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Abstract 
We discuss reasons why a probability amplitude, which becomes a probability density after squaring, is considered 
as one of the most basic ingredients of quantum mechanics. First, the Heisenberg/Schrödinger equation, an 
equation of motion in quantum mechanics, describes a time evolution of the probability amplitude rather than of a 
probability density. There may be reasons why dynamics of a physical system are described by amplitude. In order 
to investigate one role of the probability amplitude in quantum mechanics, specialized codeword-transfer 
experiments are designed using classical information theory. Within this context, quantum mechanics based on 
probability amplitude provides the following: i) a minimum error of the codeword transfer; ii) this error is 
independent of coding parameters; and iii) nontrivial and nonlocal correlation can be realized. These are 
considered essential advantages of the probability amplitude over the probability density. 
Keywords: probability amplitude, probability density, quantum mechanics 
1. Introduction 
Quantum mechanics (QM) is considered the most basic theory of nature. All phenomena including those of the 
gravitational force are considered to be expressed by a language of QM. However, an essential understanding of 
the basic nature of QM yet to be realized, and efforts to look for more fundamental explanations continue. Of 
course, QM itself is a self-consistent theory and requires no fundamental reasoning to support its truths beyond 
what are gains from experiments. Still, it is worth pursuing more basic reasons which determine QM to be the 
most fundamental law of nature. For instance, Wheeler asked “Why the quantum?" and discussed the relation 
between QM and information theory (Wheeler, 1990, 1991). In this report we attempt to answer the same 
question from Wheeler’s point of view. One of the most essential differences between quantum and classical 
mechanics is the former’s need for a probabilistic treatment of theoretical predictions. One cannot avoid the 
probabilistic interpretation of a wave function proposed by Born (1926), which is now known as the Copenhagen 
interpretation. A fundamental equation of QM, the Heisenberg/Schrödinger equation, does not describe the 
behavior of a physical observable nor its probability density; rather, it describes the probability amplitude, which 
is a characteristic of QM and possesses no classical counterpart. (In a narrow sense,“quantum amplitude” is a 
complex number whose square of the absolute value is a probability. In this report, we use a word “quantum 
amplitude” not only for complex numbers, but also for vectors whose square of the absolute value is a 
probability.) This report considers reasons why fundamental laws of physics are described by probability 
amplitude instead of probability density, leaving aside the question of why probability itself is necessary. To 
clarify essential properties of probability amplitude, codeword-transfer experiments are designed on the basis of 
classical information theory. Taking into account the discussions on these experiments, three essential 
advantages of probability amplitude over probability density are pointed out in the following sections. 
First, definition of quantum system and probability amplitude are given in Section 2 under a very general 
mathematical framework. Then, codeword-transfer experiments are designed within classical information theory 
to investigate the role of probability amplitude. Experiments using a stochastic algorithm cannot avoid statistical 
error due to sample number. In Section 3, we show that a coding method based on probability amplitude should 
minimize statistical error. Moreover, statistical errors of the codeword-transfer are independent of the 
parametrization allowing each character to be transferred; this is shown in Section 4. Another essential feature of 
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QM is its lack of local realism, which can be judged by Bell’s inequality. This local realism and Bell’s inequality 
are described using terminology of classical information theory, again as the codeword-transfer experiment. A 
method based on the probability amplitude can induce a violation of Bell’s inequality, as shown in Section 5. 
Throughout this report, classical information theory is used to describe codeword-transfer experiments.  
2. General Quantum System 
A general framework to define the probability amplitude appearing in QM is considered in this section. Here we 
emphasis algebraic aspects of QM and ignore dynamical ones. The question which must be asked here is “What 
minimum set of assumptions makes a system look like quantum mechanics?” We propose the following 
elements as indispensable ingredients for QM.  
Definition 2.1 (Quantum Space) 

 is any field and  is a linear (vector) space on it.  is named as a base field and is associated to each point 
of a set, . State vector and probability measure are introduced on these spaces as follows.  

1) A map from a point on  to a tensor product of a vector space ,  

  : → ⊗⋯⊗ : ↦ ,⋯ , , (1) 

is named state vectors. Here,  is named the base set and  is a point on it.  
2) A map from the state vector to a real number such as  

  : → : → ∈ 0,1 , 1,⋯ ,  (2) 
is named a probability measure. The index  on  runs from 1 to . The sequential map  

  ∘ : → → : ↦  (3) 
is also called a probability measure and represented by the same symbol, , when  are obvious.  

3) The probability measure must be normalized as  
  	∈ ⊆ 1 (4) 
for each , where Γ is an appropriate subset of the base set . Since the probability measure is considered as 
Lebesgue measure, the integral should be interpreted as summation when  is a discrete set.  

4) The set , , ,  is named a “quantum space.”  
To construct QM, these conditions are necessary, but are not sufficient. For standard relativistic QM (or quantum 
field theory), we take Hilbert space as a vector-space  on a field of complex numbers . State vector can be 
constructed using square integrable functions on a given support. The state vector is associated with each point 
of the Minkowski manifold as a base set. (Sometimes a Fourier transformation of  defined in the momentum 
manifold is used instead of  itself. In that case, a corresponding Hilbert space is called “Fock space”.) The 
probability measure is introduces as | | . For the normalization, Γ is taken as a hyper-surface on  
such that any two points on Γ have a space-like distance each other. (Or it is normalized in the momentum 
space.) When the probability measure is defined as square of the absolute value of the state vector, the state 
vector is called a “ probability amplitude” in this report, hereafter. In this report, simple quantum spaces are used 
since only algebraic aspects of QM are of interest here.  
3. Minimization of Measurement Error 
First, let us consider a statistical error for measurements of a single physical observable on the quantum space 
defined in the previous section. A codeword-transfer experiment simulating standard QM in a much simpler 
quantum space, retaining essential properties, is introduced here. In information theory, an encoding method 
which minimizes statistical error among methods using stochastic algorithms is known. The method using 
probability amplitude is shown to be an example of such an encoding method giving minimum errors. 
Terminology of classical information theory used here can be found in Cover and Thomas (1991) and Kurihara 
(2013) and Appendix 7.1.  
Definition 3.1 (Stochastic Codeword-Transfer Experiment) 
The experiment satisfying the following conditions is called a stochastic codeword-transfer experiment:  

1) Alice ( ) transfers a set of  different codewords , ⋯ ,  to Bob ( ) after converting 
them to state vectors ∈ , where  is a -dimensional vector space.  
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4)  obtains a codeword  with the probability measure | | .  
Proof.  

1) The smallest error ⇒ | |  : 
Data after  independent measurements are expressed as , ⋯ ,  with the probability | | . 
The probability density to obtain a set of data  is assumed to be expressed as f ; , where 

 used defined as an equation (3). Then the Fisher information matrix (FIM) (Cover & Thomas, 1991) can 
be written as  

 f ; ; ;  

 ∑ 	 / / . 
The functions  are not independent of each other owing to conservation of the total probability, ∑ 	 1. We can assume that all 2  are independent except 1 ∑ 	  
without any loss of generality. Since all other , except this correlation due to the conservation of 
probability, can be set to be independent after appropriate linear transformation of , the FIM can be taken to 
be a diagonal matrix. Here we use a short-hand expression, , / , , and ∑ 	 ̅; then the diagonal components of the FIM can be written as  

 ∑ 	 ,  

 , ∑ 	 ,  

 1 ̅ / ,  

 , , . 
Here the independence of all  each other is used second line to third line in above calculations. The 
minimum value of  is obtained when ̅  within the allowed region of ̅ 1. Then we get  

 min , . 
On the other hand, measured data after  independent measurements must follow a multinomial distribution, 
whose covariance matrix  is  

 
,1 , 

where  is measured probability of an th codeword. Then, after  independent measurements through 
estimator  defined in Definition 2.6, a covariant matrix  can be expressed as  

 Σ ∑ 	 Θ ̅ Θ ̅  
 . 

Then, diagonal components of the covariant matrix become  
 Σ  
 1 . 

In general, measured probability ( ) differs from true probability ( ); however, it is certain that the error of | | will be less than any small value after a sufficient number of events accumulates, as a result of the law 
of large numbers and the assumption that the estimator is unbiased. Then, we use  instead of  in the 
discussions that follow. The probability  that maximizes diagonal components of the covariant matrix is given 
as 1/2 due to Σ / 1 2 0. Then, the diagonal components of the covariant matrix are 
given as Σ 1/4. The Cramér–Rao inequality (Cover & Thomas, 1991; Cram`er, 1946; Rao, 1945) gives the 
lower bound of the covariant matrix as  
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 . 
A possible range of the inverse of the FIM is  

 , , , 0, 
where we use the FIM ( ) is a diagonal matrix. Then a solution of the following differential equation gives the 
minimum variance in general:  

 , 4 
 ⇒ , 4 1 . 

The solution of this equation can be obtained as  
 cos , 

where  is an arbitrary phase factor. This phase factor corresponds to a rotation of the coordinate system 
prepared in Theorem 3.1 and gives no essential effect on the result. Then we set 0 hereafter as cos . Each  gives the same differential equation; then parametrization cos  gives the 
lowest value of the variance, which is nothing other than the direction cosine of the vector , whose endpoint is 
on the unit sphere . Then, the method to give the minimum variance is: i) normalize the codeword  to 0 /2; ii) map on the  as  to be an angle from axis ; set iii) the probability to observe the 
codeword  to be cos , which are the same as the assumptions of the theorem.  

2) | | ⇒ the smallest error: 
When we set | | cos , the diagonal components of a covariant matrix become  

 Σ 1  
 cos 1 cos  
 cos sin . 

Then the minimum value of Σ  is obtained to be 1/4 at /4. On the other hand, the diagonal 
component of the FIM matrix can be  

 | , |  

 4cos sin / cos sin  
 4. 

Then 1/4, which matches the minimum value of Σ .  
In the above decoding method, a relation between probability amplitude and density is algebraically the same as 
in the standard QM, which means the latter employs a coding method that minimizes statistical error among 
other stochastic methods. This is our first example outlining the advantage of the method using probability 
amplitude.  

 

   
Figure 2. Code-transfer experiment realized by using polarized laser beam 

  
4. Parametrization independence of a measurement error 
Related to the Theorem 3.1, one can prove following theorem, which is also given by Wootters (Wootters, 1980, 
1981) and is important to consider one role of the probability amplitude.  
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Theorem 4.1 
The encoding rule given by the Fisher–Wootters theorem gives uniform errors independent of its 
parametrization.  
Proof. A set of state vectors , ⋯ ,  are encoded as cos , ∑ 	 1, according to the 
Fisher–Wootters theorem. Looking at an th element , one sees a relation between an error of estimation  
and an error to measure the parameter  as | / | sin . Under the normalization condition of ∑ 	 ∑ 	cos 1, the total error after measuring  independent data becomes  

 ∑ 	  

 ∑ 	|sin | 
 ∑ 	|1 cos | 
  

 ⇒ , 
which means a mean-square error is determined by the statistics per degree of freedom and independent of the 
position on an -dimensional sphere. A factor ∝ 1/  follows from the central limit theorem.  
Example 1 (Codeword-transfer experiment realized using a polarized laser beam) 
Let us consider the codeword-transfer experiment defined in Definition 3.1 for a realistic quantum system: the 
pulse laser has a polarizer ( /4 plate). (See Fig. 2.) Alice ( ) has experimental equipment consisting of a pulse 
laser and a polarizer and can transfer a single photon with linear polarization with any polarization plane to Bob 
( ).  has a /4 plate with fixed plane and photon detector with 100% efficiency.  knows the angle of 
the polariser plane of , say , and has a clock exactly synchronised to that of .  assigns codewords on 
equally separated points on a unit circle, and selects an integer, say . Then  sets an angle of the polariser 
according to a codeword to be , where /2 .  transfers one photon a second and  photons 
in total.  measures photons behind the /4 plate. If  observes a photon, he records “1” and if not, he 
records “0”. As a result  obtains data , , ⋯ , 1,1,0,1,0,⋯ , and decodes them to one real 
number with average ̅ ∑ 	 / . According to quantum mechanics this number must be ̅ sin . Finally, 

 obtains a number which  intended to send. This codeword-transfer experiment satisfies Definition 3.1, 
which means quantum mechanics gives codeword-transfer experiments with the smallest errors, given by 
Theorem. 3.1.  
5. Nonlocal realism 
A point definitely distinguishing QM from classical mechanics is that QM does not have local realism. Related 
to this fact, there are two important theorems: violation of Bell’s inequality (1964) and Kochen–Specker theorem. 
Both theorems are related to a correlation of two independent measurements. It is shown in this section that these 
two theorem can be realized again using the probability amplitude. The trick to introduce the nonlocal realism 
without breaking the special relativity is realized unsing a freedum in the map from the state vector (probability 
amplitude) to the probability measure defined in the equation (3). An additional information can be implemented 
into the probability amplitude as a phase factor of a 1  transformation, which keeps the probability measure 
unchanged locally. This is another example of the advantage of the probability amplitude over the probability 
density. 
In order to discuss a correlation of two independent measurements, a double codeword-transfer experiment is 
designed.  
Definition 5.1 (Stochastic double codeword-transfer experiment)  
A stochastic double codeword-transfer experiment is defined by extending Definition 3.1 as follows:  

1) Alice  transfers two sets of  different codewords and state vectors, , ⋯ ,  and , ⋯ , , to Bob  and Charley  after converting them to state vectors ∈  and ∈ , 
where  and  are -dimensional vector spaces.  

2)  and  are placed opposite to  and receive state vectors sent from , stochastically choose 
one of the two sets to be measured. Neither  and  know which set is chosen by the other independence of 
set selection .  
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3) Encoding is performed using the following probabilistic function:  
 : ⊕ ⊗ ⊕ → : , ↦ γ , , ∈ 0,1 , 

where ⊕ ,⋯ , , ,⋯ , ,⋯ ,  and 1 , 2 . First (second) slot of  are 
for state vectors sent to  ( ), respectively.  

4)  and  select for measurement one of the state vectors  or , independently. Possible combinations 
of measured codewords are , , , , , , , . Probabilistic function  is normalized as:  

 ∀ , ∑ 	 , 1, ∀ , ∑ 	 , 1, 
 ∀ , ∑ 	 , 1, ∀ , ∑ 	 , 1. 

However it does not guarantee that all the probability measures, , , , , , , and , , exist at the same time.  
5)  can send a finite number (  times here) of the same set of state vectors to  and .  
6) Measurements:  

        (a)  obtains  independent codewords by measuring sets of state vectors sent from , such as , ⋯ , , where ∈ ⊕ .  
        (b) For , the same as (a) with a replacement → .  

7) Estimator:   
        (a)  has an unbiased estimator to obtain a set of real numbers ̅ ∈ 0,1  from measured data as  

 ̅  

 ∑ 	∑ 	∑ 	  

 Θ 1 ,0 , 
where  runs from 1 to 2 .  
        (b) For , the same as above with a replacement → . 

8) After completing measurement,  and  make a table ̅ , ̅ , ̅ ,  where ̅ ,  converges in 
probability to ,  when → ∞, thanks to the law of large numbers.  
Bell’s inequality is a critical test to distinguish a nonlocal theory from a local one. This theorem can be 
expressed by the language of classical information theory (Braunstein & Caves, 1988). We state this theorem 
and give a proof in the context of Definition 5.1.  
Theorem 5.1 (Bell) 
Let us consider a case with a complete table to give the probability of observing any pair of codewords as  

 , , , , ,  
 , ,  
 , ,  
 , , . 

These measurements are performed as the stochastic double codeword-transfer experiment defined above. In this 
case, a conditional entropy follows the inequality  

 | | | | . 
Definitions and necessary formulae for following proof can be found in Cover and Thomas (1991) and 
summarized in Appendix 7.2.  
Proof. On the assumption there exists a complete probability table, , , , , a joint entropy can be 
written as  

 , , , ∑ 	, , , , , , log , , ,  
 ∩ ∩ ,  
 ∩ , ∩ . 
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Using the chain rule of entropy sequentially, one can get  
 ∩ ∩ , | , , ∩ ,  
 | , , | ∩ ,  
 | , , | , | . 

On the other hand, this joined entropy satisfies  
 ∩ , ∩ , , | , , 
 ,  
 | . 

Inequality follows from nonnegativity of entropy. From the property of the probability measure in the probability 
space,  

 	∀ ,∀ ∈ , ∩ , 
and the definition of joint entropy, the inequalities  

 | , , | , 
 | , | , 

follow. Then Bell’s inequality is proved.  
The necessary condition for Bell’s inequality, the existence of the complete probability table , , , , 
corresponds to local realism in the physical terminology. Here, we give an example where Bell’s inequality is 
not maintained.  
5.3 Definition 5.2 (Stochastic double codeword-transfer experiment without a complete probability table) 
Here, the number of codewords in the set is 2 for simplicity.  

1) Set m 2 in Definition 5.1-1 for two sets of codewords such as  
 , , 
 , , 
 ⊗ , , , , , ,  

and for state vectors as  
 ∋ cos , sin , 
 ∋ cos , sin , 

where 0 , . This parametrization configures an example of Theorem 3.1.  
2) The same as Definition 5.1-2.  
3) Encoding is performed using following probabilistic function:  

 , | | . 
4)  and  select for measurement one of the elements (codewords) in  or , independently. 

Before measurement,  rotates a detector angle up to  ( ). Neither knows the rotating angle of the other. 
 and  correct this rotation angle after completing all measurements. This rotation does not affect the error of 

the measurement, owing to Theorem 4.1.  
        (a) If state vectors  and  exist locally before the measurement for , the probability that  
may obtain each codeword can be obtained after rotation as  

 → , 
where  is a rotation matrix, ∈ ⊕ , and  or  depending on . The probability for  
is similar to the above. In this case we do not observe any violation of Bell’s inequality since we can prepare the 
complete probability table.  
        (b) Suppose the angles  and  are not fixed before measurement and are fixed when  or  
measure the code from  or  and the probability measure  depends on the result of their decision. 
Moreover we require that the probability measure does not follow the functional composition condition (FUNC) 
(Flori, 2013). In a context of the report, the FUNC is a requirement for any function  as arithmetic operations 
on vectors and real numbers as  
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 ∀f, , , , , , . 
A function  in l.h.s. maps real numbers to a real number. On the other hand,  in r.h.s from vectors to a real 
number. Here we consider a natural isomorphism between real numbers and vectors in operations of addition, 
subtraction, and (scalar) product, and represented the same symbol . For a current example, the probability 
measure does not satisfy the FUNC, for example, as  

 , | | | | , 
 , , | | | | | | , 
 , . 

Suppose  obtains  ( ). The angle  for  is fixed as  ( /2 ), i.e., the probability 
table is now situation-dependent. The state vectors for  are now  

 
o1/2 o ,o .  

If  decided to measure a codeword from a set , nothing would happen. On the other hand, if  decided to 
measure a codeword from the same set as , then  

 ,  
 |cos cos sin sin |  
 cos , 
 ,  
 |sin cos cos sin |  
 sin . 

Again the probability to obtain one of the  can be calculated using only local parameters on . In both cases, 
 can obtain a set of codewords that  intended to send. The probability table is situation-dependent and there 

is a possibility that Bell’s inequality will be violated.  
5) 6) The same as the Definition 5.1.  

It is proved that the Kochen–Specker theorem is incompatible the FUNC (Flori, 2013). Above stochastic double 
codeword-transfer experiment is a model of the QM violating the FUNC to incorporate the Kochen–Specker 
theorem. In order to confirm a violation of Bell’s inequality, it is tested numerically according to the above 
example. A correlation between measured codewords independently obtained by  and  is defined mimically 
like CHSH (Clauser, Horne, Shimony, & Holt, 1969) as  

 Δ | α | | | . 
According to the results of Theorem 5.1, Δ  is bounded by negative values when the complete probability 
table exists. If the theory is based on local realism, one can always prepare the complete table to observe 
codewords for both  and . In order to design the experiment that gives a stronger correlation (Δ 0), one 
has to employ a rule for choosing the probability table, i.e., a choice that cannot be determined locally. Moreover, 
the rule must also satisfy requirements from special relativity, if one would like to interpret as physical law. The 
stochastic double codeword-transfer experiment defined by Definition 5.2 is an example of such a rule. Under 
Definition 5.2-4b, for instance,  cannot know the probability table he is using because it depends on ’s 
decision, and that cannot be known by . This lack of the complete probability table is deeply related to the 
Kochen–Specker theorem (KST). The KST insists of absence of a complete set of physical quantities without 
measurements in QM, and corresponds exactly to lack of the complete probability table introduced in Definition 
5.2. Moreover, if we look at only ’s results, we cannot extract any information about ’s choices and results; 
that means ’s information cannot transferred to  immediately, which is a requirement from special relativity. 
This coexistence of nonlocality and special relativity is realized by the rule of Definition 5.2-4b of the stochastic 
double codeword-transfer experiment. The probability tables,  and , include , though these are 
tables for , which is called “ entanglement”. However,  cannot extract a value of  because  appears 
only in phase of the unitary transformation and disappears after reaching the average. Violation of Bell’s 
inequality can be judged by checking whether the correlation Δ  is greater than zero or not. Numerical results 
with employing rule of Definition 5.2-4b are calculated and shown in Fig. 3. One can clearly see the violation of 
Bell’s inequality in some parameter regions. 
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Thus those nonlocal correlation stronger than the classical informational theory can be obtained without braking 
the special relativity. 
In conclusion, the probability amplitude rather than probability density gives the minimum and independent 
mean-square errors from parametrization. Moreover, it allows one to obtain nontrivial and nonlocal correlation 
on two independent measurements which violate Bell’s inequality incorporate with the Kochen–Specker theorem. 
It is worth pointing out that nonlocal realism can be realized without any complex-number valued amplitude here. 
The complex-number valued amplitude could be one of convenient representations for quantum mechanics, but 
not an indispensable ingredient of that. For example, the representation of 2  (a rotation angle) can be used 
instead of that of 1  (a complex phase), which share the same Lie-algebra locally.  
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Appendix 
7.1 Classical estimation theory 
We define terms associated with physical measurement according to classical estimation theory (Cover & 
Thomas, 1991) as follows. Let  be a random variable for a given physical system described by the -tuple , ⋯ , , where  is the  i th physical parameter. The set of all possible values of ∈ , denoted by Θ, is called the  parameter set. The random variable  is distributed according to the probability density 
function f ; 0, which is normalized as 	∈ f ; 1, where ∈  is one possible value of the 
whole event Ω . For physical applications, we introduce the  probability amplitude defined by  

 | x; | f ; . 
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A part of  experimental apparatus is assumed to output numbers distributed according to the probability density. 
Any resulting set of numbers , ⋯ , , drawn independently and identically distributed (i.i.d.), is called 
the  experimental data. The estimate of the physical parameter is called a  measurement. Because 
experimental data are i.i.d., the corresponding probability density function can be expressed as a product:  

 f ; ∏ 	f ; . 
A function mapping the experimental data to one possible value of the parameter set such as  

 : → Θ: ,⋯ , ↦  
is called an  estimator for the th physical parameter, denoted by . The  experimental error in 
the th physical parameter is defined as the root mean square error:  

 / , 
where  is the true value of the  th physical parameter. True values of physical parameters are typically 
unknown, but a mean-square error can be reduced below any desired value by accumulating a sufficiently large 
amount of experimental data, thanks to the law of large numbers. If the mean value of the experimental error 
converges to zero in probability, i.e.,  

 lim→ → 0 inprobability , 
after accumulation of infinitely many statistics, that estimator is called an  unbiased estimator. Among such 
estimators, the one giving the least error is called the  best estimator.  
7.2 Information Theory 
For a probability space Ω, ,  and probability variable  defined on it, information entropy  is 
defined as  

 ∑ 	∈ log . 0 immediately follows from 0 1. For two probability variable ,  whose domains are Ω ,Ω , 
where Ω ,Ω ⊆ Ω, a joint entropy is defined as  

 , ∑ 	∈ ∑ 	∈ ∩ log ∩ , 
where ∩  is a probability to observe  in  and  in , simultaneously. A conditional entropy is 
defined as  

 | ∑ 	∈ ∑ 	∈ ∩ log | , 
Where |  is conditional probability to observe  in  when  in  is obtained. On those entropies, 
following formulae are obtained:  

 , | , 
 | . 
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