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Abstract 

The quantum mechanical model of electromagnetic waves is considered. The photon as a particle moves with the 
speed of light with respect to the CMB frame. The spatial wave function of the photon is introduced as a wave 
accompanying the photon, with an infinite speed of spreading throughout the whole space at some moment of 
time. The temporal wave function of the photon emitted (absorbed) by the electron is defined through the 
temporal wave function of the electron (virtual photon associated with the electron) at some point of space. The 
Michelson-Morley experiment is studied with use of both the spatial and temporal wave functions of photon, and 
the null result being obtained in both the cases. 
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1. Introduction 

Special relativity (Pauli, 1958) restricts the speed of propagation of the particles to the speed of light c . On the 
other hand, quantum mechanics (Dirac, 1958) admits of the spatial wave function defined instantaneously in the 
whole space. Here comes the conflict between special relativity and quantum mechanics. The free will theorem 
was proven (Conway & Kochen, 2006) from which it follows that any theory admitting wave function collapse 
cannot be made relativistically invariant. The problems of special relativity and quantum mechanics are 
discussed elsewhere (Nikolic, 2007). The phenomenon of entanglement gives an example of the wave function 
defined instantaneously between two space-like separated states. Quantum correlations between two space-like 
separated states detected in Bell experiments suggest a violation of relativistic locality, e.g. (Shimony, 2004) and 
references therein. Bell experiments with the moving detectors are discussed in (Suarez, 2003) and references 
therein. Nonetheless, all events are supposed to lie within the past light cone in accordance with the special 
relativity causality. An example is the theory of direct action at a distance (Wheeler & Feinmann, 1949). In 
addition, the theory of two steps light is worth to be mentioned (Whitney, 2007). 

Within the quantum mechanics framework electromagnetic waves have dual particle-wave behaviour. The 
Copenhagen interpretation of quantum mechanics regards the particle-wave duality through the complementarity 
principle and the Heisenberg uncertainty principle, e.g. (Busch & Shilladay, 2006) and references therein. In the 
de Broglie-Bohm interpretation both the wave function and the particle position are fundamental entities (Bohm 
& Hiley, 1993; Holland, 1994). We shall not follow any interpretation literally but rather quantum mechanics in 
common sense. 

In (Khokhlov, 2008) the quantum mechanical model of electromagnetic waves is considered in which the photon 
as a particle propagates with the speed of light while the spatial wave function of the photon spreads out with an 
infinite speed. The Michelson-Morley experiment was studied within the framework of this model. The 
conclusion is that the phase difference between the source and receiver defined through the spatial wave function 
does not depend on the velocity of the frame that may explain the null result of the Michelson-Morley 
experiment. In the present paper we shall introduce the temporal wave function of photon and study the 
Michelson-Morley experiment with use of the temporal wave function of photon. To this end, a quantum 
mechanical model of light to handle non-locality is considered in (Cardone & Mignani, 2004). 

The Maxwell-Lorentz equations describe classical electromagnetic wave propagating with the velocity c . It is 
reasonable to think that electromagnetic wave propagates with the velocity c with respect to a privileged frame. 
If some frame moves with the velocity v  with respect to a privileged frame then one can expect that 
electromagnetic wave propagates with the velocity vc


  with respect to the moving frame. The 

Michelson-Morley experiment was suggested to determine the velocity of electromagnetic wave with respect to 
a moving frame, with the earth being taken as a moving frame. However, the Michelson-Morley experiment 
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(Pauli, 1958) yielded the null result. Special relativity (Pauli, 1958) explains the null result of the 
Michelson-Morley experiment with the Lorentz transformation for coordinates of space and time. 

For completeness, the result of the Michelson-Morley experiment was non-null but rather small to explain the 
velocity of the earth. The Michelson-Morley experiment was repeated by several authors, and the modern 
scheme of the experiment utilizes optical resonators to stabilize the laser frequency. Discussion of the results of 
the Michelson-Morley experiments may be found in (Munera, 1998; Cahill & Kitto, 2003; Consoli & Costanzo, 
2004; Gezari, 2009). Special relativity (Lorentz invariance) successfully passed many tests (Zhang, 1997). 
Nonetheless, the search for violation of Lorentz invariance in precision experiments and astrophysical 
observations is under way to constrain the modern physical theories, e.g. (Pospelov & Romalis, 2004) and 
references therein. 

Quantum mechanics requires a privileged reference frame (ether) and absolute time to prevent backward 
causality (Bell, 1989). The cosmic microwave background radiation (CMB) is usually taken as a privileged 
reference frame (Lineweaver et al, 1996). The speed of quantum information in a privileged reference frame with 
use of entangled photons was measured (Salart et al, 2008), and the experimental bound is more than 107 c  in 
the Geneva reference frame and more than 104 c  in the CMB frame. Experiments with entangled relativistic 
massive particles are in agreement with the non-relativistic quantum mechanics that admits a privileged 
reference frame, see discussion in (Rembieliski & Smolinski, 2009) and references therein. The Lorentz 
approach introduces a privileged reference frame in the special relativity. The common belief is that the Einstein 
and Lorentz approaches are mere two interpretations of the same theory (Duffy, 2004). The special relativity 
with a privileged frame and absolute time is considered in (Selleri, 1996; Levy, 2003; Hatch, 2004; de Abreu & 
Guerra, 2008). In addition, Galilean invariant ether theory based on Hertz's progressive wave equations is 
considered in (Thornhill, 2004; Dunning-Davies, 2005; Christov, 2006), Galilean invariant local ether theory in 
(Su. 2001), the theory of magnetic light propagation in (Spavieri, 2006). Also, it was shown (Kholmetskii, 2003) 
that the Faraday induction law is Lorentz non-invariant. 

2. Spatial wave function of photon 

Consider electromagnetic wave with the vector potential A


 in the Euclidean space and absolute time of a 
privileged reference frame. We shall choose the cosmic microwave background radiation (CMB) as a privileged 
reference frame. The Maxwell-Lorentz equations for the electromagnetic wave yield a solution as a plane 
monochromatic wave (Landau & Lifshitz, 1976) 

ieAA  0


         (1) 

with the phase 

krt           (2) 

where   is the frequency, k is the wave vector. 

In quantum mechanics (Dirac, 1958) one can consider electromagnetic wave as a bunch of photons, with the 
momentum and energy given by respectively 

  Ekp          (3) 

where  is the Planck constant. One can conceive the photon as a particle exhibiting wave behaviour. In 
quantum mechanics the wave eq. (1) is thought of as a wave function of photon associated with a single photon. 
For photons the Heisenberg uncertainty principle holds true 

.2/2/   tErp           (4) 

In view of eq. (3), the Heisenberg uncertainty relations restrict the wave function of photon in space and time. 

Consider the photon as a particle with the momentum p  at the time t  (Khokhlov, 2008). Introduce the wave 
function of the photon with the wave vector /pk  . In the stationary state the momentum of photon is fixed. 
Then, the uncertainty in momentum is p 0, the uncertainty in wave vector is 0/  pk . From the 
Heisenberg uncertainty relations eq. (4), it follows that the uncertainty in the space coordinate is r . This 
means that one cannot specify the space coordinate hence one can consider the wave function of the photon with 
the wave vector k  in the whole space at the time t . The spatial wave function of photon spreads out 
instantaneously over the whole space with an infinite speed v . Hence, the uncertainty in time is 

0/  vrt . This means that the spatial wave function of photon cannot be specified in time. The spatial 
wave function of photon is not suitable to define the speed of light. Instead, one can consider propagation of the 
photon as a massless particle with the speed c  with respect to the CMB frame. 
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Consider propagation of a photon between the source and receiver (Khokhlov, 2008). We shall regard the case 
when the region of propagation of the photon is much more than the wave length of the photon kr /1  . 
Then, one can think of the photon as a point like quasi classical particle propagating with the speed c  with 
respect to the CMB frame. In view of the above reasoning one can define the spatial wave function of the photon 
in the whole space at the time of reception. Then, the phase difference between the source and receiver is a 
distance between the source and receiver at the time of reception 

)].()([)()( rsrrrsrr trtrktt         (5) 

Unlike the phase of the classical wave defined through the space coordinate of the source at the time of emission 
)( es tr  the phase of the spatial wave function of photon is defined through the space coordinate of the source at 

the time of reception )( rs tr . When determining the distance between the source and receiver at one and the 
same moment of time it does not depend on the velocity of the frame. Hence, the phase difference between the 
source and receiver eq. (5) does not depend on the velocity of the frame. 

Consider the Michelson-Morley experiment in a frame moving with the velocity v  with respect to the CMB 
frame. Suppose that electromagnetic field (photon) moves with the velocity c  with respect to the CMB frame, 
independently of the source (receiver). Then, the travel time is a function of the velocity of the frame, with the 
maximum difference of travel time between two legs for two-way travel being )/)(/( 22 cvclt   where l  is 
the length of the leg. According to quantum mechanics (Dirac, 1958) a single photon interferes with itself. The 
wave function of the photon is a superposition of the waves specified along two different legs, with the photon as 
a particle moving along one of the legs. In view of eq. (5), the phase difference between the source and receiver 
is a distance between the source and receiver at the time of reception. If the lengths of the legs are not the same 
there is a phase shift between two waves specified along two different legs )( 12 llk  . When determining 
the distance between the source and receiver at one and the same moment of time it does not depend on the 
velocity of the frame. Hence, the phase difference between the source and receiver does not depend on the 
velocity of the frame. Thus, there is no phase shift due to the velocity of the frame between two waves specified 
along two different legs that can explain the null result of the Michelson-Morley experiment without invoking 
the Lorentz transformation. To this end, the same idea was stated elsewhere (Sato, 2004). 

3. Temporal wave function of photon 

Consider the electron as a particle in the point of space r . One can think of the energy of the electron in terms 
of excitations being virtual photons. We shall define the stationary state of the electron through the stationary 
state of the virtual photon with the energy E . Introduce the temporal wave function of the electron through the 
temporal wave function of the virtual photon with the frequency /E . In the stationary state the energy is 
fixed then the uncertainty in energy is 0E , the uncertainty in frequency is 0/  E . From the 
Heisenberg uncertainty relations eq. (4), it follows that the uncertainty in time is t . This means that one 
cannot specify the time coordinate hence one can consider the wave function of the electron with the frequency 
  in time. The temporal wave function of the electron has the null speed with respect to the electron 0v . 
Hence, the uncertainty in the space coordinate is 0/  tvr . This means that the temporal wave function of 
electron cannot be specified in space. Likewise the spatial wave function of photon the temporal wave function 
of electron is not suitable to define the speed of light. 

There is a problem with interpretation of the time-energy uncertainty relation and the temporal wave function, 
e.g. (Bush, 2007; Bostrom, 2003) and reference therein. In quantum mechanics time is not an observable but 
mere a parameter that is different from position being an observable. Therefore, one can introduce the spatial 
wave function normalized over position space but cannot the temporal wave function. Nevertheless, there are 
attempts to modify quantum mechanics in a way of introducing the temporal wave function, e.g. (Bush, 2007; 
Bostrom, 2003) and reference therein. We shall use the temporal wave function putting aside the problem of 
interpretation. 

One can define the temporal wave function of the photon emitted (absorbed) by the electron through the 
temporal wave function of the electron (virtual photon associated with the electron). Accordingly, the phase of 
the photon emitted (absorbed) by the electron is defined through the phase of the electron. Take the electron in 
the stationary state with the energy E  that gives the temporal wave function of the electron with the frequency 

/E . Let the electron emit (absorb) a photon with the energy E  at the time 1t  and another photon with 
the energy E  at the time 2t . The phase difference is defined at the time 2t  between the phase of the second 
photon and the phase of the electron (virtual photon) 

.0)( 2212  tt        (6) 
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Although the photons are emitted (absorbed) by the electron at different times 1t  and 2t  one determines no 
phase difference between the photons because they are emitted (absorbed) by the same electron. Note that the 
temporal wave function of the electron is defined in some point of space r  with the uncertainty in the space 
coordinate 0r . Therefore, comparison of the phases of the photons can occur through the temporal wave 
function of the same electron in the point of space r . This differs from the interaction of the electron and the 
photon which occurs at the radius )2/( kr   for the time )2/( ckt  . 

Consider the Michelson-Morley experiment in a frame moving with the velocity v  with respect to the CMB 
frame. Under emission (absorption) of the photons, the electron of the source (receiver) assigns the phases to the 
photons going along the legs. Although the times of emission (absorption) of the photons are different one 
determines no phase difference between the photons because the phase difference eq. (6) is determined by means 
of the temporal wave function of the same electron. Despite the difference of travel time for the photons between 
two legs one cannot measure this difference as a phase shift that may explain the null result of the 
Michelson-Morley experiment without invoking the Lorentz transformation. 

4. Conclusion 

We have considered the quantum mechanical model of electromagnetic waves wherein the photon is treated as a 
particle moving with the speed of light with respect to the CMB frame. The spatial wave function of the photon 
is introduced as a wave accompanying the photon, with an infinite speed of spreading throughout the whole 
space at some moment of time. Then, the phase difference between the source and receiver is defined 
instantaneously and does not depend on the velocity of the frame. The temporal wave function of the photon 
emitted (absorbed) by the electron is defined through the temporal wave function of the electron (virtual photon 
associated with the electron) at some point of space. Then, the phases of the different photons defined through 
the phase of the electron are the same although the moments of time of emission (absorption) of the photons are 
different. We have studied the Michelson-Morley experiment with use of both the spatial and temporal wave 
functions of photon and obtained the null result in both the cases. Thus, one can explain the null result of the 
Michelson-Morley experiment within the quantum mechanics framework without invoking the Lorentz 
transformation. 

According to special relativity (Pauli, 1958) coordinates of space and time follow the Lorentz transformation 
(LT), rr  LT, tt  LT, while the wave vector and frequency of electromagnetic wave follow the inverse 
Lorentz transformation kk  LT 1 ,   LT 1 . Here the non-primed values are the proper ones while the 
primed values are the apparent ones. The phase of electromagnetic wave is Lorentz invariant, 

  krtrkt , that explains the null result of the Michelson-Morley experiment. 

Explanation of the null result of the Michelson-Morley experiment within the quantum mechanics framework 
allows Galilean invariance of the electromagnetic wave. One may treat the phases given by eq. (5) and eq. (6) as 
Galilean invariant. That is both observers in a privileged and in a moving frames determine the same space (time) 
coordinate difference and the same wave vector (frequency). The wave vector (frequency) of the electromagnetic 
wave emitted in a moving frame is Lorentz shifted in a privileged frame (Doppler effect). In (Khokhlov, 2008) 
the assumption was made that electromagnetic wave behaves in a different way under propagation and under 
interaction with the source (receiver). Under propagation electromagnetic wave is Galilean invariant while under 
interaction with the source (receiver) is Lorentz invariant. Then, we may apply the conventional special relativity 
under interaction of the electromagnetic wave with the source. After emission the wave vector (frequency) of the 
electromagnetic wave is the same for both observers in a privileged and in a moving frames. That is Galilean 
invariance of the phase under propagation of the electromagnetic wave means  trk  Gal inv. 

In (Wesley, 1980) Einstein particle dynamics and Maxwell-Lorentz electrodynamics in a moving system was 
derived without assuming special relativistic kinematics. This means that one can develop the special relativistic 
dynamics while assuming Galilean invariance. In (Khokhlov, 2009; 2010) the Lorentz transformation for the 
electromagnetic wave was derived while assuming Galilean invariance. 
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