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Abstract 
In this paper we reconsider the conventional expressions given by special relativity to the energy and momentum 
of a particle. In the current framework, the particle's energy and momentum are computed using the particle's  

rest mass, M and rest mass time, 2m
ht

M c
=

⋅
 where mt  has the same time unit as conventionally used for the  

light velocity c. Therefore it is currently assumed that this definition of time describes the total kinetic and mass 
energy of a particle as given by special relativity. In this paper we will reexamine the above assumption and 
suggest describing the particle's energy as a function of its own particular decay time and not with respect to its 
rest mass time unit. Moreover we will argue that this rest mass time unit currently used is in fact the minimum 
time unit defined for a particle and that the particle may have more energy stored with in it. Experimental ways 
to search for this extra energy stored in particles such as electrons and photons are presented.  
Keywords: Energy, momentum, special relativity, decay time  
1. Introduction 
In this paper we reconsider the conventional expressions given by special relativity to the energy and momentum 
of a particle. In the current framework, the energy and momentum are defined with respect to an arbitrary unit of 
time given in seconds, and it is assumed that this definition describes the total kinetic and mass energy of a 
particle as given by special relativity. As will be discussed, this arbitrary time unit is related to the particle's rest 
mass and may correspond to the shortest decay time the particle may have. However in many cases the particle is 
associated with a larger internal time unit (in the case of stable particles) or a larger decay time (in the case of 
unstable particles). In this note we suggest to relate the particle's energy to its own internal time unit, which may 
mean that a particle may have more energy stored within it then conventionally assumed and observed. 
This paper is divided into 4 sections. Section 2 describes the theoretical background. Section 3 describes the 
experimental search for the extra energy suggested in this note and section 4 contains the conclusions. 
2. Theoretical Background 
Using the fact that the universe expands at some velocity, expV  (Moskowitz, 2016) and that the maximum 
velocity is the speed of light c, one may define the absolute position of particle i in within the universe by: 
 i T iX V t= ⋅   (1) 
Where TV  depends on the particle's velocity with respect to expV  , the speed of light c and the possible hidden 
variable in time, ( )r if  (Brodet, 2010), as will be discussed in more details later on, and it  is an internal time 
unit of the particle which may be defined by the particle's possible hidden variable in time, ( )r if  (Brodet, 2010) 
such: 

( )

lni
r i

Mt
f

τ
 

= ⋅   
 

 

From using the fact that any length iX  generally corresponds to a complex number, ' ' '
i iz X ic t= + , of modulus 

iX  given by: 

 iX = |z|
2 2' 2 ''i iX c t= + ⋅  (2) 
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Where it may be the same particle's internal time as in equation 1, 'c  is some velocity and '
iX is some length. 

We may deduce a relationship between the 3 dimensional of space ( '
iX ), the dimension of time ( it ) and the 

combined dimension of space-time ( iX ).  
This could be modified in order to correspond to special relativity, where iX  may be a related to the length of a 

4-vector
'

( , )
2 2
i iX c t⋅  such: 

 
''2 '2 2 2

2 2 2
i i i

i
X X c tX ⋅

= + −  (3) 

Where it is the same particle's internal time as in equation 1, '
iX may be some arbitrary position in 3 dimensions 

related to particle i in its own rest frame. In this paper we will take ' 0iX = and assume ic t⋅ as particle's i 
invariant position in any moving frame observed by any object, c is the speed of light and ''

iX is the position of 
particle i with respect to the expanding universe which may be given by: ''

( )i r T iX V t= ⋅ . The definition of ( )r TV  
will be given later on in this paper: 
Therefore equation 3, which describes the absolute position of particle i in the universe may be given in terms of 

TV and ( )r TV such: 

 
2 2 2

( )( )
2 2

r T i i
T i

V t c t
V t

⋅ ⋅
⋅ = −  (3a) 

In the light of the possibility of ( )r if , the term involving ic t⋅ can be viewed as involving the internal 
information of particle i. Therefore the value of c may be viewed as only a part of particle's i velocity which may  

also depend on ( )r if  . Therefore, we may change c into ic  such: i
i

i

c
t
λ

= where ic c≠  and iλ  is the relevant  

size of particle i. The above may give equation 3 and 3a in terms of ( )r if  such: 

 
''2

2 2

( )

( )
2

2 ln

i i
i i

r i

X
X t

M
f

λ

τ
= − ⋅

 
⋅   

 

 (4) 

and equation 3a by: 

 
2 2 2

( ) ( )2 2

( )

( ) ( ) ( )( )
2 2 2

2 ln

r T i r T ii i i
T i i

r i

V t V t c t
V t t

M
f

λ

τ

⋅ ⋅ ⋅
⋅ = − ⋅ = −

 
⋅   

 

 (4a) 

One can rearrange equation 4 such: 

 
''2 '' 2 2 2

2 2 2 2

( )

0 ( )
2 2 2

2 ln

i i i i i
i i i

r i

X X c t
X t X

M
f

λ

τ

⋅
= − − ⋅ = − −

 
⋅   

 

 (5) 

and define it as some function , ''( , )i if X t  such: 

 
''2 2

'' 2 ( )( , ) 0
2 2
i i i

i i i
X c t

f X t X
⋅

= = − −  (6) 

It would be possible to attempt to derive the possible total energy and momentum from the function ''( , )i if X t . 
The function, ''( , )i if X t , is based of course on the basic relation of space and time given by: 

 X V T= ⋅  (7) 
Equation 7 was the basis for the theory of special relativity and the derivation of the expressions for the object's 
energy and momentum. 
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It is understood, that the energy and momentum given by special relativity is evaluated with respect to some 
defined time unit (as will be discussed later), conventionally given in the unit of seconds. Therefore, it is 
assumed by special relativity that the energy and momentum evaluated for this defined time unit describes the 
total energy of the particle (excluding its potential energy) and that the energy of a particle does not depend on 
the measurement time itself. In this note we will reexamine this assumption and will derive different and perhaps 
more comprehensive definitions for an object's energy and momentum. 
Therefore, using the particle's absolute position as defined above and the resulted function ''( , )i if X t which may 
follow, one may define the energy and momentum of a particle as the derivatives of ''( , )i if X t  with respect to 
space( '' )iX and time( it ) such: 

'' ''
'' ( , )i i i
i

f X t X
X
∂ =

∂
 

and 

'' 2( , )i i i i
i

f X t c t
t
∂ = − ⋅

∂
 

The derivative with respect to ''
iX may de identified as momentum ,P, and the derivative with respect to time 

may be identified as energy, E,. For the energy case:  

 2
( )i part i iE c t= ⋅  (8) 

and for the momentum case: 

 '' ''
( )i part i i iP X V t= = ⋅  (9) 

The definition for energy and momentum given by equations 8 and 9 above means that we have to know what is 
the time, it  , the factor iλ and velocity ''

tV  of the particle in order to know its energy and momentum. These 
definitions represent only a part of the particle's total energy and momentum and therefore are still not in the 
conventional dimensions for energy and momentum as will be described later on. Let us now consider what it  
and ''

tV  may be for any particle in a range of physical conditions. Let us first consider the particle's velocity, 
''

tV . From equation 7 we learn the basic relation between velocity and the particle's position and time. Since we 
may assume that equation 7 is always valid, we may ask ourselves what is the value of V when the particle is at 
rest and therefore presumably has '' 0tV = ?. Since we assume that a particle at rest does have some objective 
position X with respect to the expanding universe, then we may assume that it has some velocity ''

tV . The 
question is now with respect to what one should define the particle's velocity when it is at rest. One possibility is 
to define the particle's velocity with respect to the center of the universe, expV


. Since the universe expands from 

its center in all directions, we should use only the absolute value of its velocity, i.e. exp exp| |V V=


. This would be 
an objective definition that could be defined when the particle is at rest and when it is in motion. The value expV  
may be estimated from (Moskowitz, 2016). The choice of the velocity with respect to the center of the universe 
is somewhat arbitrary, but it allows a common reference velocity for all particle's in all location in the universe. 
Therefore, we may define expV  as the particle's velocity at rest. Moreover we may define the velocity rV  as the 
velocity of the particle with respect to a coordinate system that did not experience any acceleration and is not 
moving. Consequently the total velocity of the particle with respect to the expanding universe may be given from 
special relativity velocity addition rule where we add expV  to the relative particle velocity, rV  giving the 
particle a total relative velocity of ( )r TV  which is said to be equal to ''

tV such: ''
( )r T tV V=  . 

The knowledge of whether a particle or a coordinate system is moving or not(i.e. has 0rV = or not) may be 
evaluated by measuring its electric charge in its own rest frame which is experimentally shown to depend on the 
particles kinetic energy through the running of the coupling constant, QEDα  (Coupling constant, 2017). In fact 
the relationship between QEDα  and the Fermi constant FermiG  means that the mean lifetime at the rest frame of 
particles such as muon's and tau's depend on these particle's velocity. This violates special relativity which 
considers the particle's decay time at its own rest frame as independent to its velocity. In this paper we attempt to 
resolve this violation. 
Therefore the value ( )r T iV t⋅ may give particle's i position with respect to the expanding universe as was 
discussed in the context of equation 3a. Next we have to understand what is the relevant value of the time it , we 
have to use in the above equations. Similarly to the velocity case, also here the value of the time, it , has to 
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defined in all the known particle physical conditions and should be an objective definition. The natural 
possibility for the above may be to use the particle's own decay time for unstable particles or the particle's 
internal time as may be defined from the particle's possible hidden variable in time, rf  given by (Brodet, 
2010): 

 ( )

t

r if M e τ
−

= ⋅  (10) 

Where M is the particle's mass, τ is a shape variable determining the shape of the rf distribution and it is the 
internal time of particle i. 
Equation 10 could be rearranged to give it of the particle such: 

 
( )

lni
r i

Mt
f

τ
 

=   
 

 (11) 

From the above, and including the special relativity boost factor bγ for the time, we may define the particle's 
energy as: 

 2
( ) _( )

( )

lntotal i part i b
r i

ME c
f

γ τ
 

= ⋅ ⋅   
 

 (12) 

When considering particle i which is moving at relative velocity 12V  with respect to another object, its total 
energy, ( )total iE may be given, including the relativistic time i itγ ⋅ , by: 

 2
( ) _( )total i part i i iE c tγ= ⋅ ⋅  (13) 

Where iγ the modified boost factor is first suggested in Brodet (2016): 

 
2

12

2

( )

1

1 1( )

i

r i

V
ac
f

γ =

−
+

 (14) 

In the above equation 12V  is the relative velocity between coordinate system 1 and 2 and 1a  is a constant with 
yet an unknown value. Note that 12V  is not necessarily equal to ( )r TV  since we may have a situation where 

0rV =  and therefore ( ) expr TV V= , while 12V  with respect to some frame may be very different. The meaning of 
this difference will be discussed later on in this paper. Note that equations 12 and 13, are still not in the 
conventional energy dimensions, and therefore represent only a part of the particle's total energy as will be 
described later on.  
The boost factor, iγ may also be given by: 

 
2

12
2

1

1
i

i

V
c

γ =

−

  (15) 

For example, let us calculate the muon's rest energy according special relativity and compare it to the total 
energy of the muon given by equation 13: 
Therefore according special relativity: 

  2
srE M cμ= ⋅  (16) 

Transforming M μ  into seconds using: 

  2m
ht

M cμ

=
⋅

 (17) 

gives 
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6 23.51*10 /srE m s−=  

and using equation 13 while substituting the muon's mean lifetime such(since the value of iγ is equal 1, such 
iγ =1): 

  6

( )

ln 2.196*10mean
r mean

Mt s
f

τ −
 

= =  
 

 (18) 

and taking ic c≈ , i.e. to be around the value of the speed of light 83 10 /c m s= ⋅  and assuming iγ =1 , we get: 

11 2
( ) 1.98 10 /total meanE m s= ⋅  

Therefore we can see that the total muon's energy at rest given from equation 13 is much larger than the rest 
energy per unit of seconds related to mass given from special relativity. Consequently one may interpret the 
conventional energy described by special relativity as the minimum energy of the particle, which is related to the 
total particle's energy by: 

 ( ) min( )
( )

i
total i i

m i

tE E
t

= ⋅   (19) 

Where totalE  is given by equation 13, min( )i srE E= and is the minimum particle's energy, it  is particle's i decay 
time and ( )m it is the time unit related to rest mass of particle i which is calculated from equation 17 .  
If we substitute the it μτ=  and ( )m it calculated from equation 17 we get: 

17
min1.128 10totalE E= ⋅ ⋅  

Therefore the above suggests that a fraction of the muons may have around 171.128 10⋅ times more energy at rest 
than it is known from equation 16. 
In fact, according to the suggestion in this paper, the above calculation includes only a part of the particle's 
energy but it may provide a rough calculation. The total value of the particle's energy at rest also includes the 
suggested non-zero momentum contribution to the rest energy value, such: 

2 2 22 4
exp 2

(exp) _ (exp)2 2
exp exp

2 21 1

i ii i
i i i rest

i i

m v cm c m c E
v v
c c

+ = =
− −

 

Where 
2 2

exp2
(exp) exp 2

i
i i

i

m v
m m

c
γ= + , exp 2

exp
2

1

1
i

v
c

γ =

−

 and _ (exp)i restE is the particle energy at rest including the 

possible non-zero momentum contribution. 
In order for the above to agree with experimental observations the value of constant 1a  in the expression for 

iγ  given in equation 14, has to depend on ( )r TV and ( )r if such: 

 
2

12

( ) ( ) 2

( )

1

1 1( , )
( )

i

r T r i

r i

V
a V f

c
f

γ =

−
+

 (20) 

Which means that in large values of ( )r TV we don’t necessarily have more kinetic energy stored in a particle then 
currently measured and excess of energy may only exist in lower values of ( )r TV . 
Therefore the expression for the total energy of a particle, including the suggested time affect, may be given by: 
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 2
( ) (exp)

i
total i i i i

m

tE M c
t

γ= ⋅ ⋅ ⋅  (21) 

And the expression to total momentum of the particle may be given by: 

 ( ) ( ) (exp)
i

total i i r T i
m

tP V M
t

γ= ⋅ ⋅ ⋅  (22) 

In the next section we will discuss how one may attempt to reveal and measure the particle's total energy.  
The possible reason that this extra energy have not observed so far, may be due to the fact that it was not looked for 
at relatively low velocities and that conventional energy measurements of a particle takes a very short period of 
time. This conventional measurement time period may be much shorter than the internal time unit associated to the 
measured particles as suggested in equation 21, and hence may not measure the total particle's energy. The 
experimental background behind conventional energy measurement and a possible way to search for extra energy 
that may be stored within particles will be discussed in the next section. 
The expression for ( )total iE  given in equation 21 may include also the particle's potential energy which may be 
included in the particle's decay time as first suggested in Brodet (2013) by:  

 ' 1
i i

potential

ct t
f

= +  (23) 

Where c1 is a constant and potentialf  is related to the particle's potential energy for example in the electric potential 
case (Brodet, 2012): 

 1 2

12
potential

kQ Qf
r

⋅
=  (24) 

Therefore particle's i total energy may be expressed by: 

 
'

' 2
( ) (exp)

i
total i i i i

m

t
E M c

t
γ= ⋅ ⋅ ⋅  (25) 

Therefore '
( )total iE may describe the total energy of particle i which is depends on all the currently known 

energies namely kinetic, mass and potential energies. 
3. Experimental Way to Measure the Particle's Total Energy  
In the case the above suggestion is correct; there should be some experimental evidence for that. When we 
consider the conventional energy measurement of a particle's energy in standard particle physics detectors such 
as DELPHI (The DELPHI Collaboration, n.d.), we realize that length of time we attempt to measure the 
particle's energy using the energy detector, is very short. In order to test the energy expression suggested in 
equation 21, one may suggest building an energy detector which contains many more scintillator layers which 
are separated by a much thinner blocking material(for example iron) such that the shower process experienced 
by an incoming electron or photon, may take much more time. In this way, one may compare the energy 
measurement of an electron or photon in this experimental setup, to its known initial energy and test equation 21. 
Similarly, one may build several energy detectors with a range of iron and scintillator layers thickness and 
compare the energy measurement obtained for the same initial incoming electron or photon. Thereby comparing 
any possible differences between the energy measured in each of these several of energy detectors, and attempt 
to relate it to equation 21. As we do not know initially the ( )r if  and it  values of the electrons or photons the 
suggestion is perform the above energy measurement using many electrons or photons with known conventional 
initial energy (evaluated from their frequency or velocity), and analyze the result by averaging over large 
electrons or photons samples of events. 
4. Conclusions 
The conventional energy and momentum description given by special relativity were discussed. It was argued 
that in the conventional way the energy and momentum are defined with respect to the particle's minimum time 
unit. It was furthermore discussed that since the particle may be associated with a time unit that is larger than its 
minimum time unit, the particle may have in fact more energy stored within it than is currently known. 
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Experimental ways to search for such extra energy stored within particles were suggested by modifying 
conventional energy detectors.  
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