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Abstract 
The Einstein’s program forms a consistent system for universe description, beside the standard model of particles. 
It is founded upon a scalar field propagating at speed of light c, which constitutes a common relativist framework 
for classical and quantum properties of matter and interactions. Matter corresponds to standing waves. Classical 
domain corresponds to geometrical optics approximation, when frequencies are infinitely high, and then hidden. 
Quantum domain corresponds to wave optics approximation. Adiabatic variations of frequencies yield 
electromagnetic interaction. They lead also to Classical and Quantum Mechanics equations, with unification of 
first and second quantifications for interactions and matter, and to the wave-particle duality, by space reduction 
of the introduced space-like amplitude function u(r,t), which completes the usual time-like function ψ(r,t). 
Keywords: Einstein’s Program, Quantum Mechanics, Adiabatic invariant, hidden variables, wave-particle 
duality.  
1. Introduction 
Quantum mechanics forms the base of the Standard Model of particles, as a consistent theoretical system. From 
an experimental point of view, it has been validated in 2012 by the detection of the B.E.H, or Higgs, boson, 
which represents its crowning. It describes the whole universe as constituted of particles, both for matter or for 
interactions. They behave either as waves or as particles, and derive from relativist quantum fields. 
The wave-particle problem had much mobilized physicists, especially, in 1920 years, for elaboration of quantum 
mechanics, in a probabilistic and non relativistic framework.  
The Standard Model, which privileges particle aspect of universe leaves unsolved many problems. For instance, 
it can be shown explicitly that the Compton equations, which plays a basic role, and is usually considered as 
proof of particle behavior of light, exhibits physical consequences less complete than the wave point of view. On 
another hand, Planck parameters, do not only define a very brief epoch in the earliest time following the universe 
emergence, before all material particles were created at nucleo-synthesis era, 13,8 billion years ago. They rather 
continue to apply at present time, in order to determine the extreme boundary limits for a fundamental particle of 
matter, between its particle aspect and its wave aspect (Elbaz, 2014).  
More generally, the formalism of the Standard Model leaves open many questions, since it is implicitly based on 
point particles of matter: singularities of the field for special relativity (Landau L. & Lifchitz E, 1965, 48), and 
“point-like” particles with zero dimension for quantum theory. For instance, a "fundamental particle", like a 
quark, or an electron, has no measurable size. Its mass-energy density is then infinite. In addition, the concept of 
material particle is characterized by a double discontinuity, in space and in time. In space, by determining an 
inner « full » part, and an outer « empty » part. In time, by determining a prior time before its creation, and a 
posterior time after, during which its life is either limited or unlimited. 
From a physical point of view, it is obvious that a particle cannot be strictly point-like, since its energy density 
would be infinite. As the size is not of prime importance, it does not figure usually beside mass and electric 
charge. On another hand, the basic models are physically and mathematically opposed and complementary, since 
the waves are extended through space while the particles are concentrated.  
In extension of general relativity and of his different discoveries, including in quantum physics, such as the 
stimulated emission, Einstein had proposed a consistent approach for physics, symmetrical to the standard model, 
in order to circumvent these difficulties. He privileged a classical continuous field. 
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«We have two realities: matter and field. ….We cannot build physics on the basis of the matter concept alone. But 
the division into matter and field is, after the recognition of the equivalence of mass and energy, something 
artificial and not clearly defined. Could we not reject the concept of matter and build a pure field physics? …We 
could regard matter as the regions in space where the field is extremely strong. In this way a new philosophical 
background could be created….Only field-energy would be left, and the particle would be merely an area of 
special density of field-energy. In that case one could hope to deduce the concept of the mass-point together with 
the equations of the motion of the particles from the field equations- the disturbing dualism would have been 
removed… One would be compelled to demand that the particles themselves would everywhere be describable as 
singularity free solutions of the completed field-equations. Only then would the general theory of general relativity 
be a complete theory….One could believe that it would be possible to find a new and secure foundation for all 
physics upon the path which had been so successfully begun by Faraday and Maxwell.» (Einstein & Infeld, 1938, 
256-257). 
The Einstein’s Program has been implicitly supported, and validated, by the International Legal Metrology 
Organization, by shifting from material standards of space and time to field standards. The speed of light in 
vacuum is admitted as a “pure”, or primary, fundamental constant in experimental physics, with its numerical 
value strictly fixed. The standard for measures of time is based on the period an electromagnetic wave frequency. 
In previous articles (Elbaz, 2010, 2012, 2013), we showed how the Einstein’s program forms a consistent 
system for universe description, beside the standard model. It allows us to complete the universe grasp, like both 
eyes give us access to tridimensional vision, or both ears to stereophonic audition. Starting from a scalar field 
propagating at light velocity, matter corresponds to standing waves, and interactions to their adiabatic variations. 
In the geometrical optics approximation, when frequencies are infinitely high, the oscillations are hidden. This 
holds at one and the same time in classical relativistic and quantum frameworks, yielding their descriptions being 
incomplete. 
In this article we propose to show how the Einstein’s program, allows us to retrieve the main basic equations of 
quantum mechanics, like Schrödinger’s equation, Dirac’s distribution, Heisenberg’s relations, all resulting from 
adiabatic variations or almost standing waves. We point out the role of the amplitude function, acting also 
implicitly in quantum mechanics, and then hidden. In the geometrical approximation, when constant frequency is 
very high, it leads to the free particle concept, both in classical and quantum mechanics. When frequency is almost 
constant, it leads to the interacting particle concept. From its small variations derive electromagnetic interaction 
and adiabatic invariant constant, formally identical with the Planck’s constant. 
This article appears as paving the way towards reexamination of typical quantum experiments, such as double-slit 
interference, or entanglement, raised by E.P.R Einstein’s article in 1935. 
2. The Einstein’s Program 
We restrict to summarize some equations deduced from Einstein’s program without their demonstrations, 
available elsewhere (Elbaz, 2010, 2012, 2013), in order to show how they are related to main equations of 
quantum mechanics, otherwise widely documented. 
2. 1 Kinematical Properties of Standing Fields 
In previous articles we showed how the variations of the light velocity c yield general relativity and gravitational 
interaction. Here we will restrict to c constant, restricting to special relativity. 

From the d'Alembertian’s equation describing a scalar field ε propagating at light velocity c 
 ε = Δε -(1/c2)(∂2ε/∂t2)= 0,   ∂μ∂μ ε=0  (1) 

derive two kinds of elementary harmonic solutions with constant frequency ω0, with different kinematical 
properties. The progressive waves, either retarded cos(ω0t0-k0x0), or advanced cos(ω0t0+k0x0), are in motion with 
light velocity c=ω0/k0. The standing waves, where space and time variables are separated, oscillate locally: 
ε0(x0,t0)= u0(k0x0)ψ0(ω0t0)= cos(ω0t0)cos(k0x0). They allow to define a system of coordinates at rest (x0,t0). 
They may be considered as resulting from superposition of progressive waves 

 cos(ω0t0+ k0x0)+ cos(ω0t0 - k0x0)= 2 cos(ω0t0)cos(k0x0).  (2) 
When, in a system of reference (x,t), the frequencies of opposite progressive waves are different  

 cos(ω1t- k1x)+ cos(ω2t + k2x)= 2 cos(ωt-βkx)cos(kx-βωt), (3) 
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where ω=(ω1+ω2)/2=kc, and β=(ω1-ω2/ω1+ω2). By identification with (2), they form a standing wave in motion 
with a speed v=βc=(ω1-ω2/ω1+ω2)c, with frequency ω=(ω1+ω2)/2=kc, and ω0=√ω1ω2 at rest, defining the Lorentz 
transformation between the systems of reference(x0,t0) and (x,t).  
The Lorentz transformation, fundamental in special relativity, is specific of c-field standing waves, particularly 
through the coefficient √(1-β2). It implies necessarily two frequencies, so that v, the moving speed of matter, as a 
relative difference, is strictly inferior to c. The four-dimensional Minkowski’s formalism expresses that the 
stability properties of a standing wave in its rest system, hold when they move uniformly with a speed v=βc<c. It 
defines invariant quantities, obtained from four-dimensional quantities, such as coordinates xμxμ =x0

2 or xμxμ 

=c2t0
2, and functions uμuμ = u2(x0) or ψμψμ = ψ2(t0). Their space-like or time-like characters are absolute, according 

to their depending coordinate variation in the rest system. 
Since the functions u0(k0x0) and ψ0(ω0t0) are independent, the frequency ω0 is necessarily constant in 

  (1/u0)Δ0u0 =(1/ψ0)(∂2ψ0/c2∂t0
2)=-k0

2= -ω0
2/c2.   (4) 

The function of space u0(k0x0), which obeys the Helmholtz’s equation at rest Δ0u0+ k0
2u0 =0, becomes 

Δu-(1/c2)(∂2u/∂t2)+k0
2u =0 in motion. It describes geometric properties of standing waves. It verifies Bessel 

spherical functions solutions, and particularly its simplest elementary solution, with spherical symmetry, finite at 
origin of the references system, which represents a lumped function, 

  u0(k0r0) =(sink0r0)/(k0r0).  (5) 
In geometrical optics approximation, when the frequency is very high, and tends towards infinity ω0=k0c→∝, the 
space function tends towards Dirac’s distribution u0(k0r0)→δ(r0). The standing wave of the field behaves as a free 
classical material particle isolated in space (Elbaz, 2013).  
From a kinematical point of view, the central extremum of an extended standing wave, either at rest or in motion, 
is appropriate to determine its position x0= r0=0 in cartesian coordinate system of reference, exactly like the centre 
of mass in mechanics. It verifies, for instance from (5), 

 ∇0u0(x0) =0. (6) 
In order to point out the constant frequency of a standing field, we express it as 

 ε(ωt,kx) = u(kx,βωt)exp i(ωt- βkx)   ϕ= ωt-βkx (7) 
The equations of special and general relativity are based on mass-points, as singularities, moving on trajectories, 
deriving then directly from geometrical optics approximation. The periodic equations, generic of standing fields, 
are hidden. The space coordinates xα ,involved in the space-time metric, are point-like dynamical variables, and 
not field variables r, which would describe an extended amplitude repartition in space. Then, the kinematic 
properties of standing waves for a scalar field propagating at light velocity c, with constant frequency ω and 
velocity v, reduce formally to kinematical properties of isolated point-like matter.  
2.2 Dynamical Properties of Standing Fields 
Instead of appeal to heterogeneous material boundaries in order to limit the c-field, we rather consider 
homogeneous boundaries provided by wave packets. 
Two progressive waves with different frequencies ω1,ω2 propagating in the same direction at light velocity, give 
rise to a wave packet propagating in the same direction at light velocity. Its main wave with frequency 
ω=(ω1+ω2)/2, is modulated by a wave with frequency βω=(ω1-ω2)/2=Δω/2=Δkc/2, wavelength Λ=2π/βk, and 
period T= Λ/c. Since β<1, the modulation wave acts as an envelope with space and time extensions Δx= Λ/2, 
Δt=T/2, yielding well known Fourier relations Δx.Δk =2π and Δt.Δω=2π.Then, Fourier relations represent 
homogeneous boundary conditions for the scalar field ε. From a physical point of view, they must necessarily 
supplement the d'Alembertian’s equation (1) in order to emphasize that the field cannot extend to infinity with 
respect to space and time.  
When the difference of frequencies βω=(ω1-ω2)/2=Δω/2<< ω is very small, it can be considered as a perturbation 
with respect to the main frequency, βω=δω. Then a wave packet can be assimilated to a progressive 
monochromatic wave with frequency Ω=ω±δω, inside the limits fixed by the component frequencies ω1=ω+δω 
and ω2=ω-δω. By difference with standing waves frequencies, which must be constant and monochromatic, 
progressive fields solutions of (1), may be more complex, with frequencies varying with space and time. We will 
characterize an almost monochromatic wave by a frequency Ω(x,t), varying very little around a constant ω 

 Ω(x,t)= K(x,t)c= ω± δΩ(x,t)  δΩ(x,t)<< ω  ω= constant. (8) 
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We recognize the definition of an adiabatic variation for the frequency (Landau & Lifchitz, 1960,154). 
Consequently, all following properties of almost fields arise inside such a process. The necessarily constant 
frequency of a standing wave must be considered, not as a given data, but rather as the mean value, all over the 
field, of different varying frequencies Ω(x,t). The perturbation frequencies δΩ(x,t) of modulation waves 
propagating at light velocity, behave as interactions between main waves, which yield the mean frequency ω to 
remains practically constant all over the space-time. 
Such a behavior authorizes mathematically to derive almost fields properties from monochromatic ones, through 
the variation of constants method (Duhamel principle). Instead of (8), we express it, as  

 ε(x,t) = U(x,t)exp iɸ(x,t)      ɸ(x,t)= Ω(x,t)t - K(x,t).x +2nπ, (9) 

where products of second order δΩdt≈0 and δK.dx≈0, defined modulo 2π, are neglected at first order of 
approximation. This is equivalent to incorporate directly the boundary conditions defined by Fourier relations, in 
almost monochromatic solutions, 

 dɸ(x,t)=Ω(x,t)dt - K(x,t).dx ≈ ωdt-k.dx.      U(x,t)=u(x,t)±δU(x,t) (10) 

 Following (1), the field ε(x,t) defined by (9) verifies,  

 ∂μ∂μU- U∂μɸ∂μ ɸ =0    or    ∂2U/c2∂t2-∇2U- U[(∂ɸ/c∂t)2-(∇ɸ)2]=0 (11) 

   ∂μ (U2∂μ ɸ)=0    or    ∂(U2Ω)/c2∂t+ ∇.(U2βK) =0  (12) 

These relations apply to progressive waves for β=±1, to standing waves at rest for β=0 and in motion for β<1, to 
monochromatic waves for ω and k constant, to almost monochromatic waves for varying Ω(x,t) et K(x,t). They 
lead to dynamical properties for energy-momentum conservation, and to least action principles, for standing fields 
and almost standing fields (Elbaz, 2013). 
For a standing wave with constant frequency ω, either at rest or in motion, (12) reduces to  

 ∂u0
2/∂t0 = 0.    ∂u2/∂t +∇.u2v=0    or    ∂μwμ =0 (13) 

where wμ=(u2,u2v/c)=u0(x0)2(1,v/c)/√(1-β2) is a four-dimensional vector. This continuity equation for u2 is 
formally identical with Newton’s equation continuity for matter-momentum energy density  

 ∂µ/∂t +∇.µv=0.    with    u2 =µc2 .  (14) 

By transposition, we can then admit that u2 represents the energy density of the standing field.  
In order to describe the kinematical behavior of a standing field, we may restrict to one of its particular point such 
as its center of amplitude, with position x0 defined by (6), especially when experimental conditions lead us to 
consider that it reduces to a point. The position x0 of the energy density verifies  

 ∇0u0
2=0    ∇u2 +(∂u2v/c2∂t)=0    ∇×v=0    or     πμν=∂μwν-∂νwμ=0,  (15) 

The standing wave energy density u2 is spread in space. It corresponds then to a potential energy density, so that. 
F= -∇u2 =-∇wP= is a density force, and ∂u2v/c2∂t a density momentum. πμν is a four-dimensional force density. In 
(15), the vanishing four-dimensional force density tensor πμν of a standing wave, asserts that its space stability 
remains in uniform motion, and that the energy-momentum density four-vector wμ is four-parallel, or directed 
along the motion velocity v. 
Equation (15) is mathematically equivalent to the least action relation, in which energy density wμ is a 
four-dimensional gradient ∂μa, 

 δda=0  δ∂μadxμ =0       with              wμ = ∂μa.  (16) 
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When we transpose the mass density µ=u2/c2, and we take into account the identities ∇P2=2(P.∇)P+2P×(∇×P) and 
dP/dt= ∂P/∂t +(v.∇)P for c and v constant, after integration with respect to space, we get the equation for matter 

 dp/dt=-∇mc2+ {∇(mv)2}/2m             dp/dt=∇Lm=-∇m0c2√(1-β2). (17) 

We retrieve the relativistic Lagrangian of mechanics for free matter Lm= -m0c2√(1-β2 ). 
2.3 Electromagnetic Interaction 
The continuity equation of an almost standing wave, applies to the total energy density, W=U2Ω=w+δW, sum of 
the mean standing wave w and of the interactions δW. Relation (15) becomes 

 Πμν= ∂μWν -∂νWμ =0   or   Πμν= πμν + δΠμν=0  (18) 
By difference with the null four-dimensional density force πμν for a standing wave, only the total density force 
Πμν for an almost standing wave vanishes. In the first case, this asserts the space stability of an isolated moving 
standing wave, while in the second case, the space stability concerns the whole almost standing wave. It behaves 
as a system composed of two sub-systems, the mean standing field with high frequency Ω(x,t) ≈ ω, and the 
interaction field with much lower frequency δΩ(x,t), each one exerting an equal and opposite non vanishing 
density force πμν = -δΠμν against the other. The mean energy-momentum density tensor πμν, no longer vanishes 
in (18), as previously in (15). This comes from the mean energy-momentum density four-vector wμ, which is no 
longer parallel, because of the opposite density force δΠμν exerted by the interaction. 
It appears that an almost standing field behaves as a whole system in motion which can be split in two 
sub-systems, the mean standing field and the interaction field. Both are moving with velocity v, while exerting 
each other opposite forces in different directions, including perpendicularly to the velocity v. The perturbation 
field, arising from local frequency variations δΩ(x,t), introduces orthogonal components in interaction density 
force and momentum. 
After generalizing relations (17) by constants variation method for mass M(x,t)=m±δM(x,t), we get 

 ∇Mc2 +∂P/∂t=0       ∇×P=0             dP/dt=-∇Mc2+(∇P2)/2M. (19) 

The density force δΠμν≠0 exerted by the interaction is formally identical with the electromagnetic tensor 
Fμν=∂μAν-∂νAμ≠0. We can set them in correspondence δΠμν = eFμν, through a constant invariant charge e, with 
δM(x,t)= eV(x,t)/c2 and δP(x,t)= eA(x,t)/c. The double sign for mass variations corresponds to the two signs for 
electric charges, or to emission and absorption of electromagnetic energy by matter. We retrieve the minimum 
coupling of classical electrodynamics, Pμ(x,t)=pμ+eAμ(x,t)/c, with M(x,t)c2=mc2+eV(x,t), and P(x,t)=p+eA(x,t)/c, 
where electromagnetic energy exchanged with a particle is very small compared to its own energy eAμ(x,t)/c= 
δPμ(x,t) << pμ (Landau L. & Lifchitz E., 1965, 102). Electromagnetic interaction is then directly linked to 
frequencies variations of the field ε. 
Relation (19) yields the relativistic Newton’s equation for charged matter with the Lorentz force 

 dP/dt= -∇m0c2√(1-β2) + e(E+v×H/c).  (20) 
2.4 Adiabatic Invariant 
For an almost standing wave, the relation (11) leads to 

  [∂U2/∂t+∇.U2v]/U2+δ[∂Ω/∂t+∇.Ωv]/Ω =0  or  (∂νWν)/W+δ(∂νΩν)/Ω =0   (21) 
with energy density W=w±δW=µc2=µc2±δµc2, four-dimensional energy density Wν=wν±δWν, frequency 
Ω=ω±δΩ, and four-dimensional frequency Ων =(Ω,Ωv/c), leading to 

 Wν =IΩν   and   δWν =IδΩν  (22) 
when we take into account the double sign in frequency variation δΩ. The constant I is an adiabatic invariant 
density. Integrations with respect to space of µ and I densities, lead to relations between four-energy and 
four-frequency through the adiabatic invariant H, formally identical with the Planck’s constant h. 

 Eν= m0c2uν = (mc2,pc) =Hων= Hω0uν= H(ω,kc)  (23) 
For the standing wave corresponding to matter, adiabatic variations of its frequency Ω lead to electromagnetic 
interaction constituted by progressive waves. The energy of electromagnetic interaction derives from mass 
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variation dE=c2dm. It leans directly upon the wave property of matter: its energy dE= hdν= c2dm derives from 
variations of matter energy E=hν=mc2.  
3. Applications to Quantum Mechanics 
The Einstein’s program provides a common framework which allows us to retrieve the main basic assumptions , 
and equations, of quantum mechanics. Instead of starting from the beginning the point-like particle as fundamental, 
in order to fit to experiment, it derives its properties and behaviours from a continuous extended field propagating 
at light velocity. Localized particles derive in the geometrical optics approximation. It is well known that carrying 
out an approximation leads to different final results, depending it occurs at the beginning, or at the end of a 
demonstration. In the first case, the neglected properties and data, hidden along the calculus process, yield a less 
complete result.  
3.1 Classical Mechanics 
Classical mechanics, based on mass-points for Newton or singularities for relativity, moving on trajectories, leans 
from the beginning upon the geometrical optics approximation of the c-field (5). The prevailing macroscopic 
environment is very much greater than the main wavelength λ=2π/k and the perturbation wavelength Λ=2π/δK, 
which acts as a boundary concentrating the extended field in space. Both are hidden for an isolated particle. The 
amplitude space function u0(k0x0), solution of the Helmholtz’s equation at rest Δ0u0+ k0

2u0 =0, such as (5), reduces 
to a Dirac’s distribution δ(r0- x0). Consequently, the total energy of the underlying almost standing field is entirely 
concentrated in the Cartesian central extremum x0 of u0(k0x0), defining its position x0= r0=0. Such a concentration 
at x0 coordinate is clearly represented by the implicit Dirac’s distribution δ(x0). By integration all over space, the 
mass is totally recovered. No mass-energy remains outside the position x0.  
Mathematically, the reduction of the extended space function u(r0), with respect to spherical coordinate r0 to a 
point-like δ(x0), where r0 is no longer present and characterized only by its Cartesian position x0, represents a 
collapse. Nevertheless, it must be emphasized that the geometrical optics approximation does not imply any 
physical collapse of a lumped function such as (5) following a measurement. The energy extended outside the 
extremum does not appear experimentally when it is measured, only because it is too slight, and then undetectable 
with regards to the means used. Such an approximation is well known, and usual, in electromagnetic signal 
technology. 
These properties remain unchanged in motion, except that the Helmholtz’s equation, which becomes 
Δu-(1/c2)(∂2u/∂t2)+k0

2u =0, with plane wave solution u= expi(k.x-βωt), admits as extremum postion (x-vt)/√(1-β2) 
instead of x0. By comparison with spherical field variables r describing the space repatition of u, the position x is 
a dynamical Cartesian variable. In special and general relativity, the equations are based on particles, as 
singularities, moving on trajectories. They lean then directly upon geometrical optics approximation. The 
periodic equations, generic of standing fields, are hidden. The space coordinates xα ,involved in the metric, are 
point-like dynamical variables, and not field variables r which would describe an extended repartition in space. 
Consequently, the least action relation (16), which describes the centre of energy motion as point-like (15), derives 
from the whole extended amplitude function u. Then, it takes implicitly into account the very slight hidden energy, 
acting outside localized mass. Since centuries, it is known that this outside hidden informative action had intrigued 
physicists: following the least action principle, how a well localized particle was aware of far boundaries in order 
to adjust and minimize its path? From Einstein’s program (16), we notice that the instantaneous energy repartition 
in space (5), expresses only that u represents the resulting stationary space-like part of a field ε which had 
propagated at light velocity c. 
3.2 Quantum Mechanics 
3.2.1 Wave and Geometrical Optics Approximations 
In quantum mechanics, the geometrical optics approximation holds only for the main wavelength λ=2π/k, with 
main energy mc2. Matter behaves as made of particles. The microscopic acting environment, with dimensions 
around Λ=2π/δK, yield wave approximation to become into sight for kinetic energy mv2/2, linked to 
electromagnetic interactions. The underlying almost standing field ε(x,t), for matter in (9), verifies simultaneously 
the geometrical optics approximation for its main frequency ω, and the wave approximation for the interacting 
frequency dΩ(x,t)=dδΩ(x,t), according to (8). Following (11-17) and (22), a material particle is characterized by 
constant point-like energy E and momentum p, with its motion governed by wave-like interactions. 
Such a double approximation was clearly set down at the beginning of quantum theory. In Bohr’s atom, an electron, 
as a mass-point, moved along a trajectory around a nucleus, while exchanging with it electromagnetic wave. 
Because of admitted energy quantification, its path exhibited periodical sequences, instead of being monotonous. 
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By comparison with classical mechanics, the least action principle, which asserts that the motion occurs locally 
along the speed v, was replaced by a circular integral, which asserts that the phase is defined modulo 2π in (9). 
3.2.2 Schrödinger Equation. 
This appears also, either in the Schrödinger equation  

 (ih/2π)∂ψ/∂t = -(h2/8π2m)Δψ  (24) 
admitted as fundamental, or which is equivalent, in the operators acting on ψ function 

 E → (ih/2π)∂/∂t  p→ -(ih/2π)∇  (25) 
In both cases, the framework is non relativist. The energy considered restricts to the kinetic energy of the particle 
Ek = p2/2m, instead of its main energy E=mc2 ≈ Ek + E0.This emphasizes that the rest energy E0 =m0c2, admitted as 
remaining constant in whole processes involved afterwards, is eluded, or hidden. The mass of a particle like an 
electron, is admitted as unaffected by its motion and by its interactions. Like in classical physics, the mass-energy 
extended outside the point-particle in neglected, and hidden. Nevertheless, its underlying action continues to 
operate in that case, but as a second order wave approximation.  
Basically, the function ψ defined by (24) or (25) verifies 

 ψ= a exp-iϕ  ϕ= (h/2π)(Ekt-p.x)   (26) 
Where the three terms, amplitude a, energy Ek and momentum p are constant. This corresponds directly to the 
standing field relation (7), through Planck-Einstein-de Broglie relations E=hν=mc2 (Broglie, 1924, 21). Such a 
plane wave (26) is not appropriate to describe a particle. The space concentration of ψ is implicitly carried out by 
the variation of constants method, without going into details, after admitting that the constant terms vary slightly. 
Usually, only the mathematical process, in agreement with experiment, is given importance. 
In wave mechanics, the solution of the Schrödinger equation is extended from of a plane wave (26), to a more 
complex wave packet, involving implicit variations δEk for energy and δp for momentum around their constant 
values. They behave as virtual, so that the phase ϕ in (26), no longer monochromatic describing a motion at the 
speed v of the matter particle,  

  δEk / δp= mvδv/mδv = v  (27) 
In experiments, the particle appears with practically constant values Ek and p for its energy and momentum. They 
are affected only by second order virtual, and then aleatory, variations δEk and δp, which do not change the phase 
variation dϕ in (26). The second order relations δEk dt= δpdx= nh, where n=0,1,….is an integer, correspond to the 
Heisenberg relations.  
In quantum mechanics, the amplitude a is no longer constant, but varies with respect to space and time. However, 
these variations are very slight with respect to Ek and p, so that they do not hold when operators (25) are applied 
to ψ=a(x,t)exp-i(h/2π)(Ekt-p.x) in order to retrieve the Schrödinger equation (24). The absolute phase ϕ, which 
cannot be measured, is eluded in products involving ψ and its conjugate ψ*=a(x,t)exp+i(h/2π)(Ekt-p.x), yielding 
experimentally observables quantities (Quigg, 1983, 41). 
For instance, the well known continuity relation deduced from the Schrödinger equation 

 ∂ψ*ψ/∂t + ∇.[-(ih/2m)(ψ*∇ψ-∇ψ* ψ)=0   or   ∂a2/ ∂t+∇.a2v=0  (28) 
shows that the ψ*ψ= a2(x,t) moves with the particle with the speed v. The normalization condition  

 ʃ ψ*ψdx=1  or  ʃ a2dx=ʃῤ(x)dx=1  like  ʃδ(x)dx=1 (29) 
permits to identify a2(x)= ῤ(x) =δ(x) with a point-like probability density. Since it accompanies the particle in its 
motion, it is defined in its system of reference, by a space-like function. 
Such a relativist property for the function a(x) goes beyond its introduction from the non relativist Schrödinger 
equation. It is consistent with, and derives from, the operators (25), which remain valid in the relativist case. The 
phase becomes ϕ= (h/2π)(Et-p.x) for the function ψ=a exp-iϕ. If, in one hand we admit that E and p, and in other 
hand that the amplitude a, are not rigorously constant, we are led to identify the space-like amplitude a(x,t) with the 
space-like amplitude U(x,t) of an almost stationary c-field (9). 
The normalisation condition confirms then that, in addition to the non relativist approximation, quantum 
mechanics leans on point-like approximation of the Einstein’s scalar c-field according his program. 
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4. Concluding Remarks 
Taking account of the space-like amplitude a(x,t) in quantum mechanics, paves the way towards reexamination of 
typical quantum experimental behaviors, such as double-slit interference, or E.P.R entenglement, raised in 1935 by 
Einstein. 
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