
Applied Physics Research; Vol. 9, No. 2; 2017 
ISSN 1916-9639 E-ISSN 1916-9647 

Published by Canadian Center of Science and Education 

1 

Model of Melting and Heat Transfer in Metals 
E. S. Filippov1 

1 National Research Technological University "MISA", Moscow, Russia 
Correspondence: E. S. Filippov, National Research Technological University "MISA", Moscow, Russia. E-mail: 
philippoves@ya.ru 
 
Received: May 7, 2016 Accepted: May 22, 2016 Online Published: February 16, 2017 
doi:10.5539/apr.v9n2p1               URL: https://doi.org/10.5539/apr.v9n2p1 
 
Abstract 
Volumetric relationships under the thermal expansion of metals are analyzed. It is shown that the metals with the 
bcc structure possess a two-step structural change at the melting point: first, the transformation of the bcc structure 
to a fcc one takes place and then, liquid phase clusters with K = 12 are formed. The hexagonally packed (6 + 6) 
layered Cd and Zn change their structure from К=6 to K = 8 before melting. For the polymorphic transformations 
fcc (hcp) → bcc, the value of thermal expansion was sufficient to change K = 12 for K = 8 long before the melting 
point. It is assumed that at high temperatures, thermal energy transfer is associated with the exchange fluctuations: 
higher electron density +Kλ and low electron density –Kλ over the coordinate of interatomic distances, where    λ 
= h/mc and K is the number of nearest neighbors.  
Keywords: the atomic and ionic radii, the value of thermal expansion volume, the electron density fluctuation, the 
coordinate space, heat transfer  
1. Introduction and Statement of the Problem 
Two points essentially define the initial premises for the model - theoretical studies at high temperatures: blurring 
of band structure (rejection of the momentum space p = hk) and a pseudo-potential approximation of the electron-
ion interaction. This makes it possible to admit the electron density fluctuations in the coordinate space ra - ri (here, 
ra and ri are the atomic and ionic radii, respectively), the occurrence of which we connect with the distance from 
the nucleus and the formation of a self-closing orbital (the circle of radius r contains an integer number of 
wavelengths 2πr = nλ), that is, with the formation of a standing wave from the side of ri (ion) that, therefore, can 
be attributed to the maximum electron density fluctuation. On the other hand, we assume that the minimum electron 
density fluctuation is most remote from the nucleus ra. Then, the maximum of the probability distribution of the 
electron density over the coordinate of interatomic distances at the maximum level of the electron density 
fluctuation R can be written as follows: 
 R = ( ra + Rc) / 2  (1) 
Where 2πRc = 2πri + λF / 2π for the self-closing orbital (2πr = nλ with the formation of a standing wave) and ri is 
the crystallochemical ion radius and also: 2πR = 2πRc + n λF/2π, where n = 2, 3 …  
The quantity R is defined in a pseudo-potential approximation of all of the possible combinations and shapes 
caused by the principles of uncertainty and the best use of the space (Filippov, 2015a,b). 
As the volume of the sphere in a pseudo-potential approximation: 
 R3 = 4/3π (ra

3 - ri
3) / K  (2) 

and: 
 4/3π R3 = 4/3π ri

3 + rs
3 Z , (3) 

where K is the number of nearest neighbors, Z is the number of valence electrons, and rs = 1.92 λF /2π.  
As the surface of the sphere under the exchange interaction with the neighboring atoms: 
  4π R2 (λK) = ( ra

3 - ri
3) Z1/3 ,  (4) 

where λK is the lowest possible value in the coordinate atomic space characterizing the interaction between the 
neighboring atoms, λ = h/mc = 2.42 10-2 Ǻ, and Z1/3 is determined from 2πλF = ( 3π2 N/V)1/3 or in a monatomic 
approximation ~ Z1/3 /r. 
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For the liquid state, we set the quantity RSP relating to the statistical packing of atoms (SP) or to a completely 
chaotic packing 
 RSP

 3 = 4/3π [(σ/2)3 - ri
3) /KSP , (5)  

where ra - Rc = (σ/2) - ri , KSP = 1/12(1+2+3….+12) = 6.5 is the mean statistical number of nearest neighbors at 
equally probable occurrence of all coordinations from 1 to 12 , (σ/2)3/ ra

3 = 0.65 according to [1], and σ is the 
diameter of solid spheres in the numerical solutions of the Percus-Yevick equations. 
Here, the criterion of adequacy of the coordination space model ∆Vxyz in a pseudo-potential approximation set 
using Equations (1-5) is the determination of the binding energy within the model of free electrons: 
 L = (e2/4πε0) (Z/KR)  (6) 
Then, we consider ∆V in an atomic system in the thermal expansion mode when heated from 0K to Tmelt (melting) 
and from 0K to Ttr (the polymorphic transformation fcc (hcp) → bcc). To do this, we introduce the designations 
of all the reference points and volumetric relationships between them: 1). The liquid metal volume at Ttr: VL = 
Va/0.65, where Va = 4/3π ra

3 according to Filippov (2015a); 2I. The volume at 0K: V0 = 4/3π (1.35 – 1.47) ra
3 at 

K=12 and K=8; 3). The volume of thermal expansion from 0K to Tmelt in a liquid phase: ∆VL = VL - V0; 4). The 
volume of thermal expansion from 0K to Tmelt in a solid phase: ∆VS = ∆VL - ∆Vmelt , where ∆Vmelt is the value of 
an abrupt increase of the volume at the melting point; 5). The solid metal volume at Ttr ( at the point of the 
polymorphic transformation): Vtr; 6). The volume of thermal expansion from 0K to Тtr: ∆Vtr = Vtr - V0 , where V0 
at K=12. 
2. The Results of the Melting Modeling 
2.1 Solid Phase at the Melting Point 
We construct the melting model in the framework of the adiabatic approximation and anharmonicity of atomic 
thermal vibrations. In accordance with these two approximations, we search for the dimensional-volumetric 
characteristics associated with the destruction of the crystal lattice. From this, we have a basic assumption – the 
volume of thermal expansion (∆Vт) from 0K to Tmelt and the derivative of it - a linear increment (∆Vт)1/3 - we refer 
to the value of the anharmonicity. In this case, in the adiabatic approximation, premelting can be represented as a 
system of atomic spheres distorted by a quantity of (∆Vт)1/3. The increase of this quantity must have a limit. 
Searching for this limit led to a quantity directly related to the pseudo-potential approximation of the electron-ion 
interaction:  
  (∆Vт)1/3 + ri = ra   (7) 
Equation (7) is valid within ± 3,5% for 14 metals. The adiabatic assumption allows to consider it as a condition 
for the occurrence of the density fluctuation: (∆Vт)1/3 + ri = ra, the size of which corresponds to the atomic size (ra), 
that is, to the fluctuation K + 1, and thus, to the experimentally determined increase in the number of vacancies at 
the melting point ( up to 10 atomic % ≈ 100 [(K + 1) – K] / K). 
2.2 Liquid Phase at the Melting Point 
Here, ∆VL = f (R), where R = f (Rc, λF) according to Equation (1) at n =2,3, namely for metals with a bcc structure: 
  ∆VL = ( VL - V0)8 = R12

3 ,  (8) 
where V0 is determined at K = 8 and R12 - at K=12 using Equation (1).  
For metals with a fcc structure: 
  ∆VL = ( VL - V0)12 = R12

3 ,  (9) 
where V0 and R12 are determined at K=12. 
For the hexagonally packed (6+6) layered Cd and Zn, we have:  
 ∆VL = ( VL - V0)6 = R8

3 . (10) 
Therefore, melting is preceded by a change of coordinations from K = 8 to K = 12 and from K = 6 to K = 8. The 
general trend is the desire to increase the number of neighbors due to the thermal expansion. So, for metals with a 
bcc structure, we have: 
  R8

3 = R12
3 + ∆VТ  (11) 

For the Cd and Zn metals with a hexagonal layered packing (6 + 6), we obtain (Ǻ3/atom): 
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for Zn:  R6
3  ≈  R8

3  +  ∆VТ  →  R8
3  =  RSP

3  =  ∆VL  
      [min]    [min]             [min]   [max] 
       1.25     0.93    0.30     0.93     0.93     0.93  
for Cd:  R6

3  ≈  R8
3  +  ∆VТ  →  R8

3   ≈   SP
3  ≈  ∆VL  

      [min]    [min]             [min]   [max] ≈  
       1.54     1.16    0.40     1.16     1.22     1.26, 
where min and max are determined from the lattice periods [a] and [c].  
Consequently, melting mechanism of metals both of the bcc and hexagonal structures occurs according to the two-
step model. 
Such structural-fluctuation mechanism is reproducible also for the polymorphic transformations fcc (hcp) → bcc 
in the solid phase: 
 ∆Vtr+ R12

3 = R8
3  (12)  

Here, the volume of thermal expansion together with the volume corresponding to the maximum level of the 
electron density fluctuation at K = 12 allows to reproduce the volume fluctuations of the structure with K = 8 
specifically for Ti, Zr, Y, Tl, Ca, Sr, Sc, Be, and Fe. 
3. Model of the Fluctuation-Exchange Mechanism of Heat Transfer for Solid and Liquid States. 
The identified melting characteristics of the model R, Rc, ra, and ri associated with the electron density fluctuation 
in the coordinate space can be applied to the heat transfer model within the following assumptions: 1. The heat 
energy flux is associated with the electron-photon interaction and, respectively, with λ = h/mc = 2.42.10-2 Ǻ ; 2. 
In the electron-photon interaction, the highest possible level of the electron density fluctuation is achieved at the 
periphery of the atomic spheres (Rc , ri , ra) with K neighbors, as a result of which the coordinate - atomic space 
has an excess + Kλ or a deficit –Kλ in the interaction mode (photon + electron → λ) between the emitter and 
detector of photons. The size of such an exchange- fluctuation cell must be limited to the value of λF or kF. 
Therefore, in accordance with Equation (1), we can write: 
 Rc = ri + Kλ/Z and Rс = ri + λF / 4π2  (13) 
Hence: 
 kF = 1/2π [1/ (Kλ / Z ± nλ)] ,  (14)  
where at n = 0, 1 , 2, there is a complete correspondence between Kλ / Z and kF for the alkali and alkaline earth 
metals - Pb, Al, In .... (Z-valence). Justification of the Kλ value also follows from Equation (4), where the 
geometric volume ra

3 - ri
3 in the pseudo-potential approximation is practically equated to the physical volume 4π 

R2(λK).  
A mirror reflection - Kλ should correspond to the fluctuation level + Kλ (similar to the 2 λ-model in the formation 
of the hcp structure, where according to Filippov (2015b), the elongation by 2λ along the [a]-axis corresponds to 
the compression by 2λ along the [c]-axis).  
Hence, in the equilibrium-vibrational mode (R - Kλ) ↔ (R + Kλ), we have the equality of fluxes (photon + electron 
→ λ) of the emitter and detector. This equality of fluxes we write by the following equations using the parameter 
R corresponding to the maximum level of the electron density fluctuation and determined from Equation (1): 

  R + Kλ = ra - Kλ / Z  (15)  
 R - Kλ = Rc + Kλ /Z   (16) 
 Rc = ri + Kλ / Z  (17) 
Here, we take into account the number of valence electrons Z per photon absorption under the Kλ exchange 
interaction in the range from ra to ri. 
Equations (15-17) are fulfilled accurate to ± 2λ for 14 of the metals under study: alkali and alkaline earth metals 
Pb, Al, In, Cd, and Zn. 
For the hexagonal structure (6 + 6) Cd and Zn, we find (Ǻ/atom): 
 for Cd ra

max - ra
min = 0.152 ≈ Kλ;  

 for Zn ra
max - ra

min = 0.140 ≈ Kλ,  
where Kλ = 6λ = 0.145 and ra

max and ra
min are determined from the lattice parameters [a] and [c]. 
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These data allow us to conclude that the value of Kλ/Z corresponds to the maximum level of probability for the 
exchange interaction of conduction electrons of K atoms according to the scheme: electron + photon → λ. 
Combining Equations  (15-17) and using Equation (1), we get: 

R-Rc=Kλ (1/Z + 1); 
R-ri=Kλ ( 2/Z+1); 
ra-Rc=2Kλ (1/Z +1) 
Rc – ri=Kλ / Z; 
ra- R = Kλ (1 + 1/Z)   (18) 

Here, we must mark following correlation for heat transfere: 
 ra

3 = 4 π [(R + ri)/2]2 Kλ (1/Z +1)  
Equation (18) is valid within ±4% for 12 metals. 
 
Thus, it can be assumed that the atomic space between ra and ri is divided into the ready Kλ cells, whose number 
could not be less than the maximum possible fluctuations of the electron density in the coordinate space. This 
number must be discrete for Kλ. Therefore, the heat energy transfer (the change in the intensity of the atomic-
vibrational mode) in this space is represented in the model of two fluxes exchanging by fluctuations of the electron 
density in the ± Kλ mode. 
Along the radius R = 1/2( ra + Rc) corresponding to the maximum of the electron density, two fluctuation fluxes 
before R and after R are separated and regulated (heating-cooling). Here, R is determined by the binding energy L 
= (e2 / 4πε0)(Z/K) 1/R.  
Heating mode is the fluctuation flux from the atomic periphery ra to the ionic core Rc. Cooling mode – vice versa. 
The equilibrium state is the compensation of the electron density fluctuations (± Kλ).  
A liquid aggregate state precisely fits into this model scheme of heat transfer, since according to Equations (5, 17), 
we have: 
 σ/2 - ri = ra - Rc = 2 Кλ (1/Z + 1),  (19) 
where σ/2 is a semi-diameter of the solid sphere of statistical packing of atoms (SP) defined by the relation ( σ/2)3/ 
ra

3 = 0.65. Heating up to the boiling point changes only the ratio cluster/SP of atoms. Assuming in the superheated 
liquid phase near the boiling point only SP without clustering, for which KSP = 6.5, we obtain: 
 σ/2 = R + KSPλ   (20) 
Equation (20) is fulfilled with an accuracy of 1-3% for the 14 of the studied metals. 
These data for the liquid state confirm the initially assumed model of heat transfer via the exchange fluctuation 
quantities Kλ between atomic spheres being in the thermal vibrational mode. Thus, for high temperatures, the 
maximum possible value of the electron density fluctuation is theoretically determined as ± Kλ and the heat transfer 
process is modeled as a λ exchange between the detector fluctuation and the fluctuation of the emitter of the 
photon-electron interaction.  
Hence, the main conclusion is: the atomic coordinate space corresponds to the maximum possible fluctuations of 
electron density for the exchange of +Kλ (emitted) by –Kλ (absorbed) in the photon-electron interaction. This 
space is discrete for placing Kλ or it is quantized by Kλ. In general, the analysis of high-temperature processes in 
the coordinate space using the linear (Rc, R, ...) and volumetric (R3, 4πR2λК,…) characteristics reveals the 
processes of the structure formation and phase transitions, which still did not have a simple explanation . 
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