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Abstract 
This paper analyses the root cause why there is not any self-consistent quantization scheme of gravity yet from 
Einstein's theory of gravity, proves the gravitational field is a gauge field and gives the quantization and 
renormalization scheme of the gravitational field. 
Keywords: Einstein's theory of gravity, gauge field, quantization and renormalization, dimension regularization  
1. Introduction 
The core idea of Einstein's theory of gravity is that the gravitational effect results in the curve of space-time，and 
the motion of body in gravitational field is equivalent to the motion in the curved space-time (Einstein, 1916). 
Einstein and others had obtained many important results consistent with the observation on the basis of the 
principle above. However, there is an important problem troubling physicists for a long time, it is the 
quantization of gravitational field. It is impossible to unify the gauge field theories to describe the four 
interactions if the problem is not solved.  
We know that the quantization of field must be carried out in a certain background space-time, and the 
gravitational field is not an exception. If we take the curved space-time as the background space-time for the 
quantization of gravitational field, since the covariant differential of the metric tensor gμν equals zero： 

   ; 0μν λ =g ， (1) 

the quantization of gravitational field is impossible, because no matter what the quantization method, canonical 
quantization or other quantization methods, it is inseparable from a physical reasonable Lagrange density, and a 
reasonable Lagrange density must contain the physical quantities and their derivatives (Weinberg, 1972). But it 
is impossible to find the Lagrange density ( );g , gμν μν λL containing the covariant differential ;gμν λ in the 
curved space-time due to the equation above, so the quantization of gravitational field is impossible in the curved 
space-time. In other words, we cannot take the curved space-time both as the quantized object and the 
background space-time. Otherwise, we would get into paradox in one way or another. This is the root cause why 
we do not have a self-consistent quantization scheme of the gravitational field yet. 
On the other hand，a local inertial system can be set up at any point in the curved space-time, in which the 
special relativity is established according to the equivalence principle. In fact, the discussion about the localized 
field theory in the local flat space-time is only natural. For example, people discussed the gravitational waves on 
the condition of weak field approximation and had established the tetrad formation in the local flat space-time 
(Weinberg, 1972).  
According to the above analysis, the gravitational field should and could be quantized in the local flat space-time. 
We will see that the gravitational field could be very naturally quantized and renormalized from the Lagrange 
density of gravitational field in the local flat space-time. 
2. The Gravitational Potential: From Tensor to Vector 
The Lagrange density of gravitational field used to derive the Einstein's equation could be written as (Weinberg, 
1972) 

 g gR= −L , (2) 
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where ( )Detg g μν= − , the scalar curvature is 

   λν μ
λμν= k

kR g g R ，  (3) 

the tensor curvature is 

 ( ) ( )1
2

η σ η σ
λμν λν μ μ λν μν λ λ μν ησ λν μ λ μν= + − − + Γ Γ − Γ Γk , k k , , k k , k kR g g g g g ,  (4) 

and the connection is  

 ( )1
2

η ηρ
λν λρ ν ρν λ νλ ρΓ = + −, , ,g g g g .  (5) 

The quantities above are the functional of coordinate x in the local flat space-time. 
The canonical physical quantity conjugated with the gravitational potential αβg  is defined as 

 
4

αβ

αβ

π
∂

=
∂

g

,g
L

.   (6) 

Substitute the previous several equations into the equation above, we obtain 

   ( )
4

k
k k

,

g g g g
g

αβ λν μ η σ η σ
ησ λν μ λ μν

αβ

π ∂= − Γ Γ − Γ Γ
∂

.   (7) 

Take the harmonic coordinates： 0η λν η
λνΓ = Γ =g , there is  

( )
4

k
k

,

g g g g
g

αβ λν μ η σ
ησ λ μν

αβ

π ∂= Γ Γ
∂  

4

2 k
k

,

g g g g
g

σ
μνλν μ η

ησ λ
αβ

∂Γ
= Γ

∂  

( )
4

k
,k k , k ,

,

g g g g g g
g

σ
μνλν μ

λσ σ λ λ σ
αβ

∂Γ
= + −

∂  

 ( )4 4 41 3
2

k
, ,k ,g g g g g g g .λ αβ β α αλ β
λ λ= − + +   (8)

 

There is αβ βαπ π= obviously.  
Image the metric αβg is orthogonal for space-time axes: αβ α

αβδ=g g (the repeat subscripts are not summed 
here), then there are only four independent components of αβg : ( )1 2 3=ig i , , and 4g , they form a 4-vector. 
So there is

 

 

4
4

44 4 4
4

4 4

3
2
1
2

1
2

ii i
,

,

i i
,i

g g g ,

g g g ,

g g g ,

π

π

π

= −

= −

=

  
(9) 

and the rest components of αβπ  equal to zero.  
Assume the 4-gravitational potential satisfies the Lorentz condition: 
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  0μ
μ =，g .  (10) 

Notice that the components of αβπ  in the equation (9) have nothing to do with i
, jg , take 0i

, jg = , then 4
4 0,g =  

and obtain  

   

4
4

4 4

3
2

1
2

ii i
,

i i
,i

g g g ,

g g g .

π

π

= −

=
 

(11)
 

This is the gravitational field intensity.  
In the case of static weak field there are 

   4 4 41 1 2i ig h , g h , h φ= − = − − = .  (12) 

So there is 

 E 4iπ φ≡ = −∇ .
   

(13) 

This is the intensity of Newton's gravitational field, where Newton's gravitational potential is  

 ( )φ = − GMr
r

.   (14) 

3. The Classic Gravitational Field  
As mentioned previously, the gravitational potential is a 4-vector in the local flat space-time on the condition of 
harmonic coordinates and orthogonal space-time axes. So, the gravitational potential could be written as

 Aμ =
( ,A )4A iU / c= and the source material flow density as jμ = ( ,j )4j icρ= ， c is the speed of gravitational 
wave. We will show the speed c equals the speed of light in a vacuum later. 
Since the transmission speed of gravity is limited, the gravitational potential should be retarded. Assume the 
source material flow density ( )j xμ

′ ( )j tμ δ′= ( )′x in the local Minkowski space x ( ,x )4x ict= , so the 
scalar potential is 

   ( )U x ( )t
G

r
ρ ′

= − ( )xδ ′ ,  (15) 

the vector potential is 

 A ( )x
r
η= − j ( )t′ ( )xδ ′ ,  (16) 

where r = ′−x x ，
r

t t
c

′ = − , andη  is a constant. Obviously, the material flow density 0j = , the vector 

potential 0=A and the scalar potential degenerates into Newton's gravitational potential ( ) G
r

r

ρ
φ = −

 
when 

the source material is in the static spherical symmetric distribution. 
If we define 2G / cη ≡ , the equations (15) and (16) can be written into one equation 

 ( ) ( )j x
A x

r
μ

μ η
′

= − .    (17) 

Since 2 28 2 27 41 10G / c . N kg sη −= = × ⋅ ⋅  is very small, it's very difficult to observe the gravitational waves in 
usual experiments. 
Make a sphere of infinitesimal radius ε at the center 0x′ =


and integral over the sphere, there is 
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 ( ) ( )2 2
20

1 4tdV A x j x
c

ε

μ μπη  ′∇ − ∂ = 
  .  (18) 

This is because of the second term 2ε approaches to zero when 0ε → in the above equation, and

( )2 1 4 r
r

πδ∇ = − . So, we can write  

 ( ) ( ) ( ) ( )2 4A x A x j x rμ ν μ μπη δ′= ∂ = .   (19) 

This is the motion equation of gravitational field. 
The right side of the equation above equals zero out of the field source, the motion equation of the free 
gravitational field is 

 ( ) ( )2 0A x A xμ ν μ= ∂ = .  (20) 

This is a linear homogeneous wave equation, its plane wave solution is 

 ( )μ μ= ikxA x e e ,  (21) 

where eμ is the polarization vector of gravitational wave. As shown in the equation (10), the gravitational 
potential Aμ satisfies the Lorentz condition: 

 ( ) 0A xμ μ∂ = ，  (22)
 

then there is 

  0k eμ μ = .  (23) 

This shows the gravitational wave is the transverse wave, and it can be proved that only 1 2e ,e are not zero with 
the method like the theory of electromagnetic field (Weinberg, 1972).   
Substitute the equation (21) into (20)，we have 

   2 0k k kν ν= = .   (24) 

This shows the mass of graviton equals zero, and the velocity of gravitational wave equals the light velocity in 
the vacuum. So, the gravitational field is a vector field without mass, namely a gauge field. This conclusion is 
consistent with Utiyama’s findings (Utyiama, 1956).  
We know that if the transformation equation for the rotation angle θ  of the plane wave around the propagation 
direction is 

 ihe θψ ψ′ = ，  (25) 

we say its helicity is h  (Weinberg, 1972). Now assume the rotation angle of the polarization vector of plane 
gravitational wave around the propagation direction isθ , the transformation equation is 
 j

i i je R e′ = ，  (26) 
where the rotation matrix is 

  ( )
cos sin 0
sin cos 0
0 0 1

j
iR

θ θ
θ θ

 
 = − 
 
 

.  (27) 

Take 1 2e e ieψ ± ±= =  , it can be proved that the spin of graviton equals one (the prove process is omitted 
here). 
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In some literature the spin of graviton equals 2, and this is because the polarization tensor μνe of plane 
gravitational wave rotates artificially twice around the wave propagation direction (Weinberg, 1972):  

  ρ σ
μν μ ν ρσ′ =e R R e .  (28) 

4. The Canonical Quantization of Gravitational Field 
We need to know the Lagrange density ( )A , Aμ ν μ∂L  for the quantization of gravitational field. Since the 
graviton is boson, the gravitational field is an Abel gauge field, and its Lagrange density with gauge invariance is 

    ( )21 1
4 4

F F A Aμν μν ν μ μ ν= − = − ∂ − ∂L ,   (29) 

where F A Aμν ν μ μ ν= ∂ − ∂  is the intensity of gravitational field. Under the Lorentz condition the equation above 
is equivalent to the equation as follows: 

   
2

1
2

A
x

μ

ν

∂ 
= −  ∂ 

L .   (30) 

Modeling on the method of QED, the energy-momentum tensor of the free gravitational field could be obtained 
from the equation above: 

  
2

1
2

A A AT
x x x

λ λ λ
μν μν

μ ν ρ

δ
 ∂ ∂ ∂= ⋅ −   ∂ ∂ ∂ 

,  (31) 

and the angular momentum density is 

  ,

AAM x T x T A A
x x

μν
μν λ ν μλ μ νλ μ ν

λ λ

∂∂= − + −
∂ ∂ .  (32) 

Since the gravitational potential Aμ is 4-vector to satisfy the Lorentz transformation, its spin 
 ;Sμν σρ σμ ρν σν ρμδ δ δ δ= − ， (33) 
The spin of graviton equals one that can be known from the equation above, and this conclusion is consistent 
with the previous conclusion. 
Take 1c = =  in the following discussion. 
Introduce the conjugate "canonical momentum" μπ for the potential Aμ : 

   A
Aμ μ

μ

π ∂= =
∂



L

， (34) 

where tA Aμ μ= ∂ . Thus the motion equation (20) is rewritten into the canonical form: 

 2A
, A

t t
μ μ

μ μ

π
π

∂ ∂
= = ∇

∂ ∂
.   (35) 

Hamilton density is 

 ( )1
2

A A Aμ μ μ μ μ μπ π π= − ∇ ⋅∇ +H L = .  (36) 

For t t′ =  take 

 ( ) ( ) ( )A x , x i x xμ ν μνπ δ δ′ ′  = − 
 

,   (37) 

and other physical quantities are commutable to each other. By use of those commutation relations the equation 
(35) can be rewritten as  
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A

i H , A , i H , ,
t t
μ μ

μ μ

π
π

∂ ∂
   = =   ∂ ∂

  (38) 

where Hamilton
 

4H d x=  H .The equations (36) (38) are the basic formulae of the gravitational field 

quantization, where each of dynamical variables is an operator. 
As Fermi pointed out in the electromagnetic field quantization, it should be not asked that Lorentz conditions 

0Aμ μ∂ = satisfy the equation (37) in the gravitational field quantization. The meaning of Lorentz conditions is 
that only the wave function to make the average value of Aμ μ∂ equals zero represents the objective possible 
state. 
To show the particle property of gravitational field, namely the existence of gravitons, rewrite the free 
gravitational field into the superposition of plane waves: 

  ( )A xμ = 1
2ω

k
eμσ ( )k ikx -ikx

, ,b e b ek kσ σ
+ +     (39) 

where the four unit vectors ( )1 2 3 4e , , ,μσ σ =  are orthogonal to each other： 

  1 2 3 4e e , , , , ,μσ μρ σρδ σ ρ= =
  

(40) 

which are only the space components but not the time components for the three unit vectors of 1 2 3, ,σ = , and 
only the time component but not the space component for the vector of 4σ = , that is 

 4
4

4 44

1 0
1 2 3

0 1
ji i

i
i

e , e ,
e e i , ,

e , e .μ μ

= = 
= = = = =     

(41) 

Assume the space components of eμσ  for 3σ =  and 1 2,σ = are parallel and vertical to the wave vector k , 
respectively, the commutation relation of operators ,b kσ and ,b kσ

+ is 

  , ,b ,bk k kkσ ρ σρδ δ+
′ ′  =  ,  (42) 

in addition, the ,bi k and ,bi k
+  are Hermitian conjugate and the 4 ,b k and 4 ,b k

+  are anti-Hermitian conjugate to 
each other for 1 2 3, ,σ = ： 

  4 4, , , ,b b , b b .i k i k k k
+ ∗ += = −

   
(43) 

Thus Hamilton of the gravitational field can be written as  

 H =
4

1

1
2,N k

k
σ

σ
ω

=

 + 
 

 ，   (44) 

and the total momentum is 

 =P
4

1
,N k

k
σ

σ =
 k ,   (45) 

where 
, , ,N b bσ σ σ

+=k k k
is the particle number as operator，and the gravitons for 1 2,σ = are called the transverse 

gravitons，those for 3σ = are called the longitudinal gravitons，and those for 4σ =  are called the scalar 
gravitons. Modeling on the electromagnetic field quantization we can prove that the spin of transverse and 
longitudinal gravitons is equal to 1 and that of scalar gravitons is equal to zero. The physical effect of 
longitudinal and scalar gravitons results in the static gravitational field and only transverse gravitons could be 
observed in the experiments due to the Lorentz condition. There 

,bσ
+

k  is the creation operator and 
,bσ k

 is the 
annihilation operator of gravitons after the introduction of variable metric. 
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It is worth noting that the commutation relation (37) does not have the obvious Lorentz invariance. To get the 
whole theory with the obvious Lorentz invariance, from equations (35) and (38) we obtain   

 ( ) ( )A x , A x i Dμ ν μνδ′  =  ( )′−x x ,   (46) 

the equation above has the obvious Lorentz invariance, where 

 ( )
( )

( ) ( )4 2
032

ikxiD x d ke k kδ ε
π
−=  ,   (47) 

and ( )0 0 0k k / kε = . 

5. The Renormalization of Gravitational Field  
The gravitational field as one of gauge fields should be renormalizable (Hooft & Veltman, 1972). This can be 
proved as follows.  
If we take the dimension of mass is 1and the dimension of Lagrange density is 4, then the dimension of boson 
and fermion is 1 and 3/2, respectively. According to the renormalization theory of gauge fields (Dyson, 1949; 
Zimmermann, 1970), if the behavior of propagator is normal for great momentum and the dimension 

4 4gd dυ = − ≤ of field operator product in the interactional Lagrange density
iL , or the dimension

 
0gd ≥ of 

the coupling constant, then the theory is renormalizable. Because of that the number of external line satisfies the 
condition ( BE and FE is the number of boson and fermion external lines): 

  
3
2 υ+ ≤B FE E d ,

   
(48) 

namely only limited several vertexes are divergence in the theory, they can be eliminated by the introduction of 
limited several elimination terms. For example, the dimension of coupling constant of electromagnetic field or 
non-Abel gauge theory equals zero, the two theories can be renormalizable. But the dimension 2 0Wd = − <  of 
coupling constant of Fermi weak interaction theory, it is non-renormalizable. 
From the equation (20) of gravitational field the propagator can be obtained: 

   ( ) 2 ε
= −

+
iS k

k i
.
   

(49) 

This shows that the behavior of the propagator is normal for great momentum. What is the dimension gd of the 
coupling constant of gravity then?  
We know that Lagrange density of neutral free bosons (Bjorken & Drell, 1965) is  

 ( )2 2 2
0

1
2 μϕ ϕ = − ∂ +  

mL .   (50)  

Without the loss of generality, assume the coupling of particle and gravity has nothing with electric charge. Use 
the covariant differentiation D igAμ μ μ≡ ∂ − instead of the partial derivative of the equation above, and the 
Lagrange density of the system of neutral bosons with the gravitational field is obtained  

   ( )
2

2 2 21 1
2 2

AigA m
x

σ
μ μ

ν

ϕ ϕ ϕ
 ∂ = − ∂ − + −     ∂ 

L ，  (51) 

where μA is the potential of gravity, and the interactional Lagrange density is  

   2 2 21
2μ μ μϕ ϕ ϕ= ∂ +i ig A g AL .

  
(52) 

Because the dimension of Aμ  equals 1，then 0gd = . 
Again for instance，the Lagrange density of free fermions (Bjorken & Drell, 1965) is 
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 0 mμ μψγ ψ ψψ= − ∂ −L ,  (53) 

and the Lagrange density of the system of fermions with the gravitational field is 

   ( )
2

1
2

AigA m
x

σ
μ μ μ

ν

ψγ ψ ψψ
 ∂= − ∂ − − −  ∂ 

L ,   (54)  

where the interactional Lagrange density is  

 μ μψγ ψ=i ig AL .   (55) 

Then there is 0gd = , too. Therefore, the quantum gravitational field is renormalizable.   
 

 
Figure 1. Vertex 

The renormalization of the quantum field can be carried out by different methods. The basic idea is to separate 
the divergent terms from the integral and eliminate them by the elimination terms. In the case of the equation 
(55), there is only the vertex of Fermion external number 2FE =  which has the divergence in the interaction，as 
shown in Figure 1. According to the Feynman rules in quantum field theory, the vertex function can be written as 
following (Bjorken & Drell, 1965):  

 ( )
( )

( )
( )

( )
( )

2 4
2 1

4 2 22 2 2
2 1

d
2μ ν μ νΛ γ γ γ
π

− − − −
=

− + − +1 2

ˆ ˆˆ ˆi p k m i p k mig kp ,p
k p k m p k m

.  (56) 

In order to keep the internal symmetry of the theory, including the gauge invariance and Lorentz invariance, we 
calculate the equation above by the dimensional regularization method (Bjorken & Drell, 1965). The basic idea 
of the method is to transform the original integral from the 4-momentum space into the n -momentum space in 
order to make the original divergent integral the convergent integral, and then take 4n →  after the integral, 
thus the divergent term has been separated. 
The conventional calculation rules of γ  matrix in the dimensional regularization method are as follows: 

 
{ } ( ) ( )

( )
2 , Tr 4 , Tr odd 0

=4, =-2 , Tr 4
μ ν μν μ ν μν

μ μ μ ν μ ν

γ γ δ γ γ δ γ

γ γ γ γ γ γ

= = =

=

, ,

I .    (57) 

The vertex function in the n -momentum space is 

 ( )
( )

( )
( )

( )
( )

( )
42

2 1

2 22 2 2
2 1

d
2μ ν μ ν
μΛ γ γ γ
π

− − − − −
=

− + − +
n n

1 2 n

ˆ ˆˆ ˆi p k m i p k mig kp ,p
k p k m p k m

,  (58) 

where the factor ( )4 nμ −  is introduced in order to keep the dimension of ( )pμΛ  invariable. Using the Feynman 
parameters formula  

 2p

               

  k                  

 1p  
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  ( ) 1 21

1 2 10 0 0
1 2

1 11 ! nx x

n n
n

n dx dx dx ,
a a a f

−

−= −   
  (59) 

where 

 ( ) ( )1 1 2 2 1 11n n n nf a x a x x a x− − −= + − + − ， 

and 2 1 1p p k= + (see Figure 1), then the equation (58) can be simplified as 

( ) ( )424μΛ μ −= n
1 2p ,p i g

 

 
( )

( ) ( ) ( )
( )

2
1 1 2 1 2

30 0 2 2
1 1

2 2d
2

n x

n

ˆ ˆˆ ˆp k p k i m p p k mk dx dy
k p x k y l

μ μγ

π

− − − + − −
×

 − − + 
   , (60) 

where 

 ( ) ( ) ( )22 2 2
1 1 1 2 1 1l m p x k p p y k y p x= + + + − + . 

The equation (60) is a convergent integral, and its variables can be transformed. Take 1 1k p x k y k− − → , we 
obtain 

 ( ) ( )

( )
142

30 0 2 2

d4
2μΛ μ
π

−=
 + 

  
n xn

1 2 n
k Tp ,p i g dx dy

k l
,   (61) 

where  

 ( )( ) ( ) 2
1 1 2 1 11 ˆ ˆ ˆ ˆˆ ˆ ˆT p x k y k p p x k y k mμ μγ γ= − − − − − − −  

 ( )1 2 1 12 2 2 2i m p p p x k y kμ μ μ μ μ− + − − − . 

The integral result of the odd terms equals zero, and the contribution of each term of 2 2 2 2

1 2 3 4k ,k ,k ,k  for the 
integral equals the contribution of 2 4k / in the equation (61) due to the integral symmetry. Notice

2ν μ ν μγ γ γ γ= − , the T can be written as 

 ( )( ) ( ) 2
1 1 2 1 11 ˆ ˆ ˆ ˆˆ ˆ ˆT p x k y k p p x k y k mμ μγ γ= − − − − − − −  

 ( )2
1 2 1 1

1 2 2 2
2

k i m p p p x k yμ μ μ μ μγ− − + − − . 

For simplicity, take approximately 

 2 1 1 2 1 0= = = − =p p p , k p p , 

So the T  is simplified as    

 ( ) ( ){ }2 2 211 2 1
2

ˆ ˆ ˆT x p p k m i m x , pμ μ μ μγ γ γ γ= − − − − − .  

Since 2 2p m= − , take im  instead of p̂ , thus there is  
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 ( )2 2 2 2 21 12 2
2 2

T m x x k m xμγ   = − − − +  
  

. 

At the same time, the 2l of equation (60) is simplified as      

  2 2 2l m x= . 

Substitute the two equations above into the equation (61) we obtain 

 ( ) ( )424μ μΛ μ γ−= n
1 2p ,p i g A，   (62) 

where 

 
( )

( )
( ) ( )
2 2

1

3 20 2 2 2 2 2 2

4 4d 1
2

n

n

m x xkA dx x
k m x k m xπ

 − − = ⋅ − 
+ +  

  .  (63) 

The integral space over k  in the equation above is a complex Minkowski space， 2 2 2 2

1 1 0nk k k k−= + + − , the 
volume element 1 1

n

n nd k dk dk dk−= 
1 1 0nidk dk dk−=  , and the integral function is not analytic. In order to 

make the integral function analytic, separate the imaginary symbol from the complex volume element nd k :            
n n

Ed k id k= , where 
1nn n

Ed k k d k dΩ−=
 

is the n - real volume element(Euclid space). Thus the integral has 
been transformed into the n - real space, 2 2 2 2

1 1 0nk k k k−= + + + , and the integral function becomes analytic. 
Integrate the second term of the equation (63), there is 

 
( ) ( ) ( )

2 31 1

2 2 30 02 2 2 2 2 2 2 2 2

1 1 2
2

xdx m x dx

k m x k m x k m x
= +

+ + +
  . 

Substitute the equation above into the equation (63), and by use of the formula 

  
( )

( )
( ) ( )

22 2

2

d 1 2
2 4

n
n

E
n n/22

n
lk =

k +l
α

Γ α

Γ απ π

−  − 
 

  
 , 

we obtain  

 
( )
( )

22 2 2
2

2
1 4 41

2 12 2 24

n

n /

m xi n nA m Γ
π

−
 −  −   = − +         

.  

Substitute the equation above into the equation (60), when 4n →  we have 

 ( )
2

2
1

8μ μΛ γ γ
π ε

 = − + 
 

1 2 E
gp ,p ,   (64) 

where the Euler's constant 0 57721E .γ = . The first term in the equation above is divergent when 0ε → . So, 

the renormalization has been realized by adding the elimination term 
2

28

g μγ

π ε
−  into the equation (55). 
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