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Abstract 
In a previously published paper, the author made some mistakes in calculating the potential energy of the electron 
in a hydrogen atom. Those mistakes occurred due to applying a potential energy formula with a certain range of 
application in a region where it is not applicable. Therefore, this paper corrects that error by deriving a formula for 
potential energy with no range of application. The paper also proposes a model in which a virtual particle pair 
present in the vacuum region inside a hydrogen atom simultaneously has a photon with positive energy and a 
photon with negative energy (In this paper, these photons are called dark photons). In the state where the relativistic 
energy reE  is zero, the sum of the positive energy and negative energy of the virtual particle pair becomes zero. 
According to this model, this makes it possible for the particles to release photons, and capture negative energy. 
Keywords: Hydrogen Atom, Potential Energy, Model of a Virtual Particle Pair, Dark Photon, Dark Matter, Proton 
Radius 
1. Introduction 
One of the most important relationships in the Special Theory of Relativity (STR) is as follows: 

 ( ) ( )2 22 2 2 2
0 .m c c mc+ =p   (1) 

Here, 2mc  is the relativistic energy of an object or a particle, and 2
0m c

 
is the rest mass energy. 

Currently, Einstein’s relationship (1) is used to describe the energy and momentum of particles in free space, but 
for explaining the behavior of bound electrons inside atoms, opinion has shifted to quantum mechanics as 
represented by equations such as the Dirac’s relativistic wave equation. 
For reasons such as these, there was no search for a relationship between energy and momentum applicable to an 
electron in the hydrogen atom. However, the author has ventured to take up this problem, and derived the following 
relationship (Suto, 2011). 

 ( )22 2 2 2
re, e ,n nE c m c+ =p   1,2, .n = ⋅⋅⋅   (2) 

Here, re,nE  is the relativistic energy of the electron, described with an absolute scale. From Equations (1) and (2) 
it is evident that, if a stationary electron begins to move in free space, or is incorporated into an atom, then the 
energy which serves as the departure point is the rest mass energy. Consider the case where an electron currently 
stationary in free space is drawn to a proton to form a hydrogen atom. At this time, the rest mass energy of the 
electron decreases.  
The decrease in rest mass energy of the electron is expressed as 2

e .m c−Δ  If the energy of the photon released 
when an electron is drawn into a hydrogen atom is taken to be hν, and the kinetic energy acquired by the electron 
is taken to be K, then the following relationship holds. 

 2
e 0.m c hν K−Δ + + =   (3) 

The author presented the following equation as an equation indicating the relationship between the rest mass 
energy and potential energy of the electron in a hydrogen atom (Suto, 2009).  
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 2
e( ) .V r m c= −Δ  (4) 

From Equations (3) and (4), it is evident that the following relationship holds between potential energy and kinetic 
energy. 

 1 ( ) .
2

V r K= −  (5) 

Also, the potential energy V(r) of the electron is assumed to be 0 when the electron is at rest at a position infinitely 
far from the proton, and thus it becomes smaller than that inside the atom, and can be described as follows.  

 
2

0

1( )
4

eV r
πε r

= −   .   (6) 

There is a lower limit to potential energy, and the range which energy can assume is as follows.  
  2

e ( ) 0.m c V r−Δ ≤ <  (7) 
Here, if 2

em c− is substituted for V in Equation (6), then the r is 

 
2

e2
0 e4
er r

πε m c
= = .   (8) 

Here, er  is the classical electron radius. 
From this, it is evident that Equation (6) has the following range of application. 
 er r≤ .  (9) 
However, the author also applied Equation (6) in the range where e.r r<  Thus, in the following section, a formula 
for potential energy with no range of application is derived, and that error is corrected. 
2. Formula for Potential Energy of the Electron with No Range of Application 
The relativistic energy reE  of the electron forming a hydrogen atom can be approximately defined as follows. 
 2

re eE m c E= +  (10a) 
2

e ( )m c V r K= + +  (10b) 

2
e

1 ( )
2

m c V r= +  (10c) 

2 2
e e

1 .
2

m c m c= − Δ  (10d) 

Equation (10a) is an approximation is because the total mechanical energy E of a hydrogen atom derived by Bohr 
is an approximate value. (A rigorous definition of re,nE  is given below.) 
Here, the E in Equation (10a) corresponds to the decrease in the rest mass energy 2

em c  of the electron, and reE  
corresponds to the remaining part of 2

e .m c  
The following constraint holds regarding the relativistic energy reE  of the electron due to Equation (10d) (here, 
the discussion is limited to the ordinary energy levels of the electron). 

 2 2
e re e

1 .
2

m c E m c≤ <   (11) 

The following formula can also be derived from Equation (10b). 
 2 2

re e e re( ) , .V r E m c K K E m c E= − −      = − = −  (12) 
Equation (12) is a formula for potential energy with no range of application. To determine the potential energy in 
all regions within a hydrogen atom, Equation (6) alone is not sufficient, and the support of Equation (12) is needed. 
Incidentally, if Equation (2) is solved for energy, the following solutions can be derived (Suto, 2014a, Suto, 2014b). 

 
1/ 22

2
re, e 2 2 0,1,2, .n

nE m c n
n

 
= ±  ,    = ⋅ ⋅ ⋅ + α

 (13) 

Here, α is the following fine-structure constant. 
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2

0

.
4

eα
πε c

=


 (14) 

If 0 is substituted for n in Equation (13),  
 re,0 0.E =  (15) 
Here, Equation (13) is divided into the following two equations, by taking the positive energy levels among the 
relativistic energy levels of the electron forming a hydrogen atom to be re, ,nE +  and the negative energy levels to 
be re, .nE −  

 
1/ 22

2
re, e 2 2 1,2, .n

nE m c n
n α

+  
=  ,    = ⋅ ⋅ ⋅ + 

 (16) 

 
1/ 22

2
re, e 2 2 1,2, .n

nE m c n
n

−  
= −  ,    = ⋅ ⋅ ⋅ + α

 (17) 

Incidentally, the virtual particle pairs constituting the vacuum are formed from a virtual electron and a virtual 
positron. As will be discussed below, the energy when 0n =  is thought to be not the energy of the electron, but 
the energy of a virtual electron, and thus it is excluded here. ( re 0E =  is the energy of the virtual particle pair. 
However, the problem being addressed here is the energy of the electron, so here re,0 0E =  is regarded as the 
energy level of the virtual electron). 
When Equation (16) is used, the normal energy levels of a hydrogen atom are as follows. 

 
1/ 22

2 2
re, e e 21 1 1,2, .n nE E m c m c n

n

−
+

  
 = − = + −  ,    = ⋅ ⋅ ⋅ 
   

α  (18) 

Now, if a Taylor expansion is performed on the right side of Eq. (18), 

 
1/ 22 2 4 2 4

2 2 2
e e e2 2 4 2 4

3 31 1 1 1 .
2 8 2 8n

α α α α αE m c m c m c
n n n n n

−        
 = + − ≈ − + − ≈ − +      
           

(19) 

When this is done, the equations for the energies is as follows. 

 
2

2
e2 1,2, .

2nE m c n
n

≈ −  ,    = ⋅ ⋅ ⋅α   (20) 

Incidentally, in the classical quantum theory of Bohr, the energy levels B,nE  of a hydrogen atom are given by the 
following formula. (Here the B in B,nE  stands for “Bohr”).  

 
4 2

2e
B, e2 2 2

0

1 1 1
2 4 2n

m e αE m c n
πε n n

2
  1= − ⋅ = − ,    = ,2,⋅ ⋅ ⋅ . 
  

  (21) 

From this, it is evident that Bohr’s energy equation, Equation (21), is an approximation of Equation (18). 
The following compares energies when 1.n =  

Value predicated by this paper Equation (18):    1 13.60515 eV.E = −    (22a) 

Value predicted by Bohr Equation (21):         B,1 13.60569 eV.E = −    (22b) 

            B,1

1

1.0000397.
E
E

=  (22c) 

In Equation (10a), reE  was defined from 2
em c  and E, but it is actually correct to define E from 2

em c  and re.E  
Incidentally, the relativistic energy of the electron can also be written as follows.  
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2

2
re, e

0

1 1
2 4n

n

eE m c
πε r

= −   (23a) 

2 e
e

/ 21 .
n

rm c
r

 
= − 

 
  (23b) 

Next, Equations (16) and (23b) are joined with an equals sign. That is, 

 
22

e
2 2

/ 2 .n

n

n r r
n α r

 −=  +  
 (24) 

From this, the following quadratic equation is obtained.  

 
2 2 2 2 2

2 e
e2 2 0.

4n n
n α n α rr r r
α α

   + +− + =   
   

 (25) 

If this equation is solved for ,nr  

 
1/ 22 2

e
2 21 1 1

2n
r n αr

α n

−    
 = + ± +   
     

  (26) 

When the Taylor expansion of Equation (26) is taken, the result is as follows. 

 
2 2 4

e
2 2 4

31 1 1
2 2 8n
r n α αr

α n n
    

≈ + ± −    
    

＋  (27) 

Here, the negative solution nr
−  of Equation (27), 

 
42

e e e B
2 2 .

4 16 4 2n
r α r r a αr

n n
−  ≈ + = +  

 
 (28) 

Since r −  converges to e / 4,r  e / 4r  can be regarded as the radius of the atomic nucleus of a hydrogen atom (i.e., 
the proton). Here, the theoretical value of the proton radius is: 

 15e 0.704485080675 10 m.
4
rr− −

∞ = = ×   (29) 

However, if an attempt is actually made to measure the size of the proton (atomic nucleus), the energy of the proton 
changes. The size of the proton depends on the proton’s energy, and thus the measured value does not match with 
Equation (29) (Randolf, 2010; Suto, 2014c). In addition, it is possible to predict that a different measurement value 
will be obtained from an experiment using a different measurement method. 
Next, when the value obtained by setting 0n =  in Equation (26) is taken to be 0r , 

 e
0 .

2
rr =  (30) 

Here, State 0 with 0n =  is defined as follows. 

 State 0: e ,
2
rr =  re 0.E =  (31) 

3. Correction of Potential Energy of the Electron in a Hydrogen Atom 
The points where the author made a mistake in the value of potential energy of the electron are 1∗  to 3∗  in the 
following diagram (see Figure 1) (Suto, 2017).  

Originally, the potential energy at 1∗  to 3∗  was found from Equation (6), but potential energy in this region 
must be found from Equation (12). That is, 

2 2
e e1 ( ) 2V r m c m c∗   = −   →  − .   (32a) 

2 2
e e2 ( ) 3V r m c m c∗    = −   →  − .  (32b) 

2 2
e e3 ( ) 4 2V r m c m c∗    = −   →  − .  (32c) 

Next, the regions in a hydrogen atom are classified as follows at the level of classical theory while taking into 
account Equations (7) to (12) (see Table). 
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Table 1. Regions and states. This is Figure 1 made into a table. Here, the value of K was found from Equation (12) 

Regions and states r reE  ( )V r  K 

Region A e nr r+<  
2

2e
re, e2 n

m c E m c+< <  2
e ( ) 0m c V r− < <  

2
e 0
2

m c K> >  

State a er  
2

e

2
m c

 2
em c−  

2
e

2
m c

 

Region B e
e2

r r r+< <  
2

e
re0

2
m cE+< <  2

em c−  
2

e0
2

m cK< <  

State 0 e

2
r

 0 2
em c−  0 

Region C e e

3 2
r rr −< <  

2
-e
re 0

2
m c E− < <  2

em c−  
2

e 0
2

m c K− < <  

State c e

3
r

 
2

e

2
m c−  2

em c−  
2

e

2
m c−  

Region D e e

4 3n
r rr −< <  

2
2 e

e re, 2n
m cm c E−− < < −  2 2

e e2 ( )m c V r m c− < < −  
2

e0
2

m cK> > −  

State d e

4
r

 2
em c−  2

e2m c−  0 

 
Region A is the region where the electron forming a hydrogen atom exists. However, in Region B, there is no 
change in the potential energy of the particle. Therefore, what exists in this region is not charged particles. Thus, 
this paper predicts that Region B is a region of a virtual particle pair formed from a virtual electron and virtual 
positron. Virtual particle pairs are the particles constituting the vacuum. In this region, the kinetic energy of a 
virtual particle pair decreases as the particle pair approaches the atomic nucleus. However, in the regions of the 
electron where e nr r+<  and e e/ 4 / 3nr r r−< < , kinetic energy increases as the electron approaches the atomic 
nucleus. 
A virtual particle pair with re 0E =  exists in State 0. When this virtual particle pair absorbs 2

em c  of energy, the 
virtual particle pair transitions into State a. (At this time, the energy of the virtual electron is 1/2 the energy of the 
virtual particle pair, and therefore is 2

e / 2m c ). 
Also, this paper predicts that this virtual particle pair will separate into a virtual electron and virtual positron in 
State a. 
Region C is a region symmetrical with Region B in terms of energy. The virtual particle pairs existing in this 
region have a negative energy (mass). 
Region D is symmetric with Region A in terms of energy. Electrons in this region have negative energy (mass) in 
Equation (17). The author has already pointed out that the system formed from a proton and an electron with 
negative energy is a candidate for dark matter, a type of matter whose true nature is unknown. (The author calls 
electrons with this negative energy dark electrons, and photons with negative energy dark photons.) 
When Figure 1 is corrected based on the above, the result is as follows (see Figure 2). 
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Figure 1. Relationship between energies of the 

electron and virtual electron present in a hydrogen 
atom, and their positions r. The region where the 

electron forming the hydrogen atom exists is 
er r< . e e/ 3r r r< <  is the region of the virtual 
particle pair constituting the vacuum, but the 

energy in this diagram indicates the energy of the 
virtual electron (The energy of the virtual particle 

pair is twice the energy of the virtual electron). 
Also, e e/ 4 / 3r r r< <  is the region of the electron 
with negative energy (mass). This diagram is cited 

from another paper, but the values for potential 
energy at 1∗  to 3∗  are mistaken, and thus they 

will be corrected in this paper 

Figure 2. In this figure, potential energy (vertical line) 
has been erased in the region where potential energy 
does not exist ( e e/ 3r r r< < ). Also, as the electron in 

Region A, and the dark electron in Region D, approach 
the atomic nucleus, the kinetic energy of the electron 

increases. Thus K in this region is shown with a dashed 
line 

 
4. Discussion 
In the previous section, the potential energy value of the electron was corrected, and thus the original purpose of 
this paper was achieved. However, there are still a number of points that can be discussed. 
1) How does a virtual particle pair with re 0E =  acquire negative energy? This paper examines two interpretations.  
Interpretation 1: A virtual particle pair absorbs a dark photon with negative energy, and lowers its energy level. 
However, a dark photon has never been observed in the natural world. Therefore, this interpretation cannot be 
supported. Thus, the previous view of virtual particle pairs with re 0E =  is reexamined.  
That is,  
Previous view: A virtual particle pair with re 0E =  is in a state where rest mass energy has been completely 
consumed, i.e., (to use a vulgar expression) a naked state unclothed by photon energy. 
The interpretation of this paper (Interpretation 2): A virtual particle with re 0E =  simultaneously has a photon 
with positive energy and a dark photon with negative energy. If here the positive photon energy is taken to be PE
( P0 E< ) and the energy of the dark photon is taken to be DPE ( DP 0E < ), then re 0E =  can be defined as the state 
where the sum of PE  and DPE  is zero. That is,  
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 re,0 P DP P DP0, 0.E E E E E= + =     = ≠  (33) 

Incidentally, the definition of the rest mass energy 0E  of the electron is 2
0 e .E m c=  However, if the model here 

is used, this energy can be defined as follows. 

 2
0 P DP P DP e .E E E E E m c= + = − =  (34) 

This paper cannot predict the energies of the photon and dark photon belonging to the virtual particle pair with 
re 0.E =  However, for a dark electron to attain State d, the virtual particle pair with re 0E =  must simultaneously 

have a 2
em c  photon and a 2

em c−  dark photon. 
Also, according to this model of the virtual particle pair, the re,nE−  in Equation (17) is not the energy of the dark 
photon belonging to the dark electron. re,nE−  corresponds to the sum of the energy of the photon belonging to the 
dark electron, and the energy of the dark photon. That is, 

 re, P DP P DP P DP, .nE E E E E E E− = + = −     <  (35) 

2) To estimate the number of virtual particle pairs present in the vacuum region inside a hydrogen atom, let us 
look at triplet production.  
Now, consider the case where an incident γ-ray has the energy corresponding to the mass of 4 electrons (2.044 
MeV). If this is discussed classically, the γ-ray can create an electron and positron near e / 2r r=  (see Figure 3). 
 

 
Figure 3. Interpretation of this paper regarding triplet production 

This γ-ray will give 1.022 MeV of energy to the virtual particles at e / 2,r r=  and an electron-positron pair will 
be created (↑①). When this γ-ray approaches closer to the atomic nuclear, and the electron in the orbital around 
the proton absorbs this energy, the electron will be excited and appear in free space (↑②). If multiple virtual particle 
pairs exist in the re 0E =  state, then there is potentially a probability that two electrons and two positrons are 
produced in the process in ①. However, a phenomenon of this sort has not been observed. 
 
Even if 1.022 MeV of energy is consumed in this pair creation, the γ-ray still has the energy of corresponding to 
the mass of 2 electrons (1.022 MeV). If the γ-ray gives energy to an electron in the orbital near the proton, the 
electron will be excited and appear in free space. As a result, 2 electrons and 1 positron will appear in free space.  
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However, if multiple virtual particle pairs exists in the re,0E  state, then in process ①, there should also be a 
probability of producing two pairs (2 electrons and 2 positrons) from an energy of 2.044 MeV ( 2

e4m c ). However, 
quadruplet production has never been actually observed. Thus, this paper predicts 1 virtual particle pair in State 0. 
There is also a probability that, aside from an electron, a single virtual electron and virtual positron are present in 
Region A. Taking these points into consideration, there is a possibility that the previous definition of the hydrogen 
atom is too simple, and reconsideration may be necessary. That is,  
Previous view: Hydrogen atom = 1 proton + 1 electron 
Model to be examined: Hydrogen atom = 1 proton + 1 electron + 1 virtual particle pair (or 1 virtual electron + 1 
virtual positron)  
Here, if one virtual particle pair is added, then the model is applied when the particle pair is present in Region B, 
and if 2 virtual particles are added, the model is applied when the virtual particles are present in Region A. 
3) If the energy absorbed by the virtual particle pair with re 0E =  is in the range 2 2

e e2m c E m c< < , then the virtual 
electron and virtual positron separated in State a are present temporarily in Range A. Now, what is the difference 
between the electron forming the hydrogen atom and the virtual electron? It is difficult to discriminate these 2 
particles from the perspective of energy. However, the virtual electron and virtual positron in Region A are likely 
not completely separated, and in a state of quantum entanglement. Therefore, the electron and virtual electron in 
Region A are not in the same state. 
There is also thought to be a probability that a virtual positron separated from a virtual electron at er r=  will 
approach the electron of the hydrogen atom and form a virtual particle pair. If a new virtual particle pair is formed 
here, the remaining virtual electron will then behave as the electron of the hydrogen atom. If this model is assumed 
to be correct, the electron in the hydrogen atom does not describe a continuous trajectory, and its motion is 
discontinuous. Also, it is predicted that the electron will behave as though it had moved to another location 
instantaneously (at super luminal speed). 
4) As is also evident from Figure 2, the position occupied by the electron and dark electron in the hydrogen atom, 
and the region of energy, are only a small part of the whole. The remaining majority is the region of the virtual 
particle pair and virtual particles (virtual electron and virtual positron). If even the virtual particle pair is included 
in the constituents of the hydrogen atom, then there will be a need to derive the energy levels of the virtual particle 
pair. The energy levels of the electron and dark electron are discrete, and thus based on common sense, the energy 
levels of the virtual particle pair are also predicted to be discrete.  

5. Conclusion 
1) In this paper, Equation (12) was used to correct the value for potential energy in a hydrogen atom, previously 
found incorrectly by the author. As a result, Figure 1 has been corrected as shown in Figure 2. 
2) According to the model proposed in this paper, a virtual particle pair simultaneously has a photon with positive 
energy PE  and a dark photon with negative energy DP.E  In this case, the previous energy is redefined as follows. 

i) If the relativistic energy of a virtual particle pair is zero, 
Previous definition:  re,0 0.E =   (36) 

Definition in this paper:  re,0 P DP P DP0, 0.E E E E E= + =    = ≠  (37) 

ii) Rest mass energy of an electron 0E  
Previous definition:   2

0 e .E m c=   (38) 

Definition in this paper:  2
0 P DP P DP e .E E E E E m c= + = − =  (39) 

iii) Energy levels of a dark electron with negative energy 

Definition in this paper:  re, P DP P DP P DP .nE E E E E E E− = + = − ,   <  (40) 

Incidentally, the existence of dark photons cannot be directly demonstrated by experiment, just like virtual particle 
pairs. However, if in the future it is possible to demonstrate the existence of negative energy levels re,nE−  and dark 
electrons in the hydrogen atom, then the existence of dark photons will also be simultaneously demonstrated. 
 



apr.ccsenet.org Applied Physics Research Vol. 10, No. 4; 2018 

101 

Acknowledgments 
I would like to express my thanks to the staff at ACN Translation Services for their translation assistance. Also, I 
wish to express my gratitude to Mr. H. Shimada for drawing figures. 
References 
Randolf, P. (2010). Size of the proton. Nature, 466, 213-216. 
Suto, K. (2009). True nature of potential energy of a hydrogen atom. Physics Essays, 22(2), 135-139. 

http://dx.doi.org/10.4006/1.3092779 
Suto, K. (2011). An energy-momentum relationship for a bound electron inside a hydrogen atom. Physics Essays, 

24(2), 301-307. http://dx.doi.org/10.4006/1.3583810 
Suto, K. (2014a). n=0 energy level present in the hydrogen atom. Applied Physics Research, 6(5), 109-115. 

http://dx.doi.org/10.5539/apr.v6n5p109 
Suto, K. (2014b). Previously unknown ultra-low energy level of the hydrogen atom whose existence can be 

predicted. Applied Physics Research, 6(6), 64-73. http://dx.doi.org/10.5539/apr.v6n6p64 
Suto, K. (2014c). True Factors Determining the Ratio of Space Contraction and Time Dilation Predicted by the 

Special Theory of Relativity. Physics Essays, 27(4), 580-585. http://dx.doi.org/10.4006/0836-1398-27.4.580 
Suto, K. (2017). Presentation of dark matter candidates. Applied Physics Research, 9(1), 70-76. 

http://dx.doi.org/10.5539/apr.v9n1p70 
 
Copyrights 
Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 
license (http://creativecommons.org/licenses/by/4.0/). 


