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Abstract 
A just identified two-equation econometric model is simulated using both Classical and Bayesian procedures. 
The estimates of the parameters for both methods were compared under a wide range of scenarios; sample size, 
residual variance and variance of the data on the predetermined variable. The Monte Carlo experiment was 
performed using E-veiws and WinBUGS computer softwares. The median, being a robust estimator of average 
in terms of validity, was used as the posterior estimate. As indicated in similar research in the past where the 
posterior mode was used as estimate, the Bayesian procedure performed better in most cases, while some 
scenarios showed similar behavior for the two procedures.  
Keywords: Bayesian procedures, Classical procedures, Simultaneous equations, Just-identified model, 
Monte-Carlo, Simulation, Estimates 
1. Introduction 
Simultaneous equations model (SEM) is a very important field of Econometrics. Some important Statistical 
implications of a linear simultaneous equation model were presented by Haavelmo (1943), such as estimation of 
the stochastic equations which should not be done separately. The restrictions imposed upon the same variables 
by other equations ought to be taken into consideration. Simultaneous equations model could be under-identified, 
just-identified or over-identified, depending on how each parameter of the model uniquely contribute to the 
endogenous variable. The just-identified model, where the equations are exactly identified is considered in this 
research work. The indirect least squares method, two-stage least squares method, k-class estimators, three-stage 
least squares method, full information maximum likelihood method, Jackknife instrumental variable method due 
to Angrist, Imbens and Krueger (1999) and Blomquist and Dahlberg (1999) method are the well known classical 
inferential approaches that have been in use. They are majorly extensions of the two basic techniques of 
single-equation methods, the ordinary least squares and maximum likelihood. The ‘true’ model structure is 
assumed unknown, and is being estimated. However, Dreze (1962) argues that such classical inference has a 
shortcoming in that, the available information on parameters is ignored; for instance, it is known that the 
marginal propensity to consume is in the unit interval, an information that could be made use of. The Bayesian 
inference however combines prior information on the parameter of interest with the likelihood function to give 
the posterior value. The Posterior distribution thus provides updated information on the parameter(s) under study. 
A comparative study of the classical and the Bayesian approaches is thus necessary so as to take advantage of 
their strength and research more on possible ways of improving on their weaknesses. 
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The need to carry out valid, generally acceptable, appropriate and convenient estimation of the Simultaneous 
equations econometric models has brought about quite a number of researches on the classical and the Bayesian 
procedures. Arnold Zellner (1971) presented the comparison of these two procedures on model 1.1, the result 
showed that the Bayesian method performed better than the classical mostly for the small sample case. 
A research was also carried out by Gao and Lahiri (2001), focusing on weak instruments. In cases with very 
weak instruments, there was no estimator that was superior to another, while in the case of weak endogeneity, 
Zellner’s MELO (Minimum expected loss), a Bayesian procedure, was the best. Their result also showed that 
under certain scenario (See Gao and Lahiri, 2001), of all the estimators, the BMOM (Bayesian method of 
moments) performed best. However, Jacknife instrumental variable estimator, a classical procedure due to 
Angrist, Imbens and Krueger (1999) and Blomquist and Dahlberg (1999), had a poor performance throughout.  
These studies reflected some Bayesian estimation method of Simultaneous equations econometric models such 
as; Bayesian method of moment proposed by Zellner, the methods used by Chao and Phillips (1998), Geweke 
(1996) and Kleibergen and Van Dijk (1998). 
In this paper, we compare the properties of the Bayesian estimators and the classical estimators in repeated trials 
as carried out by Arnold Zellner(1971) but making use of the median as Bayesian estimate and using additional 
comparison criteria; mean of the estimates, the bias, and Mean Squared Error. 
Generally, Econometric models are often expressed in terms of an unknown vector of parameters � �	�Rk 
which fully specifies the joint probability distribution of the observations X = ( x 1… x T). Given the probability 
density function f(X/� ), the classical estimation often proceeds by making use of the likelihood function L(� ) 
= f(X/� ), while the Bayesian estimation technique combines the likelihood function with the prior information 
which is usually expressed as probability density function of the parameters, ( )	 � . This gives the posterior 
distribution, which is proportional to ( ) ( ) ( )p L� 	 � �� . Most Bayesian inference problems, according to 
Geweke (1989), can be seen as evaluation of the expectation of a function u(
) of interest under the posterior, 

[ ( )] ( ) ( ) ( ) / ( ) ( )E u u p d p d� � � � � �

 


� � �                       (1.1) 

Methods of solving this problem (1.1) are not as systematic, methodical or general as are those to classical 
inference problems: because classical inference is carried out routinely using likelihood functions for which the 
evaluation of (1.1) is difficult and for most practical purposes impossible. There is a problem with the analytical 
integration of (1.1) in that the range of likelihood functions that can be considered is small, and the class of 
priors and functions of interest that can be considered is severely restricted. Also, many numerical approaches 
like quadrature methods, require special adaptation for each u, �, or L, and become unworkable if k exceeds, say, 
three.  
However, with the advent of powerful and cheap computing, numerically intensive methods for solving (1.1) 
have become more interesting. This is where Monte Carlo integration comes in (among others) as a way out, 
particularly the Markov Chain Monte Carlo (MCMC), which involves Gibbs sampling. It provides a systematic 
approach that, in principle, can be applied in any situation in which E[u ( )� ] exists, and is practical for large 
values of k. In this regard, the works of Gao and Lahiri (2001) are of note, also Geweke (1989), Gilks, 
Richardson and Spiegelhalter (1996), and others. The analysis was carried out electronically with the use of 
Eviewsc as well as WinBUGS (Bayesian Analysis using Gibbs sampling), a Computer software developed by 
Biostatistics Unit at MRC(Medical Research council) Cambridge, and Imperial College School of medicine, 
London.  
2. The model 
The model analyzed here is  

Y1t = �Y2t + U1t                      t = 1, 2, …, T              (2.1) 

Y2t = 
Xt + U2t 

Which is a just identified model where Y1t and Y2t are observations on two endogenous variables, Xt is an 
observation on an exogenous variable, U1t and U2t are disturbance terms, and � and 
 are scalar parameters. 
Zellner (1971) analyzed the model (2.1) using diffuse prior on the parameters and the posterior modal value as 
the Bayesian estimate. Here, we use the median of the posterior distribution as the Bayesian estimate and also 
make use of other comparison criteria; mean of the estimates, bias and Mean Squared Error of the estimator. 
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The identification status of the model (2.1) is easily evident using the order condition, which specifies that for 
each endogenous variable in the model having a coefficient to be estimated; at least one exogenous variable must 
be excluded from the equation. Also by the rank condition which states that; in a system of m equations, any 
particular equation is identified if it is possible to construct at least one non-zero determinant of the order (m-1) 
from the coefficients excluded from that particular equation but contained in other equations of the system. This 
is obvious in our model (2.1)  
The matrix form of our model (2.1) is 

Y� = XB + U                                  (2.2) 
Where Y = (Y1, Y2), an nx2 matrix of observations on two endogenous variables. � is a unit matrix I2 of 
coefficients for the endogenous variables. X is nx1 vector of observations on the predetermined variables. B is 
1x2 vector of coefficients for the predetermined variables, and U = (U1 , U2) is an nx2 matrix of random 
disturbance terms. For easy analysis, we need the reduced form of (3.1) (and later carry out transformations as 
appropriate), given as; 

Y1t = 	 1X1t + V1t                              (2.3) 
Y2t = 	 2X2t + V2t  

Which in matrix form, is 
Y = 	 X + V 
Where 	  = (	 1, 	 2), the matrix of the reduced form parameter, V = (V1, V2) an n x 2 matrix of reduced 
form disturbance term, V1=�U2t + U1t , V2= U2t, 	 1 = 
�, 	 2 = 
.  
3. Methodology 
The model was simulated using the two methods under study (classical and Bayesian). The first step was to 
generate the data. The following are the conditions under which the data was generated;  
RUN I 
� = 2.0, 
 = 0.5, Xt : NID(0,1), (U1t U2t): NID(0,0;�11, �12 �22), �11=1.0, �12= -1.0, �22= 4.0 
RUN II 
� = 2.0, 
 = 0.5, Xt : NID(0,2), (U1t U2t): NID(0,0;�11, �12 �22), �11=1.0, �12= 1.0, �22= 4.0 
RUN III 
� = 2.0, 
 = 0.5, Xt : NID(0,9), (U1t U2t): NID(0,0;�11, �12 �22), �11=1.0, �12= 1.0, �22= 4.0 
In each of these runs, 1000 samples of size 20, 40, 60, and 100 were generated, making a total of 4,000 samples 
in one run, and 12,000 samples altogether. To obtain random disturbance terms that behave as stated in the three 
runs, we made use of the method presented in Nagar (1969) 
Making use of the data generated, the parameter estimates were obtained with the aid of Eviews for the classical 
method and WinBUGS for the Bayesian method. (The same data sets for the two methods, the data was 
generated in Eviews). The following were used in comparing the two estimation methods: Performance in 
repeated sampling - frequency distribution; Mean Estimate; Bias and Mean Squared Error (MSE), for a 
parameter 
, is given as; 
M.S.E(
) = 2ˆ( )E � �� , which is also the same as = Var(�̂ ) + (Estimated bias)2  

where   

 Nr is number of replications and therefore number of estimates (�̂ ).  

Estimated bias 
1

1 ˆrN

rN
� �� ��  


 is the true value of the parameter, which in this case is the value used to generate the sample values. Routes to 
deriving point estimates through the classical method are; 
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� Maximum Likelihood (ML) 
� Method of moments, generalized method of moments 
� Minimum mean square error (MMSE) 
� Minimum variance unbiased estimator (MVUE) 
� Best linear unbiased estimator (BLUE) 

The estimator of �, by most of these principles of classical (sampling-theory) estimation for this just identified 
model is the same, which is given as; 
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1
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4. Bayesian Estimation method 
The Prior Probability density function could be informative or diffuse (non-informative). 
(1) Informative prior. This is a situation where information is available about the Prior pdf. The informative prior 
applied here is; 

P(	 , � -1) �  �� -1�-3/2 1 1
2exp[ / ( ) ( )]C	 	 	 	��� � �       (4.1) 

Where 	 , a 2 x 1 vector, is the mean of the prior pdf, � -1 is the inverse of the variance-covariance matrix and C 

= (C�l) is a 2 x 2 matrix of the prior covariance. 

(2) Diffuse prior. The idea behind the use of diffuse (otherwise known as non-informative, vague) prior 
distributions is to make inferences that are not greatly affected by external information or when external 
information is not available. Here, we assume little is known, a priori, about the parameters, 	 , and the three 
distinct elements of �. As our diffuse prior pdf, we assume that the elements of 	 and those of � are 
independently distributed; that is, 

P(	 , �) = p(	 ) p(� )                                  (4.2) 

Using the Jeffrey’s invariance theory, we take 

P(	 ) = constant                                       (4.3) 

And 

P(�) �  �� �-3/2                                      (4.4) 

Now denoting 
'��� as the '( , )th� �  element of the inverse of �, the Jacobian of the transformation of the 

three variances, (�11, �12, �22) to (�11,�12, �22) is  
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J = � 11 12 22
11 12 22

( , , )
( , , )
� � �
� � �

�
�

�= � ��3                           (4.5) 

So that the prior pdf implies the following prior pdf on the three distinct elements of �-1  

P(�-1) � � �-1�-3/2                                         (4.6) 

This is as a result of taking an informative prior pdf on �-1 in the Wishart pdf form and allowing the “degrees of 
freedom” in the prior pdf to be zero. With zero degrees of freedom, there is a “spread out” Wishart pdf which 
then serve as a diffuse prior pdf since it is diffuse enough to be substantially modified by a small number of 
observations. 
Hence, our diffuse prior pdf ‘s are (5.3), (5.4), and (5.6). These diffuse prior pdf ‘s were also arrived at by 
Zellner(1971), Geisser(1965) and others. 
Based on the assumption from our model that rows of V are normally and independently distributed, each with 
zero mean vector and 2x2 covariance matrix �, the likelihood function for 	  and � is; 

�(	 , �/ Y, X) � exp[-1/2 tr(Y-X	 )'(Y-X	 )�-1]               (4.7) 
This is the same as; 

�(	 , �/ Y, X) � | � |-N/2 exp[-1/2tr S�-1 – ½ tr(	 – 	̂ )'X'X(	 – 	̂ ) �-1]    (4.8) 
Where (Y-X	 )'(Y-X	 ) = (Y-X 	̂ )'(Y-X 	̂ ) + (	 – 	̂ )'X'X(	 – 	̂ ), 
                     = S + (	  – 	̂ )'X'X(	  – 	̂ ) 
S = (Y-X	̂ )'(Y-X 	̂ ) and 	̂  is the estimate of 	   
Thus, the likelihood function for the parameters is as given in (4.8). 
Combining the diffuse Prior p.d.f (4.3) and (4.6) with the likelihood function (4.8), we have a posterior 
distribution that is in the bivariate student-t form. This is given as: 

     (4.9) 

Where 1	̂  and 2	̂  are the least squares estimates, sij = 2

1

ˆ
N

ij
n

n
w x

�
� , and ˆ ijw  the i,jth element of 

 i, j=1,2. To obtain the posterior distribution in terms of 
 and 
, we 

carry out the following transformation: 


 = 1

2

	
	

, 
 = �2 with the Jacobian of transformation |
|. This gives us: 

    (4.10) 

The Baye’s estimate is the mean of the Posterior distribution, if it can be identified, this is solving for the 
posterior distribution analytically. If the solution of the Posterior function cannot be obtained analytically, then 
numerical integration is employed in obtaining the normalizing constant which will be the antiderivative of the 
function, as the situation is in this study. The WinBUGS mentioned earlier is used to obtain the Bayesian 
estimate by drawing samples from the Posterior distribution and obtaining the mean after ensuring convergence. 
Other measures of central tendencies like median and mode) could also be used as the Bayesian estimate (see 
Zellner, 1971). Hence, in this case, the median is used. 
Routes to deriving point estimates via Bayesian analysis are; 
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* Maximum a posteriori 
* Particle filter 
* Markov chain Monte Carlo (MCMC) 
* Kalman filter 
* Wiener filter 
In particular, the MCMC method was used in this paper 
Details of the Bayesian Monte Carlo Simulations 
*Two parallel chains were run 
*Convergence was checked by monitoring the trace and history plots of the chains for the point of mixture of the 
two. (Gilks et al, 1996) 
*There were 1000 Burn-in after ascertaining convergence of the simulations, then additional 5000 samples were 
obtained for each chain. The Monte Carlo Error is between 0.01 and 0.9 for the estimates. Each of these MC 
errors is less than 5% of the corresponding standard deviation, which is another way of confirming the accuracy 
of the estimates 
*The WinBUGS code is given in the appendix 
5. Results Discussion 
The point estimates’ summary presented in Tables 1-3 reflects some properties of the two estimation methods 
under discussion. For the classical method, the various estimators (least squares, maximum likelihood) were not 
separately considered because they give the same estimate for this model being a just-identified model. For all 
the 3 runs, the Bayesian estimates in the class containing the true value (2.0) are more than the classical 
estimates, mostly for the small sample case. This performance was the same in all the comparison criteria 
considered (i.e, frequency distribution of estimates, mean, mean squared error and bias). The distribution of 
these estimates was closer to Normal in the large samples (see fig.1 and fig.2) for the two estimation methods. 
As expected, as the sample size increases, the mean squared error of the estimators reduces. In run III, where the 
variance of the exogenous variable (xt) was raised to 9, the estimates from the two methods were more 
concentrated around the class containing the true value than in the first and second runs where the variances 
were 1 and 2 respectively (fig.3). This is an indication that the distribution of the exogenous variable also affects 
the properties of the estimates. We noticed that in run I and II, the mean squared error was questionably large for 
the classical method when N=20, this is as a result of outliers that are uncharacteristic of the Bayesian method. 
An explanation for the outliers was presented by Zellner(1971) that, “the distribution of the estimator 
̂ , given 
in (5.1), is such that under the conditions underlying run I and II, extreme values can be encountered with a 
non-negligible probability”. 
These results suggest that the features of the underlying model also influence the bias and consistency of the 
estimator. 
6. Conclusion 
Estimation of Simultaneous equations model in Econometric research should be approached with care. The 
choice of estimation method, as observed in this research work, affects the estimates in terms of bias and 
consistency, especially when dealing with small samples. The Bayesian estimation method has gained a lot of 
attention recently which makes practical statistical inference more interesting. Our study here has shown, as 
expected, that the Bayesian estimation method performs better than the classical for small samples, at least for 
the just identified model, since in this case, all the classical estimation methods give the same estimate of the 
parameter gamma. The results also suggested that the median as a measure of central tendency, gives the same 
result as the mode as the point estimate of the posterior distribution. However, it is important to put the loss 
function into consideration, an issue that should be given more research. The classical estimation method being 
more easily applied, might be a better choice when handling large samples, since it appears to give the same 
result with the Bayesian approach. The result of this Monte Carlo experiment also emphasized the more on the 
importance of large samples in Statistical inference 
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Appendix 
(A). WinBUGS code for the Bayesian analysis 
model { 
       for(j in 1:N)  {  
       for (i in 1: T) {  
        y[j, i,1:2 ] ~ dmnorm(mu[ j, i,1:2], tau[,]) 
        mu[ j, i,1] <- gamma[j]*mu[ j, i, 2]  
        mu[j, i, 2] <- beta[j]*x[i]  
        } 
        #Priors  
        gamma[j] ~ dnorm(0, 0.001) 
        beta[j] ~ dnorm(0, 0.001) 
        } 
        tau[1:2,1:2] ~dwish(R[ ,], 2) 
        R[1,1] <- 0.01 
        R[1,2] <- 0 
        R[2,1] <- 0 
        R[2,2] <- 0.01 
        sigma[1:2,1:2] <- inverse(tau[1:2,1:2 ]) 
        } 
(B). Eviews code for the classical analysis 
'store monte carlo results in matrix 
'create workfile 
create simult1 u 20  
'create data series for xt 
series xt=@nrnd(1) 
'set seed for random number generator 
rndseed 123456 
'assign number of replications to a control variable 
!reps = 1000 
'declare storage matrix 
matrix (!reps, 2) m 
'begin loop 
for !i =1 to !reps 
   'create data series for et 
   series e1t =@nrnd(1) 
   series e2t =@nrnd(1) 
   'create data series for ut 
   series u1t =.866025*e1t - 0.5*e2t  
   series u2t = 2*e2t 
   'simulate y data  
   model  
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   series yt!i1 = xt + u1t + 2*u2t  
   series yt!i2 = 0.5*xt + u2t 
   solve 
   ' regress y on x 
   system statis1!i 
   statis1!i.append yt!i1=c(1)* xt 
   statis1!i.append yt!i2=c(2)* xt 
   statis1!i.append inst xt  
   statis1!i.ls 
   'obtain mse 
   'store coefficients and variance estimate in matrix 
   m(!i, 1) = statis1!i.@coefs(1)   
   m(!i, 2) = statis1!i.@coefs(2)              
     
next 
'end of loop 
'expand workfile 
 expand 
 smpl 1 1000 
'change matrix m to series 
mtos(m,group1) 
rename ser01 gamma 
rename ser02 beta 
gamma.freq(b=10,n,obs,count,dropna) 
series summary 
summary.fill @mean(beta), @mean(gamma), @cov(e1t, e2t), @cov(u1t, u2t),@mean(e1t), @mean(e2t), 
@var(u1t), @var(u2t) 
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Table 1. Summary of Monte Carlo Experiment, RUN I 

  Frequencies   

Categories 

N=20 N=40 N=60 N=100 

Classical Bayesian Classical Bayesian Classical Bayesian Classical Bayesian

less than 0 43 0 32 0 9 0 5 0

0 - 1.099. 47 0 28 0 11 0 2 0

1.100 - 1.299 33 5 9 28 5 26 0 2

1.300 - 1.499 50 31 36 52 13 34 2 1

1.500 -1.699 132 61 96 140 56 120 38 2

1.700 - 1.899 179 120 232 240 222 223 256 215

1.900 - 2.099 186 138 223 280 313 300 383 392

2.100 - 2.299 109 133 150 100 175 157 191 210

2.300 - 2.499 69 134 62 75 70 65 60 121

2.500 - 2.699 28 97 34 25 44 60 30 28

2.700 - 2.899 33 79 23 21 19 9 8 12

2.900 - 3.099 16 53 16 14 16 3 8 5

3.100 - 3.299 11 45 10 7 8 2 6 1

3.300 - 3.499 8 38 9 5 8 1 1 1

3.500 - 3.699 8 27 3 4 1 0 1 3

3.700 - 3.899 8 14 5 4 2 0 2 1

3.900 - 4.099 3 10 4 1 2 0 2 1

4.100 - 4.299 3 7 3 2 2 0 0 2

4.300 - 5.001 4 7 7 2 7 0 1 1

5.001 - 10.000 22 1 14 0 12 0 3 1

10.001-50.000 7 0 4 0 4 0 1 1

50.001-100.000 1 0 0 0 1 0 0 0

Mean 1.955 2.417 1.9703 1.842 1.9549 2.0311 2.0329 2.0257
Mean Squared 
Error 26.5562 0.58 5.03585 1.02745 4.978 0.5283 0.51057 0.3781

Bias 0.455 0.417 0.02967 0.158 0.045 0.0311 0.0329 0.0257
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Table 2. Summary of Monte Carlo Experiment, RUN II 

  Frequencies   

Categories 

N=20 N=40 N=60 N=100 

Classical Bayesian Classical Bayesian Classical Bayesian Classical Bayesian

less than 0 38 0 34 0 22 0 22 0

0 - 1.099. 44 0 56 0 51 0 51 0

1.100 - 1.299 17 6 19 11 20 3 20 0

1.300 - 1.499 29 6 44 12 36 17 36 20

1.500 -1.699 78 22 87 17 73 20 73 51

1.700 - 1.899 134 60 121 140 140 280 140 220

1.900 - 2.099 217 326 264 351 259 511 259 569

2.100 - 2.299 252 278 213 380 239 100 239 71

2.300 - 2.499 87 218 78 44 88 36 88 65

2.500 - 2.699 33 49 23 21 27 19 27 2

2.700 - 2.899 18 33 10 13 5 8 5 2

2.900 - 3.099 9 1 3 6 8 5 8 0

3.100 - 3.299 6 1 6 2 6 1 6 0

3.300 - 3.499 6 0 7 1 2 0 2 0

3.500 - 3.699 1 0 5 1 2 0 2 0

3.700 - 3.899 4 0 3 1 2 0 2 0

3.900 - 4.099 2 0 2 0 0 0 0 0

4.100 - 4.299 1 0 1 0 2 0 2 0

4.300 - 5.001 4 0 3 0 4 0 4 0

5.001 - 10.000 10 0 13 0 9 0 9 0

10.001-50.000 7 0 7 0 3 0 3 0

50.001-100.000 2 0 1 0 1 0 1 0

Mean 2.1786 2.1253 1.86501 1.8922 1.9328 1.9201 1.9019 1.9012

Mean Squared 
Error 8.492 1.8621 7.8594 0.9432 0.61705 0.60511 1.5869 0.8435

Bias 0.1786 0.1253 0.135 0.1078 0.06715 0.0799 0.0981 0.0948
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Table 3. Summary of Monte Carlo Experiment, RUN III 

  Frequencies   

Categories 

N=20 N=40 N=60 N=100 

Classical Bayesian Classical Bayesian Classical Bayesian Classical Bayesian

less than 0 37 0 0 0 0 0 0 0

0 - 1.099. 37 10 1 0 0 0 0 0

1.100 - 1.299 35 14 1 9 1 1 0 0

1.300 - 1.499 35 26 2 12 2 1 0 0

1.500 -1.699 62 65 14 31 11 21 1 0

1.700 - 1.899 120 305 212 138 181 167 85 101

1.900 - 2.099 157 318 639 645 668 671 869 871

2.100 - 2.299 196 182 129 146 137 120 45 28

2.300 - 2.499 141 40 2 16 0 19 0 0

2.500 - 2.699 45 40 0 3 0 0 0 0

2.700 - 2.899 32 0 0 0 0 0 0 0

2.900 - 3.099 20 0 0 0 0 0 0 0

3.100 - 3.299 10 0 0 0 0 0 0 0

3.300 - 3.499 14 0 0 0 0 0 0 0

3.500 - 3.699 7 0 0 0 0 0 0 0

3.700 - 3.899 2 0 0 0 0 0 0 0

3.900 - 4.099 3 0 0 0 0 0 0 0

4.100 - 4.299 7 0 0 0 0 0 0 0

4.300 - 5.001 13 0 0 0 0 0 0 0

5.001 - 10.000 14 0 0 0 0 0 0 0

10.001-50.000 12 0 0 0 0 0 0 0

50.001-100.000 0 0 0 0 0 0 0 0

Mean 1.9724 1.974 1.9757 1.9771 1.9861 1.987 1.9922 1.9924

Mean Squared 
Error 0.05582 0.0452 0.01561 0.01384 0.01275 0.0126 0.00464 0.00461

Bias 0.0276 0.026 0.0243 0.0229 0.0139 0.013 0.0078 0.0076
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Fig�2:�The�Distribution�of�the�Estimates�from�
the�Bayesian�method

N�=�20

N�=�100
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Fig�3:�Comparing�the�distribution�of�
the�estimates�for�the�3�runs�when�

N=100

RUN�I

RUN�II

RUN�II

 

 


