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Abstract

The primary, obscure and normal particles with respective limiting velocities c1, c2 and c3,solutions from bicubic
equation, offer comfortable venues to tackle the newly emergent dark matter particles. Particular emphasis is given
to particles with velocities of O(10−3c) ( with c the velocity of light) and whose energies are from 1eV to over
100GeV for which the congruent parameter z = 3

√
3mv2/2E assumes values of 10−6 and 10−7. At z = 10−6 with

mc2 = 100GeV one can have E = 260GeV or with E = 1eV one can have mc2 = 0.38eV; while at z = 10−7 with
mc2 = 100GeV one can have E = 2.6TeV or with E = 1eV one can have mc2 = 0.038eV . The small values of
the congruent parameter z allow the limiting velocities c1, c2 and c3 as well as the resulting energy expressions be
written down perturbatevly in terms of the congruent parameter z.

It is shown that for mc2 = 100GeV particle in the Milky Way Dark Matter Velocity Profile (Laha, 2016), the derived
limiting velocities of primary, obscure and normal particles as dark matter particles are: c1 = 1, 7c (z = 10−7),
1.34c, 2.15c (z = 10−6); c2 = ±i1, 7c (z = 10−7), ±i1.34c, ±i2.15c (z = 10−6), and c3 = v (z = 10−7, 10−6).
Perturbatively, for a very small common primary and obscure particle velocity v compared to the absolute values
of their limiting velocities, one shows that the obscure particle acquires (−mv2) intrinsic negative energy with
respect to the primary particle,with m being their common mass.

Keywords: Dark matter particles, Implicit causality, Prime, Obscure and Normal particle limiting velocities

1. Introduction

The particle limiting velocity solutions of primary c1, obscure c2 and normal c3 (Soln, 2014, 2015, 2016, [1, 2, 3]),
repeated bellow with (2.0, 1, 2, 3), cathegorize particles respectively into the primary, obscure and normal particles
with the help of dimensionless congruent particle parameter

z =
3
√

3mv2

2E
; − 1 ≤ z ≤ 1 (1.0)

where m, v and E are respectively particle mass, velocity and energy. For a given value of z , relation (1.0)
indicates that m, v and E are in an implicit causality relation with each other,which is affecting their allowed
values, depending on the specific value of z. Some of these may or may not change as z changes from one value to
another, but always respecting that −1 ≤ z ≤ 1 . The values of c1, c2 and c3 change only if the congruent parameter
as a whole changes, as can be seen from relations (2) bellow. That is, the changes in m, v and E must be such that
they change the value of z within allowed limits, which in turn, will change the respective values of c1, c2 and c3.
Of course, although the fixed value of z fixes the values of c1, c2 and c3 it does not mean that all these values are
observable with particles; what it means is that they are allowed to be created. Perhaps what one observes could
be a particle with c3 or particles with c1 and c2.

Complete description of a dark matter particle requires also the knowledge of m, v and E for a given value of its
congruent parameter z. Unfortunately the attributes of dark matter particles are not very well known. The velocities
of dark matter particles appear to be the easiesr to estimate. For instance, Fan, Reece and Wang (2010) as well as
Bezrukov and Gorbunov (2015) found that dark matter particles with v ≈ 10−3c (with c the velocity of light) and
small energy of E ≈ 1eV are likely to exist. From (4), that follows, one sees that with given v and E the maximum
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mass is achieved at z = 1 which in Śoln (2016),was treated as a test particle. Dealing with this kind of test
particles,one finds that at z = 1, v ≈ 10−3c and E ≈ 1eV , the corresponding primary, obscure and normal limiting
velocity self energies to be m(1)c2

1,3 ≈ 0.58eV,m(1)
(
−c2

2

)
≈ 1.15eV . As each of these particles has E ≈ 1eV , the

obscure particle has to go through intrinsic self-annihilation so that m(1)
(
−c2

2

)
≈ 1.15eV is sufficiently decreased

so that its energy ends up with E ≈ 1eV as shown in Śoln (2016). Here this self-annihilation phenomenon for the
obscure particle is pointed up perturbatively at the end of Section 2.

One will have to move away from z = 1 in order to be able to discuss dark matter particles with mc2 say, from
bellow 1eV to above 100GeV as advocated recently by Laha (2016), however with velocities that cover the range:
(1/4)10−3 ≼ v ≼ (4/3)10−3c. In fact, the congruent parameter will assume values of z = 10−6 and 10−7for the
energies, from less than 1eV to over 100eV . Specifically,with z = 10−6 ,the implicit causality requires that for
mc2 = 100GeV one has to have at least E = 260GeV ,or for E = 1eV one has to have at least mc2 = 0.38eV; while
at z = 10−7 the implicit causality demands that for mc2 = 100GeV one has to have at least E = 2.6TeV or with
E = 1eV one has tohave at least mc2 = 0.038eV , etc. Of course, one notices that the congruent parameters values
here for possible dark matter particles are different from z = 10−11 like when calculating in Śoln (2014, 2015,
2016) the limiting velocity for OPERA muon electron experiment from Adam et al. (2012), and the Crab Nebula
Flare 2010 observation Stecker (2014) of the superluminal electron limiting velocity (Śoln, 2014, 2015, 2016).

In Section 2 one starts with exact forms of limiting velocities c1, c2 and c3 which depend on inverse trigonometric
functions and the dimensionless congruent parameter z (1). At 10−2 ≤ z ≤ 1 the exact limiting velocity forms in
calculations have to be used, while at z ≤ 10−2 either exact or perturbative forms can be used in calculations,
where perturbative forms are approximations from the Taylor series with the algebraic function forms in z. Also
for small z, if necessary, other relevant relations involving E, v and m will be expressed as algebraic functions in
z, utilizing a new established symmetry between c1 and c2 under reflection of z, z → −z. Also in Section 2, from
Śoln (2016) two different energy expressions for primary, obscure and normal particles are presented. These are
then used to exhibit the self annihilating property of the obscure particle relative to the primary particle for very
small particle velocity compared to respective absolute values of limiting velocities.

Section 3 is devoted to numerical results associated with proposed dark matter particle velocity v ∼ 10−3c , where
c is the velocity of light (Fan, Reece, & Wang, 2010; Bezrukov & Gorbunov, 2015; Laha, 2016). First, a general
approach is given for v ∼ 10−3c dark matter particle observability through primary and normal particles with
respect to related limiting velocities c1 and c3 as well as through possible effects of obscure particle with imaginary
limiting velocity c2 . On a more specific level, Laha,s results (Laha, 2016) on the Milky Way dark matter velocity
profiles is dissected into three segments with velocity values: initial, v = (1/3)10−3, middle, v = (2.5/3)10−3, and
the end, v = (4/3)10−3c. Each of these velocities is associated formally with a respective particle. These way,
one can follow much easier with more precise values of the corresponding congruent parameters and energies and
other things. In fact, in the calculations with these velocities z is selected with implicit causality from acustomary
requirement mc2 ≺ E plus a must requirement −1 ≤ z ≤ 1 yielding allowed values z . 10−6, 10−7. Although the
requirement mc2 ≺ E seems to be working, so far satisfactory, out of curiosity, one should be open to possibility
to replace c with c1, c2 or even with c3 , c to see whether that would make a difference.

2. Particle limiting velocity expressions with different ranges of the congruent parameter z

It has been shown in Śoln (2014, 2015) and particularly in Śoln (2016) that combining the particle nass-shell
condition with the particle momentum, one ends up for c, identified as a limiting velocity, with the bicubic equation

m2
(
c2

)3 − E2c2 + E2v2 = 0 (1.1)

whose three solutions, according to Śoln (2014, 2015, 2016), are squares of the primary c1 ,obscure c2 ,and normal
c3,limiting velocities, which with z from (1.0),are written as,

D =
1
4

3
√

3
2z

4 1 − 4
27

3
√

3
2z

2 = (
3
2

)6 1
z4

(
1 − 1

z2

)
≤ 0, (2.0)

z =
3
√

3mv2

2E
; − 1 ≤ z ≤ 1,

c2
1

v2 =
3
z

sin
(
π

3
− 1

3
sin−1 (z)

)
≻ 0, (2.1)
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c2
2

v2 = −
3
z

cos
(

1
3

sin−1 (z) − π
6

)
≺ 0, (2.2)

c2
3

v2 =
3
z

sin
(

1
3

sin−1 (z)
)
≻ 0 (2.3)

With identities, (3.0) where α is a real quantity, one obtains from (2. 2)

sin
(
α +
π

3

)
= cos

(
α − π

6

)
= cos

(
−α + π

6

)
(3.0)

(2.2) :
c2

2

v2 = −
3
z

sin
(

1
3

sin−1 (z) +
π

3

)
≺ 0 (3.1)

From comparison of (2,1) and (3.1) it is easily seen the interesting connection between c2
1 and c2

2 under reflection
of the congruent parameter z→ −z, while c2

3 remains the same,

(2.1)
c2

1

v2 (z→ −z)→ (3.1)
c2

2

v2 (z) ; (2.3)
c2

3

v2 (z→ −z)→ (2.3)
c2

3

v2 (z) (3.2)

The meaning of (3.2) is imposing itself through z; If, for instance, the energy E becomes negative in the primary
particle, then the primary particle transitions into the obscure one, but treating E as its positive energy. Of course,
by the same token the reflection z→ −z can change the obscure particle in (3.1) into the primary particle in (2.1).
Now,as the normal particle is even under z→ −z , it simply remains the normal particle as c2

3 recognizes effectively
only |z|. Furthermore if these transitions between dark matter primary and obscure particles occur causally, one can
see difficulties in pin-pointing a dark matter particle since the basic difference between primary, with real c1, and
obscure, with imaginary c2 ,are in their limiting velocities.

The Taylor series expansions of (2.1, 2, 3)) and of (3.1) for limiting velocities in terms of z ≤ 10−2 , explicitly
demonstrates relations (3.2) in this approximation.

(2.1) :
c2

1

v2 (z) =
3
√

3
2z
− 1

2
−
√

3z
12
− 2z2

27
+ O(

(
z3

)
, (4.1)

(3.1) :
c2

2

v2 (z) = −3
√

3
2z
− 1

2
+

√
3z

12
− 2z2

27
− O(

(
z3

)
, (4.2)

(2.3) :
c2

3

v2 (z) = 1 +
4z2

27
+ O(

(
z4

)
. (4.3)

These relations show more clearly the interrelationship between primary, obscure and normal limiting velocities
c1, c2 and c3 at small z values. One notices that at small z values c2

3 ≃ v2 while the same is not true for either c2
1 or

c2
2.

The zero square sum rule of limiting velocities (Śoln, 2014, 2015, 2015), written here as c2
3(z) = −c2

1(z) − c2
2(z)

and valid for any congruent parameter z value, shows deep interrelationship between c2
1, c2

2 and c2
3. Here, of course

this is explicitly seen for z ≤ 10−2 from (4.1, 2, 3). However, the perturbation relations (4) will be very useful in
evaluating ranges of limiting velocities when v ∼ 10−3c as advocated in Fan, Reece and Wang (2010), Bezukov
and Gorbunov (2015) and more recently by B. Laha in Laha (2016).

For the sake of completeness, according to Śoln (2016) one writes down two different energy expressions for each
of primary, obscure and normal particle whose respective limiting velocities satisfy, c2

1 ≻ 0, c2
2 ≺ 0 and c2

3 ≻ 0,

E(c1) =
3
√

3mv2

2z
=

√
3mc2

1

2 sin
[

1
3

(
π − sin−1 (z)

)] = mc2
1

1 − v2

c2
1

− 1
2

(5.1,2)

= mc2
1 +

mv2

2
+

3
8

mc2
1

v2

c2
1

2

+ mc2
1O

v2

c2
1

3 , (5.3.)
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E(c2) =
3
√

3mv2

2z
=

√
3m

(
−c2

2

)
2 sin

[
1
3 sin−1 (z) + π3

] = m
(
−c2

2

) 1 + v2(
−c2

2

) −
1
2

(5.4,5)

= m
(
−c2

2

)
− mv2

2
+

3
8

m
∣∣∣c2

2

∣∣∣  v2∣∣∣c2
2

∣∣∣
2

+ m
∣∣∣c2

2

∣∣∣ O 
 v2∣∣∣c2

2

∣∣∣
3 , (5.6)

E(c3) =
3
√

3mv2

2z
=

√
3mc2

3

2 sin
[

1
3 sin−1 (z)

] = mc2
3

1 − v2

c2
3

− 1
2

(5.7,8)

= mc2
3 +

mv2

2
+

3
8

mc2
3

v2

c2
3

2

+ ... (5.9)

The series expansion for E(c3) is not saturated, indicating slow convergence. Subtracting (5.3) from (5.6) and taking
into account from the Table that c2

1 ≈ −c2
2, then with the same mass m, same v, same z, one obtains perturbatively,

generally very small difference between E(c1) and E(c2),

E(c2) − E(c1) = −mv2 + m
∣∣∣c2

2

∣∣∣ O 
 v2∣∣∣c2

2

∣∣∣
3 − mc2

1O

v2

c2
1

3 ≈ −mv2 (5.10)

Relation (.2) indicates that globally E(c2) relative to E(c1) exhibits self annihilation properties of the obscure
particle relative to the primary particle. Presently, at very low z = 10−7 with mv2 ≪ mc2

1, m
(
−c2

2

)
,then (−mv2) is

rather small compared to E(c2 and E(c1). The importance of (5.10) is in the fact that the negative relative energy
E(c2) − E(c1) under the circumstances of very large congruent parameter z, may become even more negative
indicating deeper physical differences between obscure and primary particle

3. Limiting velocities for (dark matter) particles with small ordinary velocities

A number of authors, such as Fan, Reece, and Wang (2010), Bezrukov and Gorbunov (2015) and Laha (2016)
believe that an ordinary velocity of v ∼ 10−3c would be a natural representative velocity for a bunch of dark matter
particles, either with small mass and energy , mc2 ≼ E ≼ 1eV (Fan, Reece, & Wang, 2010; Bezukov & Gorbunov,
2015) or with large energy and mass, E ≽ mc2 ≽ 100GeV (Laha, 2016). These relatively small velocities of
O(10−3c ) facilitate bunching of these particles and their observation.

The Milky Way Dark Matter Velocity Profiles can be cast in a variety of VDF’s (Velocity Distribution Functions)
(Laha, 2016) of which the simplest is the one like the standard Maxwellian distribution (Laha, 2016),

f (v) = A exp

− (
v
v0

)2 , v =
∣∣∣−→v ∣∣∣ (6.0)

The VDF f (v) has maximum at v0, and v is significantly different from 0 between vmnand vmx , with numerical
values as follows,

kms−1 = (1/3) 10−3c : vmn = 0 kms−1 = 0 c,

v0 = 250 kms−1 = (5/6) 10−3c, vmx = 500 kms−1 =

(
4
3

)
10−3c (6.1)

The constant A in the Dark Matter Velocity Profile is the normalization factor chosen such that the intergral

∫ vmx

vmn

d3v f (v) = 4π
∫ vmx

vmn

v2 dv f (v)

equals the number of dark matter particles in a region of interest (Mao et al., 2013).

An important thing that this Milky Way Dark Matter Velocity Profile offers is a number of particles with veloc-
ities that are close to 10−3c and which kinematically, through primary, obscure and normal particles, could shed
important light on the nature of dark matter particles. To this end, the choice of three different ordinary velocities
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between vmn and vmx are assigned to three hypothetical dark matter particles from which then the corresponding
primary, obscure or normal limiting velocities are to be calculated,

v = 100 kms−1 =
1
3

10−3c, (6.2)

v = v0 = 250 kms−1 =
5
6

10−3c, (6.3)

v = 400 kms−1 =
4
3

10−3c (6.4)

The question now is: What kind of limiting velocities one can expect from ordinary velocities from (6.2, 3, 4) ? In
order to use them in the implicit causality relations, one first combines mc2/E,≼ 1 with 0 ≼ z ≺ 1 to obtain

z =
3
√

3v2

2c2

mc2

E
≤ 1;

mc2

E
≼ 1; (7.1, 2)

2c2

3
√

3v2
z ≼ 1 : z ≼ 3

√
3v2

2c2 (7.3, 4)

Since the ordinary velocities are assigned , one simply applies the implicit causality on (7. 4) in order to deduce
the most appropriate values for z .

v =
1
3

10−3c, z ≺ 3
√

3
2 · 9 10−6 = 0.29 · 10−6; z ∼ 10−7 (7.5)

v =
5
6

10−3c, z ≺ 3
√

3
2

(
5
6

)2

10−6 = 1.8 · 10−6; z ∼ 10−6 (7.6)

v =
4
3

10−3c, z ≺ 3
√

3
2

(
4
3

)2

10−6 = 4.62 · 10−6; z ∼ 10−6 (7.7)

In relations (7.5, 6, 7) the choices of z ∼ 10−7 and z ∼ 10 −6 are made with the largest z′s that comfortably satisfy
(7.5, 6, 7) for each particular v . As such they define models that likely will describe the realistic physics of the
possible primary, obscure or even normal dark matter particles. The choices of z ∼ 10−7, 10 −6 cover cases from
references (Fan, Reece, & Wang, 2010; Bezukov & Gorbunov, 2015; Laha, 2016) as long as mc2 ≼ E, despite the
fact that in Fan, Reece, and Wang (2010) and Bezukov and Gorbunov (2015), E ∼ 1eV , while in Laha (2016)
E ≽ 100GeV . It is interesting to compare for these assumed dark matter particles their congruent parameter values
of z ∼ 10−7, 10 −6 with z ∼ 10−11 of the OPERA muon-neutrino velocity experiment (Adam et al., 2012) as shown
in Śoln (2016), as well as, with z ∼ 10−10 of the Crab Nebula Flare 2010 observation of the superluminal electron
velocity (Adam et al., 2012) as shown in Śoln (2014, 2015, 2016). In both of these experiments, v ∼ O(c) while in
present cases v ∼ O(10−3c) , lowering z from 10−10 or 10−11 to 10−6 or 10−7.

Now, because z ∼ 10−6, 10−7 ≪ 1, in place of exact limiting velocity solutions (2), one can use the small congruent
parameter z limiting velocity solution expressions (4,1, 2, 3) to O(z0). Next, the three limiting velocities c1, c2 and
c3, calculations are done within three respective (z, v) combinations (7.5, 6, 7) according to (4,1, 2, 3). Furthermore,
consistent with Laha (2016), the mass value of mc2 ≈ 100GeV is assumed. Then as seen from exact energy
expressions (5.1, 4, 7) (compare with Śoln, 2016) the calculated energy expressions satisfy, E(c1, z) = E(c2, z) =
E(c3z). Limiting velocities with the energies are presened in two tables that follow.

In the Table terms with v2/c are negligible for cases from relations (7). They are here for the sake of completeness
and if it is desired to increase v’s to higher values. Each normal limiting velocity c3,as relation (4.3) indicates is
for the values of z = 10−6 and 10−7, just slightly larger than v, which is the reason for keeping the same value as
v. In the Table a velocity v can be understood as a velocity of just created or instantaneously interacting particle;
which is the reason that in such situations real v goes with every particle.

The energy E, calculated from non-perturbative relations (5.1), (5. 4) and (5.7) show the same value for each c1, c2
and c3 with fixed values of v and z. What one sees here is that after the creation or engagement a particle becomes
free and assumes limiting velocity, real c1 for the primary particle, imaginary c2 for the obscure particle and real

5
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c3 for the normal particle. These limiting velocity values are not universal but rather reflect from which specific v
value, that is to say, z value they started.

As shown in Śoln (2016), the energy of every kind of particle, primary, obscure or normal particle is globally gov-
erned with implicit causality from the congruent parameter z through the expression (1), E = 3

√
3mv2/2z . This

expression changes into forms with which one emphasizes differences between primary, obscure and normal par-
ticles through respective limiting velocities c1, c2 and c3. Globally, primary, obscure and normal particles with the
same m, v and z will have the same energy. For instance, a difference for the obscure particle is that perturbativelly
the lower order terms of energy expression will yield negative contribution as compared to the primary particle,
which is due to the fact that the obscure limiting velocity c2 is imaginary.

Tables 1. Limiting velocities and energies of dark matter particles of selected model velocities from the Milky Way
Dark Matter Velocity Profile (Laha, 2016)

z : 10−7, 10−6

v : 1
3 10−3c, 5

6 10−3c
c1 : 1.7c − 0.15(v2/c), 1.34c − 0.19(v2/c)
c2 ±i[1.7c + 0.15(v2/c)], ±i[1.34c + 0.19(v2/c)]
c3

1
3 10−3c, 5

6 10−3c
E/GeV 289, 180




z : 10−6

v : 4
3 10−3c

c1 : 2.15c − 0.12(v2/c)
c2 ±i[2.15c + 0.12(v2/c)]
c3

4
3 10−3c

E/GeV 462


4. Conclusion

Three particle limiting velocities c1, c2 and c3 either in the original analytical forms (Śoln, 2014, 2015, 2016) or in
the present perturbative forms for very small congruent parameters z ∼ 10−6, 10−7, suggest that the corresponding
primary (c1), obscure (c2) and normal (c3) particles be good candidates for dark matter particles for the velocities of
O(10−3c) and energies from 1eV through 100GeV . These facts agree with evaluations and analyses of Fan, Reece,
and Wang (2010), Bezrukov and Gordunov (2015) and Laha (2016) with his formulation of the Milky Way Dark
Matter Velocity Profiles. The analysis consists of casting these Profiles in a variety of VDF’s from which, as here
pursued, one could extract ”dark matter particles” with velocities of O(10−3c) as it was done here.
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