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Abstract 
Erythrocyte - erythrocyte adhesion (EEA) is of the large interest since it will effect directly on its function and 
interaction with other organs. Also, erythrocytes adhesion may arise erythrocytes aggregation which has a 
significant effect on the hemodynamic mechanism. The present study is aimed at examining the effect of 
erythrocytes mechanical properties on their adhesion. In addition, the impact of the physiological conditions 
around erythrocytes on their adhesion will be evaluated. A simple flow compartment technique built on inverted 
microscope was used to calculate adhesion number (AN) of erythrocytes which reflects the ability of erythrocytes 
to adhere to each other. AN was correlated strongly to shear rate and erythrocyte deformation index. Shape 
parameters of erythrocytes (Radius and volume) were found to play a major role in EEA. The concentration of the 
main plasma proteins (fibrinogen and albumin) were determined to have a significant effect on EEA. The results 
obtained in this study give the attention that other factors rather than particle diameter and work of adhesion may 
effect on erythrocytes adhesion. 
Keywords: Erythrocytes, Adhesion, Shear Rate, Deformation, Shape, Plasma proteins 
1. Introduction 
Adhesion could be defined as the attraction between two solid bodies produced by short distance intermolecular 
forces. Adhesion takes place between bodies with common contact surfaces (Zhou, 2003).A considerable number 
of researchers have been focused on the problems of adhesion (Corn, 1961; Kordecki & Orr Jr, 1960). 
Determination of adhesion force is crucial for many biomedical applications (Leckband & Israelachvili, 2001). 
Erythrocytes are the major cell components of blood. They are 8 µm in diameter with biconcave shape and 120 
days lifespan (Pasini et al., 2006). The Erythrocytes membrane content is similar to most of the animal membranes, 
and it is composed of water, proteins, lipids, and carbohydrates (D. Zhang, Kiyatkin, Bolin, & Low, 2000). It was 
believed that erythrocyte membrane consisted of the punch of lipids and one single protein. A few decades ago, it 
was revealed that red cell membrane ghosts had more than just one single protein. Recently, Pasini et al. had 
already made the identification of at least 340 different red cell membrane proteins (Pasini et al., 2006).  
Erythrocytes are considered as non-adhesive cells. The expression of a vast number of adhesion molecules was 
found in erythrocytes (Brittain, Han, Ataga, Orringer, & Parise, 2004; Brown & Frazier; Dahl, Westhoff, & Discher, 
2003; Garratty, Telen, & Petz, 2002; Goel & Diamond, 2002; Hermand et al., 2003). Adhesion molecules play a 
crucial role in cell– cell and cell–tissue interactions (Hermand et al., 2003; Ihanus, Uotila, Toivanen, Varis, & 
Gahmberg, 2007; Telen). Normal erythrocytes do not adhere to circulating cells and vessel walls under normal 
circumstances, suggesting that erythrocyte adhesion molecules could be inaccessible to their ligands. Adhesion of 
erythrocytes increases during particular homeostatic and pathological conditions i.e. clot formation and sickle cell 
disease (Goel & Diamond, 2002; Hermand et al., 2003; Wautier & Wautier, 2004; Zen, Cottman, Truskey, Fraser, 
& Telen, 1999). Erythrocytes have at least the potential capability of adhering to some ligands including 
thrombospondin, fibronectin, laminin, hyaluronan, and thus to other cellular types such as endothelial cells and 
leukocytes (Wautier & Wautier, 2004; Zen et al., 1999). Erythrocytes float freely around the body without adhering 
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strongly to other structures under normal conditions. Erythrocytes adhesion may be described through weak van 
der Waals adhesive forces alone which is much weaker than chemical bonds (Kendall, Liang, & Stainton, 1998). 
There are many techniques to measure the adhesive forces, including Atomic force microscopy (AFM), centrifugal 
method, and electric field detachment method (Salazar-Banda, Felicetti, Gonçalves, Coury, & Aguiar, 2007; 
Shukla & Henthorn, 2009; Zafar, Hare, Hassanpour, & Ghadiri, 2014). For a particle with irregular shape, the 
adhesive force is hard to be measured (LaMarche, Muzzio, Shinbrot, & Glasser, 2010; Packham, 2003). 
In the present study erythrocytes-erythrocyte adhesion (EEA) has been evaluated under different shear rates 
microscopically. There are some studies of erythrocytes aggregation were based on microscopic techniques 
(Baskurt, Meiselman, & Kayar, 1998; Berliner et al., 2004; Shiga, Imaizumi, Harada, & Sekiya, 1983). The main 
difference between them and the present work is that the present work represents adhesion number (AN) to 
evaluate the force of adhesion under the different shear rates. By which more in deep analysis of erythrocytes 
aggregation could be gained, and the phenomena of aggregation could be studied on the cellular level. One of the 
main aims of the present study is to evaluate the effect of the deformation of erythrocytes on their aggregation 
ability. The correlations between AN and physiological condition such as erythrocytes shape parameters and 
plasma proteins has been studied.  
2. Materials and Methods 
2.1 Samples Collection and Preparation 
Thirty blood samples were collected from healthy volunteers with the same age and gender. All blood samples 
were collected after overnight fasting in a quiet environment at normal ambient temperature. Blood was withdrawn 
after a 10 min resting period and in a seated position. Five ml of blood was collected on EDTA as an anticoagulant 
and divided into two parts as the following: 
 2.5 ml was used to determine the mean cell volume (MCV), red blood cell distribution width (RDW), and 

hemoglobin (HGB)  
 2.5 ml was centrifuged, and erythrocytes were separated from plasma. The sequence of erythrocytes 

suspensions in autologous plasma of concentrations 0.0002, 0.0004, 0.0006, 0.0008, 0.001 v/v were prepared 
and were utilized in the determination of adhesion number (AN).  

Two ml from the same volunteers was collocated on 3.2% sodium citrate to determine fibrinogen level in plasma. 
Other two ml was collected on serum gel to determine albumin level in serum. 
2.2 Erythrocytes Adhesion Number under different Shear Rates 
To study erythrocytes adhesion under different shear rates an instrument was built up in my lab called flow 
compartment. This instrument composed of a cone of glass over a flat glass slide. The cone and slide made an 
angle of 3º with horizontal. This small angle helped in avoiding of depletion effect of the walls. The cone was 
connected to stepper motor through a rubber belt. The erythrocytes suspension was introduced in the gap between 
the cone and slide. Both the cone and slide were built in a plastic holder and were fixed on the stage of the inverted 
microscope. This instrument allowed to exposed erythrocytes to shear rates range between 5 s-1 to 200 s-1, and this 
was done by changing the angular velocity of the rotation of the cone to give the desirable values of shear rate. An 
eyepiece camera was attached to the inverted microscope, by which images of the erythrocytes under different 
shear rates were taken. Hence, I had the opportunity for an in-depth analysis of the dynamics of EEA under steady 
shear conditions. 
2.3 Calculation of Adhesion Number 
Doublets erythrocytes (N2) and singlet erythrocytes (N1) are related to volume fraction (߶ሻ by the following 
equation: 

 ܰ ଶܰ ଵܰଶ⁄ = ଷߣ)߶4 − 1ሻ݁ߝ)݌ݔ ݇ܶ⁄ ሻ ≈ ଶܰ ଵܰ⁄   (1) 
From this argument, the scattering plot of ଶܰ ⁄ ଵܰ  versus volume fraction (߶ሻ give a straight line passing 
through the origin. The slope of the line is a measure of the adhesion and is called adhesion number (AN) (Liang 
& Kendall, 1998).  
50 µl of erythrocytes suspension was placed in flow compartment. Images of erythrocytes under different shear 
rates were transferred to PC by eyepiece camera. Images were transferred directly to PC and saved in appropriate 
format with high resolution. All images were converted into gray scale. Imaging processing software ImageJ 
(imagej.nih.gov/ij/download/) was used in the analysis of erythrocytes images. It was able to count multiplets (N2) 
and singlet (N1) erythrocytes by using counting particles and particles area tools which are available in ImageJ. 



apr.ccsenet.org Applied Physics Research Vol. 9, No. 4; 2017 

25 

The previous procedure was followed for each erythrocytes suspension under different steady conditions and 
different shear rates.  
2.4 Calculation of Deformation Index 
The filtration method was used to evaluate the erythrocytes deformability which was described in details elsewhere 
(Reid, Barnes, Lock, Dormandy, & Dormandy, 1976; Shevkoplyas, Yoshida, Gifford, & Bitensky, 2006). Briefly, 
five μm track-etched polycarbonate filters (Nuclepore™, Whatman, GE Healthcare Biosciences, Piscataway, NJ, 
USA) were pre-wetted with 40% ethyl alcohol. 100 μl of erythrocytes suspended in autologous plasma was allowed 
to filtrate freely through the filter under the action of gravity. The Hct was adjusted at 10 %. 100 μl of autologous 
plasma was allowed to filtrate freely through the filter after the same previous treatment. The deformation index 
(DI) was calculated as the following: 

ܫܦ  = ி௜௟௧௘௥௔௧௜௢௡ ௧௜௠௘ ௢௙ ௘௥௬௧௛௥௢௖௬௧௘௦ ௦௨௦௣௘௡௧௜௢௡ி௜௟௧௥௔௧௜௢௡ ௧௜௠௘ ௢௙ ௣௟௔௦௠௔  (2) 

2.5 Statically Analysis 
The adhesion number for each sample was calculated ten times, and the mean ± SD was obtained. The relationships 
between adhesion number and other parameters were examined with linear regression and correlation coefficient 
(R2) was calculated. ܴଶ ≥ 0.6  was considered as strong correlation. 0.5 ≤ ܴଶ ≤ 0.6  was considered as 
moderate correlation. ܴଶ ≤ 0.5 was considered as weak correlation. 
3. Results and Discussion 
Erythrocytes adhesion could be measured by observing the number of doublets at equilibrium in a dilute 
suspension (Attenborough & Kendall, 2000; Liang & Kendall, 1998). K. kendall et al. in their work to compare 
adhesion number of human erythrocytes to the adhesion number of other mammalian proven the linearity of the 
relationship between ଶܰ ⁄ ଵܰ versus volume fraction (߶ሻ for human erythrocytes (Attenborough & Kendall, 
2000; Kendall & Stainton, 2001; Liang & Kendall, 1998). Linear relationship for ଶܰ ⁄ ଵܰ as a function of, ߶,was 
obtained as shown in Figure 1. For erythrocytes suspended in plasma, the mean value of AN was 491±12. 
Attenborough, F.R et al, calculated AN for erythrocytes suspended in PBS and it was lower than the value obtained 
in the present study (Attenborough & Kendall, 2000). This can be explained as the plasma enhances the adhesion 
of the EEA. Blood has a non-Newtonian behavior. One of the major factor exhibit non Newtonian behavior of 
blood is erythrocytes aggregation. At low shear rates blood viscosity increases due to the formation of erythrocytes 
aggregation which starting as rouleaux and may be formed network shape under certain pathological conditions. 
At High shear rates blood, becomes less viscose due to lower a chance of erythrocytes to adhere with each other 
(Dintenfas, 1971; Schmid-Schönbein, Gallasch, Gosen, Volger, & Klose, 1976). Cell-cell interaction under low 
shear rates is mediated by hydrodynamic force (Shiga et al., 1983). E. E Kaliviotis and M Yianneskis, showed that 
the aggregation index calculated microscopically was pointedly increased at low shear rate between 3 and 10 s-1. 
The aggregation index at high shear rates was reduced to the half of its value at low shear rates and value 
fluctuations was observed (Kaliviotis & Yianneskis, 2007). The high viscosity value at low shear rates is aroused 
from the aggregation formation result in shear resistance. Johan Janzen et al indicated that at shear rates between 
0.25 and 3 s-1 there was an increase in microscopic aggregation grade (Janzen, Elliott, Carter, & Brooks, 2000). 
Figure.2. showed the effect of shear rates on EEA. At 50 s-1 the EEA obviously decreased due to the shear force 
which is greater than the value of the adhesion force. The hydrodynamic forces at high shear rates prevent EEA 
until equilibrium reaches at 90 s-1. Erythrocytes at high shear rates showed round and random motion in different 
direction. As observed in Figure 2. AN became approximately constant at 90 s-1.  
An Adhesive surface energy and the elastic stored energy of erythrocytes results from deformation of the 
erythrocytes. The membrane elasticity is responsible for the elastic strain energy of the erythrocytes. Bending of 
the erythrocyte surface and shear lead to membrane elasticity. Both the aggregation and disaggregation process of 
the erythrocytes depends on the adhesive energy and elastic energy of deformation (Ernst, Pietsch, Matrai, & 
Eisenberg, 1986). It was verified that the deformability of erythrocytes plays a major role in their main function. 
A slight decrease in erythrocytes deformability causes a significant increase in blood viscosity (Reid et al., 1976; 
Shevkoplyas et al., 2006). Figure 3. Shows strong correlation between AN and DI (R2˃0.6). From Figure 3. It can 
be concluded that when the erythrocytes membrane becomes less elastic, it loses its ability to adhere to other 
erythrocytes even to surfaces. This can be explained as the erythrocytes become stiffer reducing in adhesive force 
takes place  
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It was concluded that the adhesion force should be proportional to particle diameter, and work of adhesion (Kendall 
& Stainton, 2001). It was maintained that the adhesion of micro size particles such as bacteria and blood cells 
depend on the roughness. It is presumed that roughness curvature rises in proportional to sphere diameter (Kendall 
& Stainton, 2001). Shinde Patil, V. R., et al. suggested that attachment, rolling, and firm adhesion is functions of 
particle diameter and provides experimental proof for theoretical models that indicate a role for cell diameter in 
adhesion (Shinde Patil, Campbell, Yun, Slack, & Goetz, 2001). JKR assumption stated that the adhesion of particle 
with the radius might be defined as the negative of the pull-off force F, and related to the surface energy γ as the 
following: 

ܨ  = − ଷଶ  (3) ܴߛߨ

This formula assumes that the exciting of a strictly flat region of contact between the particles and that the particles 
experience an infinitely short-ranged interaction in this region and do not interact outside of it (Baskurt et al., 1998; 
Berliner et al., 2004; Shiga et al., 1983). Compatible with the previous studies, Figure 4. shows strong correlation (ܴଶ > 0.6ሻ between AN and RDW in Plasma. Linear increase in AN as RDW increase was observed in the present 
study. This can be explained as the a ݉ߤ particles dominated by adhesion forces due to dwarf in their diameter. 
Also the roughness of the surface of ݉ߤ particles play a key role in adhesion and proportion directly with the 
particle diameter. 
Nancy J. et al. mentioned that the adhesion of erythrocytes could be influenced by erythrocytes volume (Wandersee 
et al., 2005). Felicetti, M. A., et al. illustrated in their study that the adhesion force is a function of the mean particle 
diameter of powdery materials and they noted the increasing of adhesion force as particle size increased(Felicetti, 
Piantino, Coury, & Aguiar, 2008). Figure 5. depicts the direct relation between AN and MCV. The correlations of 
this coordinate was moderate ( 0.5 ≤ ܴଶ ≤ 0.6ሻ. The particle volume and adhesion inter relationship may be 
raised from the increasing of the roughness of the particles surface as particle's volume increase. 
 

 
Figure 1. The relationship between the volume fraction (߶) and ଶܰ ⁄ ଵܰ give straight line go through the origin. 

Noted decreasing in the line gradient at high shear rate 
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Figure.2 Reducing in EEA at high shear rate. There is a small variation in erythrocytes interaction at very low 

and very high shear rates 
 

 
Figure 3. EEA is inversely related to erythrocytes deformation.  
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Figure 4. AN and RDW are strongly correlated (R2=0.7) 

 

 
Figure 5. AN and RDW are moderately correlated (R2=0.5) 
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molecules. Thereby, the cell-cell distance increases with increasing polymer size but is always smaller than the 
diameter of the hydrated polymer(Asakura & Oosawa, 1958; Shu Chien & Jan, 1973). It was depicted that the 
addition of surface active molecules to the cell suspension effect on erythrocytes adhesion(Attenborough & 
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lifestyle and dietary habits effect on the biochemistry and rheological properties of the blood constitutes including 
erythrocytes (Ernst et al., 1986). Direct relationship between Fibrinogen concentration in plasma and AN was 
indicated in the present study with strong correlation (ܴଶ = 0.7ሻ Figure 6. This finding could be explained as 
fibrinogen plays the major role in the bridging model of erythrocytes aggregation and could be the major factor 
that causes sticking of erythrocytes with each other. The albumin plays a critical role in maintaining osmotic 
pressure and fix the shape of erythrocytes. Figure 7 shows increase in AN as albumin concentration increases with 
moderate correlation (ܴଶ = 0.5ሻ.  
 

 
Figure 6. Fibrinogen highly effects on EEA. AN and fibrinogen concentration are strongly and positively 

correlated (R2=0.7) 
 

 
Figure 7. Albumin concentration has a moderate correlation to AN (R2=0.5) 

 
 
 

450

460

470

480

490

500

510

520

120 170 220 270 320 370 420
Fibrinogen (mg/dL)

AN

450

460

470

480

490

500

510

520

300 350 400 450 500 550
Albumin  (mg/dL)

AN



apr.ccsenet.org Applied Physics Research Vol. 9, No. 4; 2017 

30 

4. Conclusion 
Erythrocytes adhesion number can be calculated microscopically in a simple way. Adhesion number reflects the 
state of the adhesion force of erythrocytes. Adhesion of erythrocytes and adhesion force between erythrocytes 
could not be considered without taking into account the suspended media composition and the morphology of the 
erythrocytes themselves. 
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