 300            | 2.93    | .11           | 1.17 | .8   | 2.53 | 9.9  | .25   | .58    | 31.3     | 65.2     | CN62        |
| 2               | 791   | 300            | 2.38    | .11           | 1.10 | .7   | 1.21 | .6   | .55   | .52    | 33.3     | 46.9     | HE2         |
| 37              | 821   | 300            | 2.01    | .11           | 2.03 | .99  | 2.39 | 9.9  | .55   | .54    | 50.7     | 65.6     | MT37        |
| 20              | 829   | 300            | 1.91    | .11           | 1.33 | 1.2  | 1.04 | .3   | .76   | .46    | 48.5     | 50.5     | MT20        |
| 16              | 864   | 300            | 1.44    | .12           | .92  | 0    | 1.00 | .0   | .74   | .54    | 73.7     | 69.7     | HE16        |
| 36              | 864   | 300            | 1.44    | .12           | 1.19 | 1.24 | 1.31 | 3.1  | .81   | .54    | 68.3     | 69.7     | INTE<br>R36 |
| 38              | 864   | 300            | 1.44    | .12           | .65  | 46   | 8    | 8    | .80   | .27    | 84.8     | 77.6     | K38         |
| 3               | 866   | 300            | 1.41    | .12           | 1.17 | .7   | 1.21 | .6   | .64   | .52    | 33.3     | 46.9     | MT3         |
| 9               | 869   | 300            | 1.37    | .12           | .49  | 56   | .75  | 6    | .75   | .52    | 45.5     | 46.8     | K9          |
| 35              | 872   | 300            | 1.32    | .12           | 1.16 | .7   | 1.30 | 3.0  | .49   | .54    | 74.0     | 70.5     | CN35        |
| 21              | 882   | 300            | 1.18    | .12           | .99  | 0    | 1.03 | .3   | .44   | .54    | 74.0     | 71.4     | CN21        |
| 43              | 892   | 300            | 1.03    | .12           | 1.37 | 1.49 | 1.38 | 1.0  | .45   | .52    | 21.2     | 46.8     | PA43        |
| 15              | 893   | 300            | 1.02    | .12           | 1.09 | .7   | 1.17 | .5   | .73   | .52    | 48.3     | 46.9     | K15         |
| 45              | 901   | 300            | .89     | .12           | 1.38 | 1.3  | 1.02 | .2   | .54   | .37    | 45.5     | 59.7     | PA45        |
| 42              | 909   | 300            | .77     | .13           | 1.02 | .2   | 6.92 | 5.6  | .62   | .45    | 57.6     | 51.7     | MT42        |
| 39              | 916   | 300            | .66     | .13           | .87  | 15   | .89  | -1.0 | .60   | .55    | 79.7     | 74.2     | MT39        |
| 69              | 917   | 300            | .64     | .13           | .65  | 42   | .59  | -4.8 | .84   | .55    | 91.3     | 74.2     | MT69        |
| 8               | 925   | 300            | .51     | .13           | 1.01 | .1   | .94  | 5    | .76   | .55    | 77.0     | 74.7     | INTE<br>R8  |
| 18              | 925   | 300            | .51     | .13           | 1.26 | 1.22 | .96  | .1   | .65   | .39    | 60.6     | 58.8     | K18         |
| 14              | 932   | 300            | .40     | .13           | 1.19 | .8   | 1.13 | 1.3  | .53   | .56    | 74.0     | 75.1     | CN14        |
| 11              | 941   | 300            | .25     | .13           | 1.01 | .1   | 1.00 | .1   | .60   | .56    | 71.7     | 75.4     | MT11        |

| Г.              | T 4 1          | T + 1          |         | Model - | In   | fit  | Ou   | ıtfit | PT-Me | easure | Exact    | Match    |             |
|-----------------|----------------|----------------|---------|---------|------|------|------|-------|-------|--------|----------|----------|-------------|
| Entry<br>Number | Total<br>Score | Total<br>Count | Measure | S.E.    | MNSQ | ZSTD | MNSQ | ZSTD  | Corr. | EXP.   | OBS<br>% | EXP<br>% | Item        |
| 47              | 950            | 300            | .09     | .13     | .62  | 43   | .62  | -4.2  | .61   | .81    | 79.7     | 75.7     | MT47        |
| 41              | 951            | 300            | .08     | .13     | .63  | 72   | 0.53 | -1.1  | .54   | .48    | 75.8     | 48.7     | PA41        |
| 48              | 951            | 300            | .08     | .13     | .92  | 0    | 1.30 | .7    | .71   | .24    | 84.8     | 83.4     | PA48        |
| 49              | 951            | 300            | .08     | .13     | .89  | 12   | .88  | -1.1  | .68   | .58    | 82.3     | 75.8     | K49         |
| 17              | 952            | 300            | .06     | .13     | .66  | 40   | .65  | -3.8  | .55   | .26    | 82.7     | 75.8     | MT17        |
| 52              | 952            | 300            | .06     | .13     | .79  | 23   | .76  | -2.5  | .64   | .40    | 82.7     | 75.8     | K52         |
| 67              | 953            | 300            | .04     | .13     | .84  | 7    | .74  | 4     | .80   | .47    | 60.6     | 49.3     | INTE<br>R67 |
| 19              | 959            | 300            | 06      | .13     | 1.20 | .9   | 1.25 | .8    | .74   | .58    | 45.5     | 44.5     | INTE<br>R19 |
| 40              | 959            | 300            | 06      | .13     | 1.05 | .5   | .97  | 3     | .70   | .52    | 79.7     | 76.1     | K40         |
| 68              | 961            | 300            | 10      | .13     | .83  | 6    | .77  | -2.3  | .77   | .57    | 80.3     | 76.2     | HE68        |
| 46              | 967            | 300            | 20      | .13     | .95  | 5    | .92  | 8     | .78   | .57    | 83.0     | 76.3     | PA46        |
| 4               | 968            | 300            | 22      | .13     | .79  | 4    | .67  | 3.5   | .58   | .57    | 82.7     | 76.3     | HE4         |
| 23              | 968            | 300            | 22      | .13     | 1.01 | .1   | .97  | 2     | .77   | .57    | 72.0     | 76.3     | INTE<br>R23 |
| 26              | 968            | 300            | 22      | .13     | .70  | 35   | .63  | -4.1  | .76   | .52    | 77.3     | 76.3     | K26         |
| 59              | 976            | 300            | 36      | .13     | 1.30 | 1.42 | 1.28 | 2.5   | .69   | .52    | 68.0     | 76.2     | MT59        |
| 31              | 977            | 300            | 37      | .13     | .94  | 73   | .93  | 7     | .64   | .37    | 75.0     | 76.2     | MT31        |
| 51              | 977            | 300            | 37      | .13     | .69  | 37   | .64  | -3.9  | .68   | .34    | 85.7     | 76.2     | MT51        |
| 54              | 978            | 300            | 39      | .13     | .81  | 21   | .77  | -2.3  | .61   | .36    | 80.0     | 76.2     | MT54        |
| 5               | 984            | 300            | 50      | .13     | .74  | 77   | .67  | -3.5  | .68   | .57    | 83.0     | 76.2     | PC5         |
| 10              | 984            | 300            | 50      | .13     | .69  | 39   | .62  | -4.2  | .61   | .46    | 77.7     | 76.2     | MT10        |
| 6               | 985            | 300            | 51      | .13     | .70  | 2    | .69  | 5     | .60   | .45    | 51.5     | 51.7     | HE6         |
| 50              | 985            | 300            | 51      | .13     | .76  | 68   | .54  | 8     | .58   | .27    | 84.8     | 77.6     | HE50        |
| 61              | 985            | 300            | 51      | .13     | 1.12 | 1.21 | 1.11 | .4    | .64   | .26    | 87.9     | 81.0     | PC61        |
| 53              | 986            | 300            | 53      | .13     | .77  | 8    | .79  | 3     | .73   | .45    | 66.7     | 52.2     | INTE<br>R53 |
| 55              | 987            | 300            | 55      | .13     | .66  | 41   | .60  | -4.5  | .73   | .24    | 83.3     | 76.2     | MT55        |
| 66              | 987            | 300            | 55      | .13     | .69  | 37   | .64  | -3.9  | .60   | .53    | 82.7     | 76.2     | MT66        |
| 28              | 995            | 300            | 69      | .13     | .70  | 35   | .63  | -4.0  | .74   | .58    | 80.0     | 76.0     | MT28        |
| 44              | 1000           | 300            | 78      | .13     | .68  | 40   | .63  | -4.0  | .64   | .46    | 85.7     | 75.9     | K44         |
| 65              | 1001           | 300            | 79      | .13     | .82  | 21   | .79  | -2.1  | .67   | .47    | 80.0     | 75.9     | K65         |
| 27              | 1002           | 300            | 81      | .13     | 1.41 | 1.2  | 1.11 | .4    | .65   | .26    | 87.9     | 81.0     | PA27        |
| 29              | 1002           | 300            | 81      | .13     | .92  | 0    | 1.3  | .7    | .50   | .24    | 84.8     | 83.4     | PC29        |
| 70              | 1002           | 300            | 81      | .13     | .70  | 12   | .65  | -3.9  | .69   | .57    | 91.7     | 75.8     | CN70        |
| 7               | 1008           | 300            | 92      | .13     | 1.40 | 1.16 | 1.34 | 3.0   | .38   | .57    | 74.0     | 75.5     | CN7         |
| 24              | 1009           | 300            | 93      | .13     | .76  | 16   | .66  | -3.7  | .62   | .57    | 76.7     | 75.5     | CN24        |
| 12              | 1010           | 300            | 95      | .13     | 1.24 | 1.0  | 1.23 | 2.1   | .57   | .57    | 65.7     | 75.4     | CN12        |
| 30              | 1011           | 300            | 97      | .13     | .83  | 6    | .75  | 6     | .57   | .52    | 45.5     | 46.8     | PC30        |
| 60              | 1011           | 300            | 97      | .13     | .67  | 93   | .66  | 8     | .82   | .51    | 39.4     | 47.0     | INTE<br>R60 |
| 64              | 1011           | 300            | 97      | .13     | .89  | 6    | .75  | 6     | .73   | .52    | 45.5     | 46.8     | INTE<br>R64 |
| 32              | 1019           | 300            | -1.11   | .13     | .82  | 6    | .79  | 3     | .76   | .46    | 60.6     | 51.0     | INTR<br>A32 |

| Enter           | T-4-1          | T-4-1          |         | Model<br>S.E. | Int  | fit  | Ou   | ıtfit | PT-Me | easure | Exact Match |          |             |
|-----------------|----------------|----------------|---------|---------------|------|------|------|-------|-------|--------|-------------|----------|-------------|
| Entry<br>Number | Total<br>Score | Total<br>Count | Measure |               | MNSQ | ZSTD | MNSQ | ZSTD  | Corr. | EXP.   | OBS<br>%    | EXP<br>% | Item        |
| 33              | 1019           | 300            | -1.11   | .13           | .90  | 0    | 1.3  | .7    | .75   | .24    | 84.8        | 83.4     | INTR<br>A33 |
| 57              | 1027           | 300            | -1.25   | .13           | .54  | 18   | .45  | -6.4  | .76   | .45    | 79.7        | 74.0     | K57         |
| 56              | 1028           | 300            | -1.26   | .13           | .49  | 58   | .54  | -5.1  | .31   | .55    | 86.0        | 73.9     | CN56        |
| 63              | 1038           | 300            | -1.44   | .13           | .59  | 18   | .59  | -1.1  | .63   | .52    | 48.5        | 46.8     | PC63        |
| 58              | 1043           | 300            | -1.52   | .13           | .78  | 18   | .69  | -3.0  | .59   | .54    | 83.3        | 73.0     | CN58        |
| 34              | 1044           | 300            | -1.54   | .13           | .81  | 89   | .79  | 3     | .82   | .45    | 66.7        | 52.2     | INTR<br>A34 |
| 25              | 1046           | 300            | -1.58   | .13           | 1.02 | .2   | 6.92 | 5.6   | .78   | .45    | 57.6        | 51.7     | INTR<br>A25 |
| 72              | 1069           | 300            | -1.97   | .13           | .83  | 6    | .79  | 3     | .76   | .46    | 60.6        | 51.0     | PC72        |
| 71              | 1095           | 300            | -2.44   | .14           | 1.04 | 1.13 | 1.25 | .7    | .80   | .50    | 21.2        | 47.4     | INTR<br>A71 |
| 1               | 1137           | 300            | -3.30   | .15           | 1.07 | 1.27 | 1.54 | 1.9   | .69   | .37    | 73.3        | 80.0     | HE1         |

Table 2. Analysis of item polarity

| No. | Construct                             | PTME | A CORR |
|-----|---------------------------------------|------|--------|
| NO. | Constituct                            | Min  | Max    |
| 1   | Physical Activity                     | 0.45 | 0.78   |
| 2   | Healthy Eating                        | 0.55 | 0.77   |
| 3   | Physical Care                         | 0.50 | 0.76   |
| 4   | <b>Intrapersonal Communication</b>    | 0.75 | 0.82   |
| 5   | Interpersonal Communication           | 0.73 | 0.82   |
| 6   | Knowledge                             | 0.64 | 0.81   |
| 7   | Relationship with Creator and natures | 0.25 | 0.69   |
| 8   | Mental Toughness                      | 0.55 | 0.87   |

Table 3. Analysis of item fit

| No.  | Construct                             | INFIT I | MNSQ | INFIT ZSTD |                                                                |  |
|------|---------------------------------------|---------|------|------------|----------------------------------------------------------------|--|
| INO. | Construct                             | Min     | Max  | Min        | Min Max -0.72 1.49 -0.68 1.27 -0.77 1.21 -0.89 1.13 -0.93 1.24 |  |
| 1    | Physical Activity                     | 0.63    | 1.41 | -0.72      | 1.49                                                           |  |
| 2    | Healthy Eating                        | 0.70    | 1.10 | -0.68      | 1.27                                                           |  |
| 3    | Physical Care                         | 0.59    | 1.12 | -0.77      | 1.21                                                           |  |
| 4    | Intrapersonal Communication           | 0.81    | 1.04 | -0.89      | 1.13                                                           |  |
| 5    | Interpersonal Communication           | 0.67    | 1.20 | -0.93      | 1.24                                                           |  |
| 6    | Knowledge                             | 0.49    | 1.26 | -0.56      | 1.22                                                           |  |
| 7    | Relationship with Creator and natures | 0.49    | 1.40 | -0.58      | 1.16                                                           |  |
| 8    | Mental Toughness                      | 0.62    | 1.30 | -0.73      | 1.42                                                           |  |

# 3.5 Category Function Analysis

Rasch analysis could validate the scale used by made zero calibration setting. Rasch analysis determines validity of respond possibility to spread fairly between specified scales (Alagumalai, Curtis, & Hungi, 2005; Aziz et al.,

2008; Kassim, 2007). Figure 3 and 4 shows summarized of category function analysis and structured measurement at the intersection point. It can be seen most frequent option answered by respondent was three (13230) following by 4 (6119), 2 (1977) and 1 (274). It can be seen also that respond pattern was normal due to the observed average start from negative logit (-1.92) and end with positive logit (4.56). Lastly, structure calibration is the strength of Rasch measurement model where Rasch solved the gap flexibility problem within the Likert scale range. In this study, the deviation between the scale one and two was 3.31, deviation for two and three was 4 and deviation for three and four was 4.69. This verified that scale used in HAJI is suitable and manage to differentiate by respondent. According to Bond & Fox (2015) value of scale need to be remain if the deviation value is more than 1.4 and less than 5 (1.4 < s < 5).

| SUMMARY | OF | CATEGORY | STRUCTURE. | Model="R" |
|---------|----|----------|------------|-----------|
|         |    |          |            |           |

|   |   |       |    |       |       |      |      | STRUCTURE |    |          |   |
|---|---|-------|----|-------|-------|------|------|-----------|----|----------|---|
|   |   |       |    |       |       |      |      | CALIBRATN |    |          |   |
|   |   |       | +  |       | +-    |      | ++   |           | +  |          |   |
| 1 | 1 | 274   | 1  | -1.92 | -3.11 | 2.08 | 2.41 | NONE      | 1( | -4.46) j | 1 |
| 2 | 2 | 1977  | 9  | .40   | .19   | 1.19 | 1.16 | -3.31     |    | -2.00    | 2 |
| 3 | 3 | 13230 | 61 | 2.02  | 2.16  | . 90 | .79  | 69        |    | 1.66     | 3 |
| 4 | 4 | 6119  | 28 | 4.56  | 4.38  | .85  | .83  | 4.00      | 1( | 5.10)    | 4 |

Figure 4. Analysis of category function

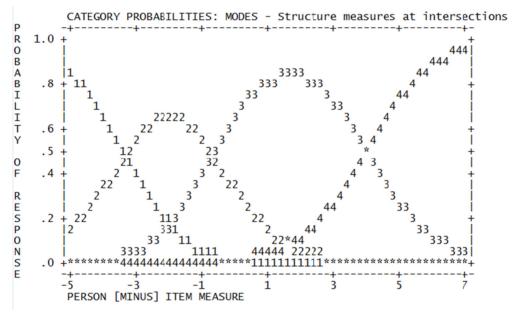



Figure 5. Structured measurement at the intersection point

#### 4. Conclusion

This study used RM to evaluate the psychometric properties of HAJI including reliability and validity. The items were developed based on previous research and expert consult. While for the evaluation of items, researcher used RM. From the findings, HAJI obtained high reliability value and this indicates that HAJI is valid and reliable to measure pilgrim's wellness. Based on the results, item reliability was 0.99 > 0.50, item separation was 10.04 > 2.0, dimensionality exceed the standard range of RM, all PTMEA shows positive value and all 72 items are found to be valid. Thus, this study contributes significantly to the hajj pilgrims and can be used by responsible parties including hajj management and ministry of health to determine hajj pilgrim's wellness.

# References

Alagumalai, S., Curtis, D. D., & Hungi, N. (2005). Applied Rasch Measurement: A Book of Exemplars. Springer.
Anspaugh, D., Hamrick, M., & Rosato, F. (2008). Wellness: Concepts and Applications. McGraw-Hill Companies, Incorporated. Retrieved from https://books.google.com.my/books?id=PHcnRwAACAAJ

- Aziz, A. A., Mohamed, A., Arshad, N. H., Zakaria, S., Ghulman, H. A., & Masodi, M. S. (2008). Development of rasch-based descriptive scale in profiling information professionals' competency. In *Proceedings International Symposium on Information Technology 2008, ITSim* (Vol. 1). http://dx.doi.org/10.1109/ITSIM. 2008.4631555
- Bond, T. G., & Fox, C. M. (2015). Applying the Rasch Model: Fundamental Measurement in the Human Sciences. *International Journal of Testing*, 1. http://dx.doi.org/10.1207/S15327574IJT013&4 10
- Brent, E. D., & Carlson, M. J. (2014). *An Inventory of Evidence-Based Health and Wellness Assessments for Community-Dwelling Older Adults*. Dominican University of California. Retrieved from http://scholar.dominican.edu/masters-theses/1
- Brown, C., Applegate, E. B., & Yildiz, M. (2015). Structural validation of the Holistic Wellness Assessment. *Journal of Psychoeducational Assessment*, 33(5), 483-494. http://dx.doi.org/10.1177/0734282914564037
- Fisher, W. P. (2010). The Standard Model in the history of the Natural Sciences, Econometrics, and the social sciences. *Journal of Physics: Conference Series*, 238(1), 12016. Retrieved from http://stacks.iop.org/1742-6596/238/i=1/a=012016
- Haddad, L. G., Owies, A., & Mansour, A. (2009). Wellness appraisal among adolescents in Jordan: a model from a developing country: A cross-sectional questionnaire survey. *Health Promotion International*, 24(2), 130-139. http://dx.doi.org/10.1093/heapro/dap013
- Kassim, N. L. B. A. (2007). *Using The Rasch Measurement Model for Standard Setting of The English Language Placement Test at The IIUM.* Universiti Sains Malaysia.
- Linacre, J. M. (2006). A User's Guide to WINSTEPSMINISTEP Rasch-Model Computer Programs. Chicago IL: Winsteps®.
- Mamat, M. N., Maidin, P., & Mokhtar, F. (2014). Simplified Reliable Procedure for Producing Accurate Student's Ability Grade Using Rasch Model. *Procedia Social and Behavioral Sciences*, *112*, 1077-1082. http://dx.doi.org/10.1016/j.sbspro.2014.01.1272
- Mofreh, S. A. M., Ghafar, M. N. A., Omar, A. H. H., Mosaku, M., & Ma'ruf, A. (2014). Psychometric Properties on Lecturers' Beliefs on Teaching Function: Rasch Model Analysis. *International Education Studies*, 7(11). http://dx.doi.org/10.5539/ies.v7n11p47
- Rachele, J. N., Washington, T. L., Cuddihy, T. F., Barwais, F. A., & McPhail, S. M. (2013). Valid and reliable assessment of wellness among adolescents: do you know what you're measuring? *International Journal of Wellbeing*, *3*(2), 162-172. http://dx.doi.org/10.5502/ijw.v3i2.3
- Renger, R. F., Midyett, S. J., Soto Mas, F. G., Erin, T. D., McDermott, H. M., Papenfuss, R. L., ... Hewitt, M. J. (2000). Optimal living profile: An inventory to assess health and wellness. *American Journal of Health Behavior*, 24(6), 403-412. http://dx.doi.org/10.5993/AJHB.24.6.1
- Roscoe, L. J. (2009). Wellness: A Review of Theory and Measurement for Counselors. *Journal of Counseling and Development*, 87(2), 216-226. http://dx.doi.org/10.1002/j.1556-6678.2009.tb00570.x
- Rothmann, S., & Ekkerd, J. (2007). The validation of the perceived wellness survey in the South African Police Service. *SA Journal of Industrial Psychology*, *33*(3), 35-42. http://dx.doi.org/10.4102/sajip.v33i3.393
- Smith, E. V. (2000). Metric development and score reporting in Rasch measurement. *Journal of Applied Measurement*, 1(3), 303-326.
- Tearnan, B. H., & Ross, S. A. (2012). The Development and Classification Accuracy of the Life Assessment Questionnaire in the Detection of Pain-Related Malingering. *Behavioral Sciences and the Law*, 30(4), 516-536. http://dx.doi.org/10.1002/bsl.2028
- von Guenthner, S., & Hammermeister, J. (2007). Exploring relations of wellness and Athletic Coping Skills of collegiate athletes: Implications for sport performance. *Psychological Reports*, 101(3,2), 1043-1049. http://dx.doi.org/10.2466/PR0.101.3.1043-1049

# Copyright

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).