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Abstract 
It's a typical physical problem that the calculation of a uniformly charged circle and a uniformly charged disc. By 
solving partial differential equation under given boundary conditions, we obtained the electric potential of a 
uniformly charged circle. Using the method of superposition, the electric potential of a uniformly charged disc 
can be calculated. 
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1. Introcuction 
It's a typical physical problem that the calculation of a uniformly charged circle and a uniformly charged disc. 
Zhou and Chen (2004) obtained the general expression of the spatial distribution of electrical field generated by 
a uniformly charged ring by using the equation of electric field strength, ploted the spatial distribution diagram 
for field magnitude and discussed the field at the central axis, in the distant area and on the plane of the ring. Li 
and Shan (2002) pointed out that t legendre elliptic integral is needed to calculate the electric potentical on 
evenly electrified thin disc. They introduced the calculating method and pointed out that to choose proper polar 
coordinates can simplify calculating electric potenticals produced from electrified bodies. Cao and Dong (2005) 
progressed the elliptic integral with the method of numerical integration, and calculated the electric field 
intensity and the zeta potential on the plane embedded a uniformly charged circle. 
In this paper, we discussed the spatial distribution of electrical field generated by a uniformly charged disc by 
using the method of superposition, and figured the three-dimensional potential distribution diagram of the 
charged disc.  
2. Spatial distribution of electric potential of a uniformly charged circle  
2.1 General solution of the mathematical physics problem 
We consider a uniformly charged circle which radius is R and the total charges is q and calculate its spatial 
electric potential u. We establish the spherical coordinates frame, its origin of coordinates is the center of the 
ring and polar axis is the axis of the ring. See Fig. 1. There are no other charges in the space. The electric 
potential ( , , )u r θ ϕ  of point ( , , )P r θ ϕ  meets the Equation of Laplace. So we have  

0uΔ =                                     (1) 

The solution of Eq. (1) can be written as a superposition in the normal way (Ken Riley and Michael Hobson, 
2002, p12~14): 
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The boundary condition that the electric potentials have axial symmetry implies that only m= 0 terms are present. 
So, we have  
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The sphere which radius is equal to the ring divides the space into two parts, one is inside the sphere (for r R< ) 
and the other is outside the sphere ( for r R> ). 
Inside the sphere we require the solution to be finite at the origin and so lB = 0 for all l in Eq. (3). Therefore, the 
electric potential inside the sphere is  
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Outside the sphere we require the solution to be bounded as r tends to infinity and so in (3) we must have lA = 0 
for all l. In this case, the electric potential outside the sphere is  
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If only considering the natural boundary conditions, the coefficients of Eq. (4) and Eq. (5) can’t be determined. It 
is necessary to use some certain electric potential to obtain the coefficients in the general solution. 
2.2 Speciall solution of the mathematical physics problem 
Considering the charge distribution of the thin ring and using Coulomb’s law, we calculated the potential, du , 
on the axis (for 0θ = ) of the ring of a point charge, dq. See Fig. 2. The potential is  
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where 
2

qdq dl
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= . We integrate Eq. (6) both sides and obtain 
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This is the potential on the axis of the ring.  
Taking into account the formula (Ken Riley and Michael Hobson, 2002, p143) 

0

( 1) ( 1)(1 )
!

n

n

nz z
n

α α α α∞

=

− − +
+ =∑ L .                           (8) 

From Eq. (8), Eq. (7) can be written as a series form (for r R< ) 
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which can be simplied by using 
2
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= −  (N. S. Koshlyakov, M. M. Smirnov and E. B. Gliner, 

1964 , p205). So Eq. (9) can be written as  
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This is the potential distribution on the axis inside the sphere. 
Similarly, we deduce the potential distribution on the axis outside the sphere, 
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Substituting Eq. (10) into Eq. (4), we have  

0

( ,0) (1)l
i l l

l

u r A r P
∞

=

= ∑  

2 4 2

0 2 4 2
0

1 (0) (0) (0) (0)
4 R

n

n
q r r rP P P P

R R Rπε
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
L L  

for 0 .r R< <          (12) 

Appling the equation (1) 1lP =  (R. Courant, D. Hilbert, 1966, p503), and comparing the coefficients both side of 
the Eq. (11), we get  
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Therefore, the distribution of the potential inside the sphere is  
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Substituting Eq. (11) into Eq. (5), and comparing the coefficients, we obtain the distribution of the potential 
outside the sphere is 
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Eqs. (13) and (14) is the spatial potential distribution of the charged ring. Obviously, when r=R, 

 ( , ) ( , )i eu R u Rθ θ= .                               (15) 
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3. Spatial distribution of electric potential of a uniformly charged disc  

We establish the spherical coordinates frame. The disc shown in Fig. 3 has a radius a and carries a uniform 

surface charge Q. So that the charge per unit area 
2

Q
a

σ
π

= . The following steps lead to the potential on the axis 

of the disc.  

We consider the disk to be made out of an infinite number of infinitesimally thin rings. A single ring of radius 

ρ  and thickness dρ carries a total charge 
2
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a

ρ ρ= . The contribution of that ring to the disc's electric 

potential at point ( , , )p r θ ϕ  can be easily figured using Eqs. (13) and (14), replacing R with ρ  and q with 

dQ: 
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for  r>ρ.          (17) 

According to the superposition principle, we obtain the total potential produced by the charged disc by adding 
over all differential potentials. 
Inside the sphere, the potential at point p produced by the charged disc is 
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Outside the sphere, the potential at point p produced by the charged disc is 
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So, the distribution of the electric potential of the uniformly charged disc is  
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When r=a, ( , ) ( , )i eu a u aθ θ= . Using MATLAB, we can obtain the three-dimensional potential distribution 

image of the charged disc. See Fig. 4. 

From Eq. (20), we can obtain the potential on the disc surface (for 
2
πθ = ) 
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4. Conclusion 
We discussed the spatial distribution of electrical field generated by a uniformly charged disc in the spherical 
coordinates frame. By solving mathematical physics problem of the uniformly charged ring, we get the general 
solution of the equation. Taking into accoun the boundary condition,we get the spatial distribution potential of 
the ring. Using the superposition principle of potential, we can obtain the electric potential of a uniformly 
charged disc, and figure the three-dimensional potential distribution image. Using this method, we can have a 
clear physical picture about the physical problem, understand the problem more easily and accomplish without 
complex mathematical calculation. Furthermore, by using the equation E u= −∇ , we can easily obtain the 
spatial distribution electrical field of the charged disc from Eq. (20).  
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Figure 1. Position of the Thin Charged Ring in the Spherical Coordinates System 
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Figure 2. Electric Potential on the Axis of the Ring 

 

 

 

 

 

 

 

 

 

Figure 3. A Uniformly Charged Disc with Coordinates for Finding the Potential 

 

 

Figure 4. Three-Dimensional Potential Distribution Image of the Charged Disc 
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