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Abstract  
In this paper, we examined the fractional Euler-Lagrange equations for Holonomic constrained systems. The 
Euler-Lagrange equations are derived using the fractional variational problem of Lagrange. In addition, we 
achieved that the classical results were obtained are agreement when fractional derivatives are replaced with the 
integer order derivatives. Two physical examples are discussed to demonstrate the formalism. 
Keywords: Holonomic Constraints, Euler-Lagrange equation, fractional variational problem 
1. Introduction 
The study of Holonomic constrained systems are discussed in most references of classical mechanical (Atom, 
1990; Goldstein, 1980). These systems describe dynamic systems with constraints depend only on the 
coordinates. They do not depend on velocity. The canonical formalism of Holonomic systems was treated by 
Rabei (1999). In this formalism, the author has treated the regular Lagrangian with Holonomic constraints as 
singular systems. The Lagrange multipliers for these systems are introduced as generalized coordinates. The 
equations of motions are written as total differential equations, and then the Holonomic systems are quantized 
using the WKB approximation (Serhan et al., 2009). 
The study of fractional derivatives has reached a great status in various branches of science, applied mathematics, 
physical systems and engineering (Miller & Ross, 1993; Samko et al., 1993; Gorenflo & Mainardi, 1997), 
therefore the construction of the fractional Euler-Lagrange equations for Holonomic constrained systems of 
prime importance. Riewe (1996, 1997) has used fractional derivatives to construct a Lagrangian and a  
Hamiltonian for non-conservative systems. One can obtain the Lagrangian and the Hamiltonian equations of 
motion for these systems. Recently, a new formalism for investigating the fractional variational problem of 
Lagrange was discussed by Agrawalʼs (1999, 2001). In this formalism, the fractional Euler-Lagrange equation 
was derived. Besides, the generalization of Lagrangian and Hamiltonian fractional mechanics with fractional 
derivatives were extended and discussed in details in (Agrawal, 2001, 2002; Rabei et al., 2007) , then this 
formalism has found a wide range of applications (Hilfer, 2000; Rousan et al., 2002).  
This paper is organized as follow. In Section 2, the Euler-Lagrange equation for holonomic constraints was 
briefly reviewed. In Section 3, basic definitions of fractional derivatives were briefly discussed. In Section 4. the 
fractional variational problem for Holonomic constraints is examined. In Section 5, two illustrative example are 
examined. The work closes with some concluding remarks in section 6. 
2. Euler-Lagrange Equations for Holonomic constraints 
In this section, we will review briefly the Euler-Lagrange equations for the Holonomic constraints without 
fractional derivatives (Rabei, 1999). The Euler-Lagrange equations take the form 

  
iii q

f
q
L

q
L

dt
d

∂
∂=

∂
∂−








∂
∂

μλ


,                    ni ,...3,2,1=   (1) 

Here the Lagrangian ),,( tqqLL ii =  is regular and the constraint equation with m  constraints can be 
written as 
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  ,0),( =tqf iμ                mnnn +++= ,...,2,1μ   (2) 

Now, the new Lagrangian is constructed by adding the holonomic constraints multiplied by the Lagrange 
multipliers to the regular Lagrangian, and then the new Lagrangian has the form 

  μμμ λλ ftqqLtqqL iiii +=′ ),,(),,,(  .   (3) 

Here μλ  are the Lagrange multipliers and they are treated as generalized coordinates. Thus, the new 
Lagrangian is considered as singular with property that the Hessian determinant vanishes (Rabei, 1999). 
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Thus, the extended Euler-Lagrange equations are increased by m equations 
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Equation (5a) leads to Equation (1) while Equation (5b) gives the holonomic constraints Equation (2). 
3. Basic Definitions of Fractional Derivatives 
Now, we will give the basic definitions of a fractional derivatives include the left and right RL fractional 
derivatives (Agrawal, 2001, 2002) and their properties. The left Riemann-Liouville fractional derivatives is 
defined as 
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and the right Riemann-Liouville fractional derivatives has the form 
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where Nn ∈ , α≤−1n ˂ n and Γ represents the Euler’s gamma function. If α is an integer, these 
derivatives are defined as follows 
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The fractional operator α
xa D can be written as (Igor et al., 2002) 
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and has the following properties 
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Theorem: Let f and g are two continuous functions on [a, b]. Then, for all ],[ bax ∈ , the following 
properties hold: 
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4. The Fractional Variational Problem for Holonomic Constraints 
The Lagrangian formulation depending on the fractional derivatives for Holonomic constraints is given by the 
form: 

 μμ
βαβα

μ λλ ftqDqDqLtqDqDqL ibtitaibttai +=′ ),,,(),,,,(  .  0 ˂α , β ˂1.   (10) 

be a function with continuous partial derivatives with respect to all its arguments. All functions )(tq have 
continuous LRLFD of order α and RRLFD of order β  for bta ≤≤ , and satisfy the boundary conditions  

 aqaq =)( ,  bqbq =)(     . (11) 

We now examine the extrema of the functional  

 dttqDqDqLqS btta ),,,,(][ βα
μλ ′= .  (12) 

Where α<0 , 1≤β  andα , β  +∈ R , when 1== βα , the above problem reduces to the simplest 
variational problem. 
The necessary conditions for the extremum of the action (12), one can define a family of functions 

   += ∗ )()( tqtq ϵ )(tη  ,  (13) 

where )(tq∗  is the desired real function that satisfy the extremum of the action (12), ϵ R∈ is a constant, and 
the function η defined in ],[ ba satisfy the boundary conditions  

   0)()( == ba ηη ,  (14) 

Let us define a set of linear operators as follows 
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Substituting Eqs. (13) and (15) into Equation (12), one can find for each )(tη  
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is a function of ∈  only. We can note that )(∈S is extremum at .0∈=  
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One can differentiate Equation (16) with respect to ∈ ; we can obtain the variation of ][qS at )(tq along 
)(tη  
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The fundamental necessary condition for ][∈S  to have an extremum is that ∈ddS  must be zero. 
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For all admissible )(tη . Integrating the second integral in Equation (18) by parts and using the formula for 
fractional integration by parts, one can write (Samko et al., 1993; Riewe, 1996) 
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provided that qDL ta
α∂∂  or η  is zero at at =  and bt = . By using Equation (14), this condition is 

satisfied, and it follow that Equation (19) is valid. Similarly, the third integral in Equation (18) can be written as 
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Substituting Eqs. (19) and (20) into Equation (18), we get 
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Since η  is arbitrary, it follows that (Samko et al., 1993)  
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Equation (22) is the formulation of Euler-Lagrange equations for the fractional calculus of variational problem 
for holonomic constraints. 
5. Examples 
5.1 As a first example, let us consider a bead of mass m  is constrained to move on a frictionless horizontal 
circular wire of radius R. 
The Lagrangian of our problem is given by 

 θθ cos)(
2
1 222 mgrrrmL −+=  .  (23) 

Is subject to the Holonomic constraint 

 0=−= Rrf .  (24)  

The Lagrangian in fractional form can be written as 

 θθβα cos])()[(
2
1 2

1
22
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The Euler-Lagrange equations corresponding to Equation (22) become 

  0)(cos)( 01
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1 =++− rttt rDmDmgDmr λθθ ααβ ,  (26a) 
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 0)(sin 1
2

0 =+ θθ ββ DmrDmgr tt .  (26b) 

From Eqs. (26), we can obtain the classical results if α  and β  are equal to unity. One can get the angular 
acceleration  

 
R

g θθ sin= .  (27) 

and the force of constraint (Lagrange multiplier) is given by  

 )2cos3( −= θλ mg . (28) 

5.2 As a second example, let us consider the motion of a disk of mass m  and radius R that is rolling down an 
inclined plane without slipping. 
The Lagrangian of our problem is given by 

 φθ sin
4
1

2
1 222 mgymRymL ++=  .  (29) 

is subject to the Holonomic constraint 

 0=−= θRyf .  (30) 

where φ  is the angle of the incline plane. 
The extended Lagrangian in fractional form can be written as 
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The Euler-Lagrange equations corresponding to Equation (22) become 

  0)(sin 01 =++ λφ αα yDDmmg tt ,  (32a) 
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From Eqs. (32), we can obtain the classical solution if α  and β  are equal to unity. One can get the 
acceleration and the angular acceleration  

  φsin
3
2 gy = ,  (33a) 

  φθ sin
3
2
R
g= . (33b) 

The force of constraint (Lagrange multiplier) is given by  

  φλ sin
3
1 mg−= .  (34) 

6. Conclusion 
This paper is mainly concerned with the calculus of variation for Lagrangian containing fractional derivatives, 
especially for Holonomic constrained systems. The fractional Euler-Lagrange equations for these systems were 
derived. The solutions of Euler-Lagrange equations were obtained and the recovery of the classical results was 
discussed. Two examples were examined. 
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