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Abstract 

The recent years have seen a rapid expansion of research of the excitation of electromagnetic surface shape 
resonances in lamellar metallic gratings by light in the visible to near-infrared range based on the model of 
surface plasmon–polaritons. We argue that these electromagnetic waves propagate along metal–dielectric 
interfaces and can be guided by metallic nanostructures beyond the new fundamental Bose-particles with spin 
one and rest mass emm 5105.2   (where em  is the mass of the electron). We call these light bosons because 
they induce the electromagnetic field. The existence of light bosons is confirmed by experiment connected with 
original type of the Bose-Einstein condensation. In this letter, we treat the interaction between light boson modes 
and electron modes in a metallic medium which leads to existence of the polaritons. These polaritons acquire a 
property of the charged electron gas with the Coulomb interaction and are excited into a fixed interval of wave 
numbers. 
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1. Introduction 

There have been many studies of optical light transmission throughindividual nanometer-sized holes in opaque 
metal films in recent years, presented by Lopez-Rios et al. (1998), Ghaemi et al. (1998), and Sonnichen et al. 
(2000). These experiments showed highly unusual transmission properties of metal films perforated with a 
periodic array of subwavelength holes, because the intensity of electric field is highly localized inside the 
grooves (around 300-1000 times larger than intensity of incoming optical light. With the purpose of explaining 
these results, Minasyan & Samoilov (2010) predicted the existence of light quasi-particles with spin 1 and finite 
effective mass emm 5105.2  , which may explain these experimental results. In this letter, we aim to change 
the concept of the predicted light quasi-particles because, as we argue, they represent fundamental neutral 
particles with finite mass m and spin 1.  

As is well known, de Broglie (1925) first proposed the principle which states that a matter wave is determined by 
wave-particle duality or de Broglie wave of matter, which was confirmed by the famous Davisson and Germer 
experiment and also by the Compton effect where the particle nature of light was demonstrated. This reasoning 
helps us to treat the model of the electromagnetic field as a Bose gas consisting of Bose particles with spin 1 and 
non-zero rest mass which are interacting with each other due to gauge invariance. It is well known, the 
quantization scheme for the local electromagnetic field in vacuum was first treated by Planck in his black-body 
radiation studies. In this context, the classic Maxwell equations lead to appearance of the so-called ultraviolet 
catastrophe; to remove this problem, Planck modeled the electromagnetic field as an ideal Bose gas of massless 
photons with spin 1. However, in this letter, we demonstrate that the non-ideal Bose gas of light particles 
represents as the Plank gas of massless photons.  

The existence of light particles claims to consider their interaction with electron modes in a metallic medium. In 
this letter, we show that the given problem leads to existence of the polaritons with the energy spectrum 
expressed by the plasmon energetic gap. In fact, we prove that the polaritons acquire a property of a charged 
electron gas with the Coulomb interaction. 

2. Light particles with finite mass and spin 1 

We now investigate Maxwell’s equations for a dielectric medium by quantum field theory: 
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In order to solve the problem connected with the quantized electromagnetic field in vacuum, we suggest that the 
transverse electromagnetic field in vacuum consists of light particles with spin 1 and rest mass m . Due to 
application of the principle of wave-particle duality, we can suggest that these particles have the vectors of the 
electric ),(00 trEE



  and ),(00 trHH

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To find the relationship between the vectors ),( trEE
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we introduce the following expressions, which are in turn provided by the principle of gauge invariance: 
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where   and   are unknown constants. 

Obviously, Eqs (6)-(9) lead to following wave- equations: 
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Now, we can introduce the quantization form for the electric operator vector 


0E  of the light particles which is 
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expressed via the second quantization vector wave functions of the light boson: 
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where 
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ka  are, respectively, the Bose vector-operators of creation and annihilation for one free light 
particle with spin 1, described by the vector 
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Substitution of Eq. (18) into Eq. (7), by taking into account (13), leads to 
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While investigating superfluid liquid He4
, Bogoliubov (1947) separated the atoms of helium in the condensate 

from those atoms filling states above the condensate. In an analogous manner, we may consider the vector 

operators 0
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This reasoning implies that light particles in the condensate may be physically observed by experiment.  

With these new terms 0E
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In this respect, there is an important condition for the transverse electromagnetic field 000 
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to prove by using Eqs. (18) and (19), and the equality 
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We now apply a new transformation for the Minasyan & Samoilov (2010) vector-operator, which is similar to the 

Bogoliubov (1947) one for the scalar operator, for evaluation of the energy levels of the operator RH
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The operator Hamiltonian RH


, when using a canonical transformation in Eq.(24), takes the following form:  
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where the constant 
A
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which in turn determines the mass of the light particles kgm 351042  .  in vacuum. Thus, we have proved that 
the light boson in vacuum is a fundamental particle because the rest mass m  is presented via fundamental 
constants. In this context, we may note that light bosons in vacuum are interacting moving particles which 
represent free massless photons. However, these particles can be observed as a constant electric field without a 
magnetic one, if they are in a condensate. This fact is confirmed by experiments connected with investigation of 
metal films because as Minasyan & Samoilov (2010) argued the smooth metal-air interface should be regarded 
as a distinct dielectric medium, the skin of the metal, and found the boundary wave number  
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where   is the dielectric respond of metal’s skin under an electromagnetic field in the visible to near-infrared 



www.ccsenet.org/apr                     Applied Physics Research                 Vol. 2, No. 2; November 2010 

Published by Canadian Center of Science and Education 85

range with frequency 
0  :  

 
2

2 2
0

4
1

e

Ne

m


 

 


 

N is the concentration of ions in metal’s skin; 
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There is observed a shape resonance in lamellar metallic gratings when frequency   of optical light in the 
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which implies that all light particles fill the condensate level because total number 
0n of light particle into the 

condensate tends to n . There is observed the original type of the Bose condensation which does not depend on 

temperature but depends on the frequency of electromagnetic field. The intensity of electric field is highly 
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 times. Therefore, the launching of surface electrons into nanoholes in 

metal films was observed in the condition of the resonance effect, which in turn, confirms the existence of light 

particles. 

3. Properties of the electromagnetic field in metals 
Now, we attempt to investigate the interaction of light particles with free electrons in a metal. To describe the 
properties of the model of a light boson gas and charged electron gas mixture confined in a box of volume V, we 
present the Hamiltonian of a system which consists of the term of the Hamiltonian of the light boson gas RH
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and the term of the Hamiltonian of an ideal Fermi charged electron gas elH
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 in addition to the term QH
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 of the 
interaction between the density of the light boson modes and density of the charged electron modes which was 
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To present the Hamiltonian QH
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 of the interaction between light particle modes and charged electron modes, we 
introduce the method of second quantization for a system of N  fermions. In this respect, we may rewrite the 
second quantization wave functions for one electron at the point of the coordinate 
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Now, we calculate the term QH


 between light particle modes and charged electron modes: 
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      (35) 

where 




kA  and 


kA  are, respectively, the Bose vector-operators potential of the quantization  

electromagnetic field which are defined by "creation" and "annihilation" of light particles with the wave vector 



k . 
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To present QH


 in the reduced form, it is applicable to use the random phase approximation (RPA), proposed by 

Bohm & Pines (1953): 

)(
,

,,




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  kNbb
k

kkk
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

1
1

                               (36) 

Then, the term of the operator QH


 takes the form: 


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
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


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
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


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









k

kkkk

e

Q AAAA
Vcm

Ne
H

2

2

2
.                      (37) 

To find the Bose operators 




kA  and


kA  via 




k

a  and



k

a , we use the famous formula of electrodynamics 

tc

A
E









,                                      (38) 

where 


A  is presented by (34). 

On the other hand, the vector electric field 


E may be presented as: 

0
0 2

2 








 Emc

t

H

mc
E  ,                           (39) 

where 0



E  and 0



H  are presented by (12) and (13). 

Comparing Eqs.(38) and (39) within application of Eqs. (34), (12) and (13), we obtain 

k
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mk

ak
A

kk
k











 2)(2

                           (40) 

and 

k

amic

mk

ak
A

kk
k


 
 




 22 )(
.                         (41) 

Substituting the Bose operators 




kA  and 


kA from Eqs.(40) and (41) into Eq.(37), by using the conditions for 

the transverse electromagnetic wave, we may get to the approximated form of the operator r QH


: 
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.     (42) 

Inserting QH


 from Eq.(42) into Eq.(27) and using Eq.(23), we achieve the main part of the Hamiltonian of total 
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radiation RQH
 : 

2 2 2 2 2 2

2 2
2

2 2

,

RQ R Q k k

k e e

k k k k
k k

k mc me N e N
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m m k V mm c V
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where 
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Vkm
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k
U

ee
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                            (44) 

is the repulsive potential between light particles, which must be positive within the above-mentioned model of  

hard spheres. Therefore, at 0
k

U  in Eq.(44), we have the inequality 

2 2 2 2 2
4 2

2 2 2 4
0.

2 2

m c m
k k
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  
    

   
 

This inequality gives the solution 12 kkk   where the boundary wave numbers are 

22 2 2

1,2 2 4 2 4 2 4

2
1 1 ,

2 22
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m c m c m c

   
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                       (45) 

where 
Vm

N
e

e

4
  is the classical energetic plasmon gap presented by Bohm & Pines (1953). For metals 

 22mc because J1910 and Jmc 182 102  , therefore, we may accept the boundary wave vectors are  
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2


 , 

which in turn determine the wave numbers of the quantum state where light particles can exist. 

We now apply a linear transformation of the vector Bose-operators Eq.(24) for evaluation of the energy levels of 

the operator RQH


 in (43) by diagonal forms. Thus, 







  
kkkkk k

RQ eeH
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2  .                                   (46) 

Hence, we infer that the Bose-operators 



k

e  and 



k

e  are, respectively, the vector Bose-operators of the creation 

and annihilation of free polaritons with the energy 

22
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k 
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                                (47) 

because 
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

 

Obviously, the energy of polaritons is defined by the plasmon energetic gap   fixed in Eq.(47), which in turn 

determines the property of an electron gas with the Coulomb interaction. Indeed, the collective excitation of the 

density of the electron modes, due to application of the RPA, represents plasmon with the energy: 

2222

3

1
 vkE

k
                                  (48) 

where 2v  is the average square of the electron velocity which was introduced by Bohm & Pines (1953). Hence, 

as wee see the Eqs.(47) and (48) contain the plasmon energetic gap   which reflects a property of electron gas 

with Coulomb interaction between electrons.   

4. Results 
In the present paper, the existence of a new fundamental particle is predicted in addition to the well-known 
electron, proton and neutron. Light particles with spin 1 and mass emm 51042  .  can only be observed by 
experiment when they are in a condensate because they represent constant electric field. Indeed, as we have been 
seen in the section 2, the original type of the Bose condensation, which does not depend on temperature, is 
observed. This fact is result of rising of number light particles into the condensate which leads to the launching 
of surface electrons into nanoholes in metal films, at condition of the resonance effect. The experiments, 
presented by Lopez-Rios et al. (1998), Ghaemi et al. (1998), and Sonnichen et al. (2000), confirms the existence 
of light particles.  

In this letter, we showed also that in a metallic medium, interaction between light particles with the electron 
modes of the electron gas induce the polaritons into the fixed interval of the wave numbers 12 kkk  . These 
polaritons acquire a property of charged electrons with the Coulomb interaction between electrons.  
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