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Abstract 
The Euler Lagrange equation is studied to obtain the equations of motion for conservative systems with second 
order Lagrangian. The solutions of these equations are substituted in the given Lagrangian. The action function is 
then derived by calculating the time integral of the Lagrangian. To explain the application of our formalism two 
examples are discussed. 
Keywords: Conservative Systems, Euler Lagrange Equation, Action Function, Generalized Coordinates, 
Equations of Motion 
1. Introduction 
For conservative systems, there is a famous formulation of classical mechanics known as the Lagrangian 
formulation (Goldstein, 1980). The Lagrangian function L for a system is defined to be the difference between the 
kinetic and potential energies expressed as a function of generalized coordinates )(tqi , and velocities )(tqi . Here 
the over dot denotes differentiation with respect to time t. 
The Lagrangian function L satisfies the so called Euler-Lagrange equation which is given by: 
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Thus, the equations that result from application of equation (1) to a particular Lagrangian are the so called 
equations of motion. 
Although most physical systems can be described by regular Lagrangian that depend at most on the first derivatives 
of the dynamical variables, the Euler Lagrange equation of a first order Lagrangian is one of the most known and 
widely used variational equations in mathematics, mechanics and physics. 
The study of singular Lagrangian systems was initiated by (Dirac, 1964, 1950). He developed the basic theories 
of the classical treatment and quantization of such systems. Other researchers (Faddeev, 1988; Dyson, 1990) 
followed Dirac and showed interest in singular theories. A new formalism for investigating first order singular 
systems, the canonical was developed by (Rabei et al., 1992). This method was generalized to singular system 
with higher order Lagrangian (Pimentel et al., 1996, 1998). A treatment of singular Lagrangian system as field 
system was studied in (Farahat, 1995, 2002, 2006). An alternative method is the Hamilton-Jacobi formulation or 
the canonical method which is developed by (Guler, 1992; Nawafleh et al., 2004, 2008). 
The treatment of theories with higher order derivatives has been first developed by (Ostrogradski, 1850; Pon, 1988) 
and allows writing the Euler Lagrange equations introduce conjugated momenta and develop Hamilton formalism 
for such systems.  
Systems with higher order Lagrangian have been studied with increasing interest because they appear in many 
relevant physical problems and in many models in theoretical and mathematical physics, they also appear in some 
problems of fluid mechanics, electric networks and classical physics. There is a continuing interest in the so called 
generalized dynamics, that is, the study of physical systems described by Lagrangian containing derivatives of 
order higher than the first (Muslih, 2002; Nawafleh, 2011).  
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Evolution of the action function has been investigated using Hamilton - Jacobi equation (Arnold, 1989; Lanczos, 
1986). Recently obtaining the action function for dissipative systems is investigated within the framework of the 
Hamilton-Jacobi equation, this function is determined using the method of separation of variables (Jarab'ah et al., 
2013, 2014). In addition, action function formulation for irregular first order Lagrangian has been studied by 
(Jarab'ah, 2017). Our aim here is to make a formal generalization of this function for conservative systems with 
second order Lagrangian in the same manner as for first order Lagrangian.  
This paper is organized as follows. In Section 2, the formulation of the action function for conservative systems 
with second order Lagrangian is discussed. In Section 3, the conservative systems with second order Lagrangian 
are examined using illustrative examples. Finally, in section 4, the work closes with some concluding remarks. 
2. Determination of the Action Function with Second Order Lagrangian 
The Lagrangian formulation of conservative systems with second-order Lagrangian is given by ),,,( tqqqLL =  
The corresponding Euler Lagrange equations are given by: 
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Here we center our attention on the case of a system described by a Lagrangian containing time derivatives of the 
coordinates up to second order Lagrangian. Using Euler Lagrange equations, we find the equations of motion from 
the corresponding Lagrangian in terms of the generalized coordinates and their derivatives. Then, we substitute 
the solutions of the equations of motion in the given Lagrangian. Finally, the integral of the Lagrangian between 
two instants of time t1 and t2 is defined as the action function S which takes this form: 
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Also we can write the accelerations )(tqi  as functions of the coordinates )(tqi and velocities )(tqi . 
3. Examples 
1- This Lagrangian describes the one-dimensional motion of a black box in which a harmonic oscillator is hidden 
and the angular frequency of oscillations is one (Olga, 1997). 
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Using Euler - Lagrange equation 
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Eq. (5) can readily be solved to give  
 0'''''' =+qq   (6) 
The solution of Eq. (6) is  

 tBtADCtq t sincos)( −−+=  (7) 

Taking the first time derivative of Eq. (7) 

 tBtADq cossin −+=  (8) 

By squaring Eq. (8), one gets 

 tBtAttABtBDtADDq 222222 cossincossin2cos2sin2 ++−−+=   (9) 
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Thus, taking the second time derivative of Eq. (7), this gives 

 tBtAq sincos +=   (10) 
The square of equation (10) is 

 ttABtBtAq cossin2sincos 22222 ++=  (11) 

Substituting Eq. (9) and Eq. (11) into Eq. (4), we have 

 tBDtADDtABtBtAL cossin
2
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+−−+−=  (12) 

Making use of Eq. (3) 
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Further, the action function takes this form  

 tBDADtADtDtBABtABtAS sincos
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And the acceleration is 

 tBtAq sincos +=  (14) 
2- As a second example, we consider the following regular Lagrangian (Hasan et al., 2004). 

 qqqL  += 2
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The corresponding Euler Lagrange equation reads  
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Simple manipulations yield 

 0'''' =q  (16) 

The solution of Eq. (16) is  

 32)( ttt DCBAtq +++=   (17) 

Like the previous example. Taking the first time derivative and the second time derivative of Eq. (17), we obtain  

 232 tt DCBq ++=   (18) 

and 
 tDCq 62 +=  (19) 
Squaring of Eq. (19), we find that  

 tt CDCDq 24436 2222 ++=  (20) 

Multiplying Eq. (17) by Eq. (18), this leads to 

 524323222 3524332 tttttttt DDCCDBCBBDACAABqq ++++++++=   (21) 

Putting Eqs. (20) and (21) into Eq. (15), then the Lagrangian can be written as  

 524323222222 352433212218 tttttttttt DDCCDBCBBDACAABCDCDL +++++++++++=   (22) 
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Using Eq. (3) to find the action function 
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Then, after integration  
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and the acceleration is 

 tDCq 62 +=  (24) 

4. Conclusion 
In this work, we have studied conservative systems with second order Lagrangian to find the action function using 
Euler Lagrange equations. By substituting the solutions of equations of motion in the given Lagrangian; and by 
finding the time integral of this Lagrangian we can determine the action function S as a function of time, also we 
have determined the acceleration. We illustrated through two examples how the Euler Lagrange equations can be 
used to find the action function. 
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