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Appendix A  
Formulations of specular transmittance and reflectance of multi-layered structures 
Various methodologies (Tauc, 1972; Tauc, 1979; Heavens, 1991; Azzam & Bashara, 1987; Ward, 1994; 
Dragoman & Dragoman, 2002; Stenzel, 2005; Case, 1983; Peng & Desu, 1994; Birgin et al., 1999; Richards, 1998; 
Chambouleyron & Martínez, 2001; Truong & Tanemura, 2006; Kasap & Capper, 2006; Palik, 1998; Dressel & 
Grüner, 2002; Reitz et al., 1993; Jackson, 1998; Born & Wolf, 2002; Jafar, 2013; Nichelatti, 2002; Dresselhaus, 
2001) were used to derive theoretical formulations of specular transmittance  and reflectance  of 
multi-layered structures at which monochromatic light waves are obliquely incident. The  transfer 
matrix method (Born & Wolf, 2002; Jafar, 2013) is an elegant approach to accomplish this aim. The 
normal-incidence - and - formulas for three- and four- layered structures comprising of dissimilar thin 
and thick layers are less tangled and often written explicitly in terms of optical constants of these layers, which are 
handy in the analysis of their as-measured normal-incidence reflectances and transmittances. 
A.1 -  transfer matrix formulation for transmission and reflection of multi-layered stacks  
The  transfer matrix method, which holds for both - and - polarized light waves (Jafar, 2013), is used 
to derive specular - and - relations for the {layer 1/layer2/layer 3/.../layer }-stacking on which 
monochromatic light waves of wavelength  and spectral bandwidth (SBW) ∆  are incident obliquely. The 

- and - relations are wieldy if first and last layers are semi-infinite air media ( 	0 ≅ 1 
and ∞) and for normal incidence as hitches from wave polarization and angle of incidence become 
irrelevant. If layer  has index of refraction  and is thin with thickness  such that ∆ ≪ λ /2 , and with 
smooth, parallel-plane surfaces, the back and forth light wave reflections inside it and interference between them 
are both significant. So, the problem is treated by a coherent approach where the complex electric field vectors of 
individual reflected and transmitted light waves are added to give net field vectors to find the relevant light 
intensities (Jafar, 2013). For a thick layer with ∆ ≫ λ /2 , multiple internal wave reflections is important 
with no interference effect, and incoherent method is used to sum up algebraically light intensities of all individual 
reflected/transmitted waves to get the - and - formulas (Jafar, 2013). For monochromatic light obliquely 
incident at a stack of 1, 2, 3, …  successive layers with ( 1)-interfaces, the matrix formula relating the 
amplitude of its complex electric field vector to the amplitudes of the complex electric field vectors of reflected 
and transmitted light plane waves has the form (Born & Wolf, 2002; Jafar, 2013)  

 	. 	. 	. 	. 	. …	 	. 	. 	 . ∏ 	 A1  

The amplitudes  and  are, respectively, the components of electric fields of light plane waves moving to and 
reflected from the interface of the first layer of the th-layered stack, while  and  correspond to the 
amplitudes of electric fields of light waves transmitted and reflected from the interface of its last layer. , a 
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characteristic matrix of the th-layered structure, is the product of the th-layer’s coefficient matrix  and 
transmission matrix - that is, the matrix ≡ 	  ( 2), which are described by (Jafar, 2013)  

 	 1 ̂̂ 1 ; 	 00 ;	 	 ̂̂ 	 A2  

The matrix  relates to reflection and transmission coefficients ̂  and ̂  at the -( 1) interface, with ̂ ≡ ̂ , ̂ , , ̂ ≡ ̂ , ̂ , , and ̂ , ̂ , ̂ , ≡ 1, hold for - and -polarized 
waves, while  contains a complex phase angle ≡ 	 ≡ 2π ⁄ 	 cos 2π ⁄ 	 	  due to a single wave traversal in th-layer 
of thickness  and refractive index , where  and  are real quantities equal to  and  for normal 
incidence (Born & Wolf, 2002; Reitz et al., 1993). The geometric meaning of a complex angle of incidence  
cannot be realized in the usual way; yet, it equals to complex angle of reflection and is related to complex angle of 
refraction via a modified form of Snell’s law (Born & Wolf, 2002; Jafar, 2013). Derivation of vector-/scalar- 
quantities related to light reflection and refraction at a two-media interface does not appeal to geometry and their 
obliquely-/normal- incidence formulas remain formally correct, with the net reflection and transmission 
coefficients ̂  and ̂  of a multi-layered stack being defined as  

 ̂ ≡ 																											and																					 ̂ ≡ 		 A3  

The obliquely-incidence intensity reflection and transmission coefficients  and  at interface of adjacent - 
and - layers can be expressed in terms of ,  and their conjugates ∗ and ∗  via Fresnel’s reflection and 
transmission coefficients ̂ , ̂ , ̂ ∗  and ̂ ∗  (Born & Wolf, 2002; Jafar, 2013), with the normal-incidence 

- and - formulas are  

 ≡ ̂ ̂ ∗ 																						and																					 ≡ Re ∗∗ ̂ ̂ ∗  A4  

For normal incidence, the coefficients ̂  and ̂ , and the net expressions for the specular reflectance  and 
transmittance  of the whole th-layered structure can be found from the following formulations (Reitz et al., 
1993; Jackson, 1998; Born & Wolf, 2002; Jafar, 2013; Nichelatti, 2002; Dresselhaus, 2001)  

 ̂ ≡ 		 	 A5  

 ̂ ≡ 	 			 A6  

 ≡ ̂ ̂ ∗ 																																																					and																							 ≡ Re ∗∗ ̂ ̂ ∗ 	 A7  

Where the coefficients ̂ ∗  and ̂ ∗  are the conjugates of ̂  and ̂  of the structure, while ∗ and ∗  are 
the conjugates of the complex indices of refraction  and  of its first (incident) and last ( th-) layers.  
A.2 Specular Transmittance and Reflectance of Three-Layered Structures  
Let layer 2 in a {layer 1/layer 2/layer 3}-stack to be made from linear, isotropic, and non-magnetic material of 
complex index of refraction ≡ 	  and to have finite thickness  and smooth, parallel-plane 
surfaces. If the first and third layers are semi-infinite transparent air media ( ∞ and ≅ 1), we 
have a layer standing freely in air, while if layer 2 is laid on a thick and highly absorbing layer 3, so no light waves 
will be reflected back or come out from it, layer 3 is said to be infinite. Layer 2 may be a coherent thin film or an 
incoherent thick slab.  
A.2.1 Coherent Thin Layer Bounded by two Different Semi-Infinite Media  
For a coherent thin, absorbing layer 2, multiple internal reflections of light plane waves inside it and interference 
between them are both important. Use equations (A1), (A2), and (A3) for 3 to get a couple of formulas for the 
reflection ̂ ≡ ⁄ ̂  and transmission ̂ ≡ ⁄ ̂  coefficients of a 123-structure for light 
plane waves obliquely incident on it from the side of layer 1 (along the 123-route) as  
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 ̂ ̂ ̂̂ ̂ 													and											 ̂ ̂ ̂ 		 A8  

The ̂ ≡ ⁄ ̂  and ̂ ≡ ⁄ ̂  formulas for light waves obliquely incident from the side of 
layer 3 (321-route) can be found by replacing number 1 in equation (A8) by number 3 and vice versa, viz.  

 ̂ ̂ ̂̂ ̂ 																and																 ̂ ̂ ̂ 	 A9  

We can find the -, -, -, and - formulas in terms of ̂  and ̂  or real scalar 
reflection and transmission coefficients  and , defined as ̂ ≡ exp  and ̂ ≡ exp , 
where  and  are real phase-angle changes on wave reflection and transmission at interfaces of -  layers 
(Born & Wolf, 2002; Jafar, 2013). At normal incidence, , , , and  are given in terms of , , , 
and  by (Born & Wolf, 2002; Jafar, 2013)  

 ≡ 										and						 tan 	 		 A10  

 ≡ 										and							 tan  A11  

For normal incidence, ≡ 2π ⁄ 	 2π ⁄  and in terms of , , , ,  (≡ 2δ ⁄ ), 
and δ , the normal-incidence -, -, -, and - formulas of a four-layered structure 
having the {semi-infinite layer 1/thin layer 2/semi-infinite layer 3}-stacking become (Born & Wolf, 2002; Jafar, 
2013)  

 	 A12  

 
	 		 A13  

 		 A14  

 
	 	 A15  

Note that  and  and  and vanish if all layers are transparent ( 0), 
with , but  and  except under constraints, so  if 
layers 1 and 3 are transparent ( 0), irrespective of whether layer 2 is transparent or absorbing ( 0).  
A.2.2 Incoherent Thick Layer Surrounded by two Dissimilar Semi-Infinite Media   
Formulas for normal-incidence specular reflectance and transmittance of an incoherent thick layer 2 bounded by 
two semi-infinite layers 1 and 3 can be found from the -, -, -, and - equations 
(A12) to (A15) by eliminating  effect of interference between back and forth wave reflections at the layer 
2-interfaces with its adjacent media. This may be attained by treating the phase-change angle  as an arbitrary 
random angle and averaging transmittance and reflectance formulas via integrating them with respect to  for all 
its values between ∞ and ∞ (Richards, 1998), which is an awkward procedure. Instead, we can derive them 
using a much less tangled approach, based on algebraic summation of individual intensities of reflected and 
transmitted light waves at interfaces of the incoherent layer 2 with its semi-infinite adjoining layers 1 and 3 
(Richards, 1998; Born & Wolf, 2002; Jafar, 2013; Nichelatti, 2002; Dresselhaus, 2001). The results are cited 
below for light waves travelling along 123- and 321-routes as  

 	 	| | | || ̂ | | ̂ | 	 	 	 A16  

 | ̂ | 	 | | 	| ̂ | 	| || ̂ | | ̂ | 	 	 	 		 A17  
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	| | | || ̂ | | ̂ | 	 	 	 			 A18  

 | ̂ | 	 | | 	| ̂ | 	| || ̂ | | ̂ | 	 	 	 	 A19  

A.3 Four-Layered Structures With two Stacked Layers Bounded by two Semi-Infinite Media  
If part of light waves passing to layer 3 of a three-layered stack emerges into a semi-infinite layer 4 ( ∞) to 
form a four-layered stack, two types of which worth debating. One in which layers 2 and 3 are coherently thin with 
dissimilar absorption coefficients  and . The other consists of a coherent thin layer 2 of thickness  and an 
incoherent thick layer 3 of thickness  (≫ ) as a dielectric or semiconducting thin film grown on a thicker 
transparent substrate, both of which bounded by air. This {air/thin film/thick substrate/air}-stack is common in 
most thin film optical studies.  
A.3.1 Two Coherent Thin Stacked Layers Confined Between two Semi-Infinite Layers  
When layers 2 and 3 are coherently thin and bounded by semi-infinite first and fourth layers, equations (A1), (A2), 
and (A3) can be applied to this 1234-structure ( 4) to get its obliquely-incident complex Fresnel reflection and 
transmission coefficients ̂  and ̂  in terms of ̂  and ̂ , at the three interfaces of its adjacent  and  
layers, and of ≡ δ 	δ  and ≡ δ 	δ  produced upon a single traversal of light waves inside the 
coherent thin layers 2 and 3, respectively, as given below  

 ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂̂ ̂ ̂ ̂ ̂ ̂ ̂ 	 A20  

 ̂ 	 	 	 	̂ ̂ ̂ ̂ ̂ ̂ ̂ 	 A21  δ 2π ⁄ , δ 2π ⁄ , 2δ 4π ⁄ , and 2δ 4π ⁄  at normal 
incidence and the formulas of transmittance ≡ Re ∗ ∗⁄ 	 ̂ 	 ̂ ∗  and reflectance ≡ ̂ 	 ̂ ∗  
of this four-layered stack are much involved and cannot be applicable in algebraic methods if they are expressed 
explicitly in terms of complex indices of refraction of its layers. Yet, these theoretical - and - formulas 
can be used in analysis of measured reflectance and/or transmittance data using conventional numeric iterative 
curve-fitting techniques.  
A.3.2 Air-Supported Stack of a Coherent Thin Film Placed on an Incoherent Thick Absorbing Slab  
The normal-incidence -formula of an air-supported {thin film/thick substrate}-stack is not much intricate 
and can be used in both analytical and curve-fitting techniques. One might get this formula by substituting the ̂ -equation (A21) and its complex conjugate ̂ ∗  into ≡ Re ∗ ∗⁄ 	 ̂ 	 ̂ ∗ , with 1, 
and eliminate effects of interference between multiple reflections in the incoherent thick substrate via averaging 
the -integral over random phase angles δ . This job is arduous, but for such a {semi-infinite layer 1/thin 
layer 2/thick layer 3/semi-infinite layer 4}-stack, one can adopt more irresistibly methodological and analytical 
approaches (Jafar, 2013) to derive the general formulations for both of its specular  and  in 
terms of the intensity reflection and transmission coefficients at the respective interfaces of its adjacent 
neighboring layers. Alternatively, we can simply re-number the layers of a three-layered structure composing of an 
incoherent thick layer bounded by two semi-infinite layers to turn into a four-layered structure if we replace its 
layer 2 with a stack of a semi-infinite layer 1 and a coherent thin layer 2 to form a 1234-stacking. Replace , 

, , , , , , and  appear in equations (A16) to (A19) by , 
, , and  of equations (A12) to (A15) via altering their numeric permutations as: number 1 

on the left is replaced by 12 and number 1 on the right by 21, while numbers 2 and 3 are re-named 3 and 4, 
respectively. Whatever the adopted derivation approach, the resulting - and - formulas are valid 
for normal- or obliquely- incidence light waves travelling from the side of layer 1 and can re-written in compacted 
forms in terms of the various intensity reflection and transmission at the interfaces of adjacent layers of this 
four-layered structure as (Jafar, 2013)  
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	 		 A22  

 	 		 	 		 	  A23  

The - and - formulas are unlike but under strict conditions, while 	if layers 1 
and 3 are transparent whether layer 2 is absorbing or not. If light waves travelling in layer 1 hit its interface to 
coherent thin layer 2, multiple internal reflections inside it and their interference are significant. Part of waves will 
be reflected back into layer 1 and the other will be transmitted to incoherent thick layer 3, where multiple internal 
reflections occur with no interference, before emerging out to layer 4 without back reflections. Inspection of the 

- and - equations (A22) and (A23) of this four-layered system ensures the need, in addition to 
- and - equations (A12) and (A13), derived for the case when light waves are travelling from layer 

1 to layer 2, then to layer 3 (123-route), the formulas of  and  given in equations (A14) and (A15), 
derived for the case when light plane waves are passing from layer 3 to layer 2 to layer 1 (321-route). This is of key 
importance as light waves propagating through the incoherent thick layer 3 execute multiple reflections at its 
interfaces to layers 2 and 4, so that light is travelling in layer 3 in both forward and backward directions- that is, 
123- and 321- routes, for which  and .  
For an air-supported {thin layer 2/thick layer 3}-stacking, 1, 0, and the complex indices of 
refraction of layers 2 and 3 are ≡  and ≡ , respectively. The intensity reflection  
and transmission  coefficients at the interface of thick layer 3 with the semi-infinite layer 4 can be found in 
terms of their indices of refraction; however, to be consistent with the formulas of , ,  and 

, we will use the real scalar reflection and transmission coefficients  and  that are related to 
complex Fresnel reflection and transmission coefficients ̂  and ̂  at interface of layer 3-layer 4 (34-interface) 
by ̂ ≡ exp 	  and ̂ ≡ exp 	 , where  and  are the phase-change angles produced 
upon reflection and transmission at this interface. In effect, the normal-incidence intensity reflection and 
transmission coefficients at the 34-interface are given by  

 																														and																					 	 A24  

The -equation (A23) that describes spectral normal-incidence specular transmittance of an ideal 
four-layered structure of the {air/coherent thin film/incoherent thick substrate/air}-stacking can be written, with 
the wavelength dependence of its parameters implicit, in terms of optical absorption coefficients  and  of its 
film and substrate, respectively, and of the various scalar reflection and transmission coefficients  and  at 
the different interfaces of its adjacent  layers in a general form as illustrated below  

 	 	 	 		 	 		 	 	 	 	 A25  

One can derive an expression for the specular reflectance , which is much more unwieldy and with which 
we are not here interested. To analyze the  data of an air-supported four-layered stack, scalar 
reflection and transmission coefficients , , , , , and  at interfaces of adjacent layers and 
phase-change angles in -equation (A25) had to be expressed in terms of real and imaginary parts of their 
complex indices of refraction , , , and , using equations (A10) and (A11). So, the -formula 
cannot be used in algebraic handling of  data at a wavelength , but the  spectrum can be 
curve-fitted to this -formula, with the effect of absorption in film and substrate being taken into account. 
As optical constants of a sample may vary with , the problem is much tortuous because one must insert in the 
transmittance formula a proper dispersion relation.  
A.3.3 Normal-Incidence Transmittance of {Air/Thin Film/Thick Transparent Substrate/Air}-Stacks  
For an {air/thin layer 2/thick transparent layer 3/air}-stack at which light is incident normally, the 

-equation (A25) becomes simpler as 1, 0, 0. This is the case of a 
material thin film grown on a dielectric substrate whose absorption edge is below the strong absorption region of 
the film. Equation (A25) reduces to an expression that describes spectral normal-incidence specular transmittance 
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; , , , , which can be employed in both algebraic and curve-fitting techniques, the 
miniature details of its mathematical derivation has been carried out elsewhere (Jafar, 2013). The symbols , , , 

, and  are used instead of , , , , and , respectively, so the normal-incidence ; , , , -expression can be written, with their -dependence being omitted for clarity, in a final compact 
form (for ) as (Swanepoel, 1983; Jafar, 2013)  

 ; , , , 		 	 		 A26  

The absorbance parameter ≡ exp α	 , where α ≡ 4	π	 ⁄ , with the constants , ,  and  being 
written in terms of ,  and  via the expressions given below 

 16	 	 A26 a  

 1 ∗ 1 ∗ 	 	  A26 b  

 		 1	 	 ∗ 	 	 	 2	 1 ∗ 2 cosφ 2	 	 	 1 ∗																	 1	 	 ∗ 2 sinφ 																																																																																																																								 A26 c  

 1 ∗ 1 ∗ 	 	  A26 d  

Here, φ (≡ 4π ⁄ ) is the interference phase-change angle produced upon a double normal-incidence traversal 
of light waves inside the coherent thin film of this air-supported {film/substrate}-stack, with equation (A26) can be 
used in numeric analysis of its measured transmittance using curve-fitting programs with dispersion models for the 
optical constants of its film and substrate, and in numeric analysis based on the Pointwise Unconstraint 
Minimization Approach (PUMA) software, where no dispersion relations are needed in prior (Birgin et al., 1999). 
To perform algebraic analysis of transmittance of air-supported {thin film/thick transparent substrate}-structures, 
equation (A26) has been simplified further by proposing some justified assumptions and reasonable model 
approximations to get a )-formula that enables one to cognize their optical behavior and gain important 
conclusions from their observed transmittance spectra. If 0 and  at wavelengths 
above the substrate’s absorption edge, and ≪  and 	~	0 in the transparent and weakly absorbing regions 
of the film, the specular transmittance of such a four-layered stack can be described by a ; , , , -formula 
that is usually quoted in a neat form (for ) as (Swanepoel, 1983; Jafar, 2013)  

 ; , , , 		 	 	 	 A27  

  16	 	 		 	 A27 a 		 1 	∗   A27 b  

 2	 1 ∗  A27 c  

 1 ∗  A27 d  

Equation (A27) forms the rigorous basis for the analytical envelope method developed by Swanepoel for 
partially-absorbing uniform films deposited onto thick transparent substrates, whether their indices of refraction 
were taken to be constant (non-dispersive) or dispersive. Putting cos 1 in equation (A27), it reduces to two 
independent equations that describe the maximum  and minimum  values of its normal-incidence 
transmittance ; , , ,  which are often described by the forms (Swanepoel, 1983; Jafar, 2013)  

 		 	 	 																				and													 		 	 	 	 A28  

When interference-fringe maxima and minima are superimposed on the as-measured normal-incidence 
transmittance spectrum of an air-supported {film/substrate}-stack,  and  represent the -values at the 
tangent points to these maxima and minima, respectively (Swanepoel, 1983). Equation (A28) forms the basis of 
the analytical procedures of the envelope method, where one has to construct two reliable continuous curve-like 
functions in  from the as-measured tangent - and - values that prudently bound observed transmittance 
extremes. The normal-incidence specular transmittance λ  and reflectance λ  of an incoherent thick 
transparent substrate standing freely in air can be shown, using Equations (A10), (A11), (A16), (A17), and (A24), 
to be related to its index of refraction  as (Swanepoel, 1983; Jafar, 2013)  
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 λ 																						and												 λ 1 λ 	 		 A29  

 1 / ∗ / 	 A30  

In the transparent region of an ideal air-supported {film/substrate}-stack, 0 ( 1) and -expression is 
equal to -equation (A29)- that is, transmittances of film and its substrate coincide. For small SBW, the 
deviation of as-measured film’s transmittance maxima from  with decreasing wavelength denotes onset of 
optical absorption in the film (Swanepoel, 1983; Swanepoel, 1984). If the film is non-uniform or suffers from 
surface roughness, its -formula can be re-formulated, but handling its spectra is not easily skilled. In 
transparent or weakly-absorbing region of this film, Equations (A27) and (A28) can be modified to account for 
small film non-uniformity and analytical methods can be used to treat its optical response (Swanepoel, 1984).  
Appendix B  
Dielectric Behavior and Optical Absorption of Material Solid Layers  
All material media consist of atoms, composed of atomic nuclei and bound electrons, which can be affected by the 
presence of an electric field such that the positive and negative charged particles are pushed apart in opposite 
directions by the force caused by the applied electric field. In pure dielectrics, valence electrons are tightly bound 
to atoms and will be displaced, relative to respective nuclei, slightly in a weak static electric field. A net electric 
field is thus created in the solid and the restoring forces set up by the change in atomic charge arrangement will 
limit these field-induced shifts. The distorted charge distribution around atoms of a solid can be approximated by a 
collection of atomic dipoles and it is said to be polarized. Molecules in a polar solid form intrinsic electric dipoles 
that are more or less free to rotate and oriented in the solid under thermal agitations and applied electric fields, 
resulting in a net permanent electric dipole moment. In ionic non-polar solids, electric dipoles result from shifts in 
the positions of oppositely charged ions in the presence of an electric field. Field-induced distortions of electronic 
charge distribution around atoms in an ionic or a polar solid also result in nonvanishing dipole moments. However, 
when a conductor (metal) exposed to a static electric field, its nearly free electrons will screen the induced static 
field inside it. When an electromagnetic field is, however, imposed to a metal or dielectric solid, its permanent 
electric dipoles, ion-pairs, bound-electrons, free electrons will oscillate in response as the ensuing oscillating 
electric fields acting at their sites and its electric response is totally different from its electrostatic behavior 
(Christman, 1988; Rogalski & Palmer, 2000; Palik, 1998; Dressel & Grüner, 2002; Reitz et al., 1993). Both 
reflection and refraction of light in a solid are associated with oscillations of microscopic dipoles, as are its 
absorption and dispersion of its optical constants. We shall address optical behavior of linear, isotropic, and 
non-magnetic solids exposed to weak electromagnetic radiation with ultraviolet frequencies and below. Thus, their 
wavelengths are much larger than interatomic spacing so diffraction features are not important, and a macroscopic 
classical description of its ensuing dielectric and optical response is quite adequate and comparable to the results 
obtained from a rigorous quantum-mechanical treatment (Rogalski & Palmer, 2000; Palik, 1998; Dressel & Grüner, 
2002; Reitz et al., 1993).  
B.1 Relations Between Electric Quantities for Static and Time-Dependent Electric Fields   
Macroscopically, the overall effect of an electromagnetic field interacting with a substance can be pictured, instead 
of treating each of its field-induced electric dipoles, as a displacement of its entire positive charge relative to 
negative charge, which creates its own electric field outside and inside it (Reitz et al., 1993). In general, the 
macroscopic electric field  inside a polarized sample differs from local electric field  acting at the site of 
a dipole inside it, which determines moments of its electric dipoles and their alignments. Each electric dipole ℓ 
will have a nonvanishing average dipole moment ℓ, with the vector sum ∑ ℓ of all dipole moments gives a net 
macroscopic electric polarization vector  inside the polarized sample, defined as the total electric dipole 
moment per unit volume of the sample, which depends on  inside it, with part of it being produced by the 
polarized sample itself (Reitz et al., 1993). A relation between  and  in a polarized sample is only 
wanted to link interactions of its electric dipoles with electromagnetic field to its resulting macroscopic dielectric 
behavior, related to . so to describe the optical response of a sample to an applied weak electromagnetic field, 
no need to do explicit calculations of its electric dipole moments, but their connection to the applied field and the 
formulas of its microscopic electric response will suffice.  
The electric polarization of a solid depends not only on the total electric field  inside it, but also on its 
constituents. Macroscopically, the dielectric behavior of a material in response to  is identified by a point 
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relationship, called the constitutive equation , so if  varies from one point  to 
another inside it, then  will vary accordingly. For materials with no permanent electric polarization 
(Rogalski & Palmer, 2000; Palik, 1998; Dressel & Grüner, 2002; Reitz et al., 1993),  vanishes for 0, and if a material is isotropic with alike properties in all directions, then its polarization vector has 
the same direction as the electric field causing it. Many polycrystalline and amorphous solids are isotropic, but few 
substances may be electrically polarized easier in certain directions than along others (anisotropic) (Reitz et al., 
1993). If sample properties do not vary with its composition or position, it is called homogeneous. The static 
polarization of a linear, isotropic, and homogeneous material is proportional to an applied weak static electric field, 
with constant of proportionality is field-independent and only typical of the material, via a linear constitutive 
equation between  and its macroscopic polarization  (Christman, 1988; Rogalski & Palmer, 2000; Palik, 
1998; Dressel & Grüner, 2002; Reitz et al., 1993; Jackson, 1998)  

 ≡ 	χ	  B1  

where  is the free-space electric permittivity. The dimensionless constant of proportionality χ is called the 
static macroscopic electric susceptibility of the substance, which depends on its microscopic structure and 
experimental conditions such as ambient temperature. Another constitutive equation is that relating  inside a 
linear, isotropic, and homogenous substance to the macroscopic electric displacement vector , viz. (Christman, 
1988; Rogalski & Palmer, 2000; Palik, 1998; Dressel & Grüner, 2002; Reitz et al., 1993; Jackson, 1998)  

 ≡ ≡ 1 χ 	 ≡ 	  B2  

The dimensionless constant of proportionality  is the static macroscopic relative electric permittivity (dielectric 
constant) of the substance, which do not convey any information not available in its susceptibility χ. In equation 
(B1),  is in part due external charges added to a dielectric sample and in part due to electric polarization of 
itself; thus, if an external electrostatic field  is imposed on it, we cannot compute  directly from equation 
(B1), as this external field will polarize the sample, and this polarization will produce its own internal electric field, 
which then contributes to the total electric field inside it, and this in turn modifies the polarization, and so on- that 
is, we seem to be in a bind. An explicit mathematical formulation for  or  inside a polarized sample is, 
however, not required for studying its dielectric behavior, but in general a connection between its macroscopic 
electric susceptibility and microscopic structure is required, and this demands a connection between the actual 
(local) electric field  responsible for inducing electric dipoles at the point  inside it and  that is 
related to its macroscopic electric polarization . The linear constitutive equations relating  and  to 

 in a linear, isotropic polarized sample via a proportionality constant are only valid for weak electrostatics 
or slowly time-varying fields, but not for general time-varying electric fields, where the local and macroscopic 
electric fields will also of same time dependency. The time-dependent ,  is not linearly related to ,  
via a proportionality constant, but involves in an algebraic relation between ,  and ,  at point  
inside the polarized solid that facilitates linking its microscopic and macroscopic dielectric functions; however, 
calculation of ,  at the site of an electric dipole in a polarized solid is quite difficult, but for some solids 
there is an approximate formula that links , , ,  and , , which, for linear and isotropic cubic 
crystalline or highly-symmetric amorphous solids, is given by (Reitz et al., 1993; Jackson, 1998)  

 , ≅ , , ⁄ 	 B3  

where  is a local-field correction factor accounting for mutual interactions among all electric dipoles in a solid, 
with 0 for metals and 1/3 (Lorentz local-field correction) for isotropic, nonpolar dielectrics (Reitz et al., 
1993).  
B.2 Physical Origin of Dispersion Phenomena and Loss Mechanisms in Solids  
An optical constant of a linear material sample is its index of refraction λ  that may vary with spectral 
wavelength λ of light incident on it, a phenomenon called dispersion. Most materials behave as nonmagnetic 
( ≅ ) at optical frequencies as their magnetic properties are significant in other frequency regions. In addition 
to dispersion, a light wave may experience attenuation upon interacting with the solid and a change in its properties 
may occur via a variety of loss mechanisms, some of them are active at wavelengths above a threshold wavelength λ  typifying its fundamental absorption edge, while few dominate below λ ; thus, we often characterize such a 
dispersive, non-magnetic, and lossy substance by a complex index of refraction λ ≡ λ 	 λ , where λ  is its index of refraction and λ  its extinction coefficient, which determines its absorption that can also be 
described by the so-called absorption coefficient λ , inter-related to λ  as λ ≡ 4π λ λ⁄  or, in terms of 
angular frequency ω (≡ 2 λ⁄ ) of the monochromatic light incident on the sample, ω ≡ 2ω ω ⁄ , where 
 is the speed of light in free space.   
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Loss in energy of light interacting with a solid at frequencies below its λ  may arise from absorption by lattice 
vibrations (phonons) and electronic transitions among its narrow-gaped valence bands (Christman, 1988). 
Absorption by excess charge carriers bounded to defects, electrons (holes) of donors (acceptors), and free carriers 
(intraband electronic transitions) are also effective in some solids at long wavelengths in the infrared, while energy 
loss by oscillating permanent dipoles in dipolar solids is sizable (at microwave frequencies and below) and 
absorptions by oscillating ion-pairs in ionic solids contribute up to an infrared frequency (Christman, 1988). 
Absorption arising from localized bandgap tailing energy states occurs in structurally-disordered films at 
wavelengths longer than λ , transitions to energy states of bound electron-hole pairs (excitons) are observed at 
low temperatures (Christman, 1988), while optical loss by light scattering is important in inhomogeneous and 
rough samples. Loss and dispersion dominating optical behavior of a solid beyond its absorption edge are mainly 
due to valence-band to conduction-band (interband) electronic transitions, which can also result, to less extent, 
from excitations of core electrons by deep ultraviolet and X-ray frequencies (Christman, 1988). Optical and 
dielectric responses of a linear, isotropic, and non-magnetic sample are often addressed by the dependence of its 
macroscopic optical constants λ  and λ  on spectral wavelength  (angular frequency ) or by the 

-dependency of the real part  and imaginary part  of its macroscopic complex dielectric constant ̂ ≡ 	  or the real χ  and imaginary χ  parts of its macroscopic complex electric 
susceptibility ̂ ≡ χ 	χ ≡ ̂ 1 ≡ 1 . Since , ω and , κλ presentations depict the same optical (dielectric) response of a substance to electromagnetic radiation interacting 
with it, there must be an algebraic link between its ̂ or ̂ and its , which are occasionally called optical or 
dielectric functions. Regardless of the physical mechanism responsible for polarization and absorption phenomena 
in a solid, this link is given, for a linear, isotropic, nonmagnetic, and lossy substance, by formula  

 ≡	 ̂ ̂ 1 B4  

Equation (B4) can be simplified to give inter-relations between optical constants  and  or  of a sample and 
its dielectric functions  and  that are depicted, with their dependence on  or  being implicit, as 

 ≡ ;																																													 	≡ 2	 	 ; 																												 ≡ 	 ⁄  B5  

 
	 	 	 / ; 																																 	 	 /

 B6  

B.3 Link Between Microscopic Electric Polarizability and Macroscopic Dielectric Functions  
To clarify the nature of dispersion and absorption mechanisms responsible for spectral dependence of optical 
functions of a substance, formulations that describe them in different wavelength ranges are needed. Empirical 
formulas were used to depict -dependence of its  and  like the Cauchy and Smellier dispersion 
relations, which work well for some substances in certain spectral regions (Tan, 2006; Tan et al., 2007; Tan et al., 
2006; Christman, 1988; Reitz et al., 1993). Yet, theoretical models based on the physics of electric polarization and 
optical absorption in a substance upon its interaction with electromagnetic fields are more informative and these 
models usually yield formulas for the frequency dependency of its  and  dielectric functions, the 
derivation of which demands a link between its microscopic and macroscopic electrical quantities, and may require 
a quantum-mechanical treatment of the problem and the fundamental Kramers-Kronig relations (Reitz et al., 1993; 
Jackson, 1998). Microscopic response of a linear, lossy sample to a time-varying electric field is often expressed in 
terms of a collective effect of microscopic complex electric polarizabilities ≡  of each 
field-induced electric dipole of type  in its primitive unit cell, with  and  being its real and imaginary 
parts, respectively, with 0 when it is exposed to electrostatic or slowly time-varying electric fields, where 
its macroscopic dielectric functions are constants and coupled to the sum of electric polarizabilities of all its 
microscopic electric dipoles by the Clausius-Mossotti relation (Christman, 1988; Rogalski & Palmer, 2000; Palik, 
1998; Dressel & Grüner, 2002; Reitz et al., 1993; Jackson, 1998); however, if the substance is excited by rapidly 
time-varying electric fields, this relation can be generalized to account for the complex-functional behavior of 
macroscopic and microscopic electric functions and their frequency dependency. The formulation of  of a 
field-induced dipole in a substance exposed to time-dependent electric fields can be developed by hypothetical 
microscopic models for electric polarization and loss mechanisms (Christman, 1988; Rogalski & Palmer, 2000; 
Palik, 1998; Dressel & Grüner, 2002; Reitz et al., 1993; Jackson, 1998). If each basis of type  has a concentration 
per unit volume  in a primitive unit cell of a polarized substance where t  is different from t  
inside it, its ̂  can be linked to  as (Christman, 1988; Rogalski & Palmer, 2000; Palik, 1998; Dressel 
& Grüner, 2002; Reitz et al., 1993; Jackson, 1998)  
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 	∑ 	 B7  

On the other hand, for the Lorentz local-field correction 1/3 , equation (B7) reduces to the 
frequency-dependent generalized form of the Clausius-Mossotti equation cited below (Christman, 1988; Rogalski 
& Palmer, 2000; Palik, 1998; Dressel & Grüner, 2002; Reitz et al., 1993; Jackson, 1998)  

 	∑ 	 B8  

As the optical index of refraction √  for a linear, nonmagnetic dielectric, the Clausius-Mossotti relation 
reduces, for one atom in a primitive basis, to the so-called Lorentz-Lorenz equation (Christman, 1988; Rogalski & 
Palmer, 2000; Palik, 1998; Dressel & Grüner, 2002; Reitz et al., 1993; Jackson, 1998)  

 ≅	 	 B9  

Neglecting the difference between local and macroscopic electric fields ( 0) in a polarized sample with only 
one basis atom in its primitive cell, equation (B7) simplifies to approximate forms for  and  as  

 ≡ 1 	 ⁄ 																		and																									 ≡ 	 ⁄ 		  

B.4 Basic Formulations for Frequency Response of Linear, Dispersive, and Lossy Media  
For optical response of a linear, isotropic, nonmagnetic, and lossy sample exposed to time-dependent weak electric 
fields, there is no linear constitutive relation between the macroscopic electric field and field-induced electric 
polarization via a time-dependent constant of proportionality as that described in Equation (B1) for the 
electrostatic case- that is, a relation of the form ≡  is not applicable. Also, the derivation of 
Equation (B7) or (B8) is not straightforward as in the static case. In fact, the microscopic electric polarizability 

 of a field-induced electric dipole in such a substance and its macroscopic dielectric constant ̂  exhibit 
frequency dependency, the actual form of which is not simple and is material dependent. We shall adopt an 
approach that is based on the concepts of linearity and causality of optical response of dispersive media excited by 
oscillatory electromagnetic fields to accomplish expedient linear relations in frequency domain (not in time 
domain) between these driving (input) fields and their dielectric response functions (Reitz et al., 1993). Let a 
monochromatic electromagnetic radiation wave of an angular frequency  whose electric field vector , , at 
position , varies sinusoidally in time  to travel in a linear, isotropic, dispersive, and lossy substance, whose 
optical response is not affected by the electromagnetic field vector , . There is seldom a notable overlap in 
the frequency range where optical and magnetic responses of a substance to electromagnetic fields are strongly 
frequency dependent; thus, its optical response can be treated as if it is nonmagnetic (μ ≅ μ ). A real dispersive 
medium is said to be linear if its response (output)  at time  to an external time-dependent excitation (input 
or driving force)  is described by an expression that carries with it a nonlocal time connection between  
and  such that  at the time  depends on the excitation agent  at times other than  and the input 

 must not produce an output  for times less (earlier) than , viz. (Reitz et al., 1993)  

 	 √ 	 	 	d  B11  

where  is called its response function that is independent of the strength of the input t ; otherwise, terms 
containing higher orders of the applied input may be important and the medium is nonlinear. Equation (B11) is a 
linear relation between an output  and input  in the sense that if  is multiplied by a constant,  
is multiplied by that constant, and if two inputs are applied concurrently the output is the sum of the two outputs 
produced by these inputs separately. Also, this linearity aspect helps one to use the superposition principle to get 
the results of applying several simultaneous inputs to such a linear medium, or to determine its response to a 
complicated input by decomposing it into simpler excitations and adding the resulting individual responses.  
For a real linear and dispersive system, however, the applicability of Equation (B11) is limited, because of 
causality, to cases where 0 for 0, with a finite input produces only a finite output and an input at 
time  yields an output at time  that decreases steadily at large values of , so that  is square 
integrable in the time interval ∞ ∞. Its linearity leads to two consequences. First, the Fourier inverse 
transform functions of the time-varying functions , , and , denoted by the complex 
frequency-dependent quantities , , and , respectively, are linearly linked together via a 
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frequency-dependent proportionality constant, the Fourier inverse transform response function  as (Reitz et 
al., 1993; Jackson, 1998) 

 	 	  B12  

The second consequence of the linear Equation (B11) is that the time-dependent input  and output (response) 
 of a linear, dispersive medium are related by a time-dependent ordinary linear differential equation of 

degree  with a set of constant coefficients  of the form (Reitz et al., 1993)  

 ∑ 	 	 	 	 B13  

with the number  of the constant coefficients  is determined by the physical mechanisms typifying the 
medium. This th-degree differential equation reduces to a formula that linearly relates the complex Fourier 
inverse transform functions  and  of the input and output functions  and  as (Reitz et al., 
1993)  

 ∑ 	  B14  

Combine Equations (B12) and (B14) to get a complex frequency-dependent Fourier inverse transform response 
function  of the time-dependent response function  of a linear, dispersive medium as  

 ∑ 	  B15  

As 0 for 0,  is physically meaningful for 0 only, and boundedness condition underlying 
its square integrability in the time-domain interval ∞ ∞ implies that its Fourier transform inverse 
response function ≡  is also square integrable in the frequency-domain ∞ ∞, 
where  and  are its real and imaginary parts, respectively. Also, a real physical input produces a 
real output and  must be real for all real values of  even if the functions  and  are not real; thus, a 
physical linear dispersive system with a real, square-integrable, and causal time-dependent response function 

 imposes a time-reversal symmetry condition on its Fourier inverse transform response function  and 
its conjugate ∗  such that (Reitz et al., 1993; Jackson, 1998)  

 ∗ 	 					or							 							and								  B16  

Equation (B16) implies that the real  and imaginary  parts of  at negative values of  are 
related to their values at positive -values, so only positive frequencies are used in formulas of response functions 

 and  of a linear, dispersive, and lossy system, which are related by the Cauchy principal pair of 
integrals (Reitz et al., 1993; Jackson, 1998)  

 	 	d 	 B17  

 	 	d 	 B18  

The Cauchy principal pair of integrals in Equations (B17) and (B18) do not depend on what kind of linear system 
is considered; it can be mechanical, quantum mechanical, electrical circuitry, dispersive substance, or otherwise, 
so long as a real, square-integrable and causality time-dependent linear response function  and its complex 
frequency-dependent Fourier inverse transform response function  are allocated to this system.  
B.4.1 Electric Response Functions for Linear, Isotropic, Non-Magnetic, Dispersive, and Lossy Substances 
Exposed to Weak Electromagnetic Fields   
Linearity and causality formulations described above can now be applied to electromagnetic fields interacting with 
a linear, isotropic, homogeneous, non-magnetic, and dispersive medium with losses. The input in the linearity 
Equation (B11) is a time-varying electric field vector ,  associated with an electromagnetic wave at time  
and position  in the medium, with its output can be the spatially- and time- dependent macroscopic electric 
displacement , ≡ , , , polarization , , or current density , . The time-dependent 
macroscopic electric polarization ,  inside medium is linearly related to ,  via a time-dependent 
response function ,  as  

 , 	 √ 	 , 	 , 	d 	 B19  
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There is a spatial local connection between input electric field ,  and output electric polarization , , but 
they are nonlocally connected in the time domain, with their spatial dependencies being negligible for a sample 
with minor inhomogeneity, so its macroscopic properties do not vary significantly with position; thus, in terms of 
their time-dependent components  and , Equation (B19) reduces to the causality time-dependent 
linearity formalism  

 	 √ 	 	 	d  B20  

The electric response function  does not depend explicitly on exciting electric field , it is real for all 
times	 , so 0 for 0, and is square-integrable in the time interval 0 ∞. Equation (B20) tells 
us that  depends not just on the value of  at time , but on the value of  at all past times; there is no 
simple quantity that can properly be called the electric susceptibility of a linear lossy substance exposed to 
electromagnetic fields in the time domain; electric susceptibility is, however, a frequency domain concept. Yet, the 
frequency-dependent complex Fourier inverse transforms  and  of the time-dependent electric input 
field  and output polarization  can be related via their respective Fourier inverse transform integrals 
(Reitz et al., 1993; Jackson, 1998) to get a linear relation as that of Equation (B12), with the complex Fourier 
inverse transform response function  of the time-dependent response function  is now a scalar 
proportionality constant at a certain frequency - that is, 	 , with ≡	  whose real and imaginary parts  and  satisfy reality and casualty Equation (B16).  
The electric response of a linear, isotropic, dispersive, non-magnetic lossy substance to a time-dependent weak 
electric field  can be envisaged using the electric response functions , , and  associated 
with the electric polarization , displacement , and current density  outputs. The respective complex 
Fourier inverse transform response functions , , and  of this substance are correlated to each 
other and to its electric and dielectric functions, whose real and imaginary parts are linked together by the Cauchy 
principal integrals of Equations (B17) and (B18) or the fundamental Kramers-Kronig (KK) dispersion relations. 
The complex Fourier inverse transform polarization response function  of a sample is related to its χ ≡ χ χ  as ≡ ̂ , with χ ≡ ϵ 1 and χ ≡ ϵ  are connected by 
the KK-integral relations (Reitz et al., 1993; Jackson, 1998)  

 χ 	 	d 																				χ 	 	d 	 B21  

 ϵ 1 	 	d 												 	 	d  B22  

For a conducting substance, where free electrons contribute to its dc conduction, the electric susceptibility exhibits 
singularity at 0 and though this problem can be overcome, its frequency response to a weak exciting 
time-dependent electric field  is usually formulated in terms of its electrical conductivity to avoid problems 
with singularities (Reitz et al., 1993). Here, the time-dependent conduction current density  is taken to be the 
response (output) to the input  and its electrical conductivity  is the response function. The 
corresponding dispersion relations can be derived using our linearity-causality approach in terms of a Fourier 
inverse transform response function pictured by a macroscopic complex electrical conductivity ≡ σσ ≡ ̂  satisfying the linear relation , with the results hold for conductors as 
well as insulators, since  has no singularity at 0. The real and imaginary parts σ  and σ  of 

 are interrelated by the KK-integral relations (Reitz et al., 1993)  

 σ 	 	d 																											σ 	 	d 	 B23  

The very general validity of fundamental Kramers-Kronig dispersion integrals stems from the fact that if, for 
example, the real part χ  of the complex electric susceptibility ̂  of a linear dielectric substance is known 
for all real values of exciting frequencies in the range 0 ∞, then its imaginary part χ  can be 
calculated from the second KK-integral relation given in Equation (B21), and conversely. Further, it deserves to 
note here that the KK integrals of the real and imaginary parts of the macroscopic electric and dielectric functions 
of a linear, dispersive substance with losses as well as those of the real and imaginary parts of its respective 
macroscopic optical functions yield some general relations, called sum rules (Reitz et al., 1993; Jackson, 1998), 
that can be utilized to test consistency of approximations adopted in computation and measurements.  
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B.4.2 Classical Forced-Damped Harmonic Oscillator (Lorentz) Dispersion Model  
There is no single dispersion function that describes the optical and dielectric response of an excited solid in the 
entire frequency range as these loss mechanisms contribute differently to its electric polarization and in diverse 
frequency regions. The actual form of contributions of individual dispersion functions is quite unwieldy and in real 
world is difficult to realize. However, most of the physics of dispersion and loss in a solid exposed to weak 
electromagnetic fields can be understood from a simple classical model that accounts for its electric response to 
such fields in the presence of internal interactions that retard the motions of the field-induced electric dipoles. In 
practice, a linear combination of different simple models is often adopted to describe the overall dispersion and 
loss of a substance over a wide frequency range of the electromagnetic spectrum.  
An intuitive guide to find electric response function of a linear dispersive sample exposed to an oscillating weak 
electric field ,  is to treat an electric dipole as a classical forced-damped harmonic oscillator and solve an 
ordinary linear differential equation describing its motion (Christman, 1988). In a dielectric, each electron of an 
atom having  bound electrons, each of charge  and mass , around its nucleus, is often pictured as a charged 
particle vibrating (oscillating) relative to an equilibrium position  under the action of a linear restoring force 
proportional to its displacement  from  and a linear resistive force proportional to its instantaneous velocity , ≡ ⁄ . The charged oscillator under the action of restoring forces only executes indefinite sinusoidal 
oscillations with the same amplitude and same natural frequency , which is determined by several repulsive and 
attractive physical interactions between ingredients of the substance (Christman, 1988; Rogalski & Palmer, 2000; 
Palik, 1998; Dressel & Grüner, 2002). The resistive forces retards the dipole motion and cause energy dissipation, 
signified by a damping coefficient , which, in a real substance, originate from interactions of dipoles with 
phonons, defects, and impurities. The energy of a charged-particle oscillator under the action of restoring and 
retarding forces only diminishes in time, so its motion will eventually cease (die out)- that is, a damped oscillator. 
When a solid is excited by electromagnetic radiation of angular frequency , the electromagnetic fields ,  
and ,  interact with its electric dipoles via Lorentz force , ≡ , , , , but the 
effect of ,  is neglected so the oscillator is chiefly driven by , . The macroscopic electric functions of 
the charged-particle oscillator model do not depend on the magnitude of , , but depend on the frequency  
of its electromagnetic wave, with each of its microscopic electric dipoles being treated as a classical 
forced-damped harmonic oscillator whose motion is described by a second order linear differential equation 
(SOLDE), where the effect of restoring and damping forces are both included. In principle, quantum mechanics 
must be applied for atomic electrons, but the results based on the solution of classical SOLDE are analogous to 
those found from a quantum-mechanics solution (Rogalski & Palmer, 2000). The actual local electric field ,  at the site  of a dipole in a collection of electric dipoles in a linear, isotropic sample differs from the 
applied field , ≅ ,  such that , ≅ , , ⁄ , where the local-field correction 
factor  is introduced to take account of mutual interactions among all of its particles. If the amplitude of 
oscillations of dipoles is small enough for spatial variation of ,  over twice this amplitude to be minor, it is 
reasonable to neglect it over the distance between peaks of oscillating dipole and permit electric-field evaluation at 
the dipole average position (Reitz et al., 1993; Jackson, 1998). If there are  atoms per unit volume in the sample, 
then t 	 t  is, with spatial dependence implicit, described by the SOLDE (Reitz et al., 1993)  

 	 	 	 	 	 	 	 B24  

Equation (B24) has the form of Equation (B13) with three constant coefficients: ⁄ , 	⁄ , and 1 	⁄ , where  (≡ ⁄ ), with its solution fulfills the linearity 
Equation (B20) such that  is the response (output) of the substance related to the applied (input) field  
via the response function , with the complex Fourier inverse transforms  and  are linearly 
related as ≡ ≡ ̂ . The dispersion formula of the complex electric susceptibility ̂  of a collection of  microscopic forced-damped oscillating dipoles driven by a weak electromagnetic field 
of frequency  can be found by inserting the constant coefficients , , and  into Equation (B15), viz.  

 	 					or					 ̂ 	 	 B25  

with ̂  fulfills Equation (B16) as long as 0 and is square integrable in the frequency range 0 ∞; 
thus, satisfying all requirements for a real response function of a linear, isotropic, dispersive, and lossy medium, 
with Equation (B25) gives a relation between its complex macroscopic dielectric function ̂  and microscopic 
features of its electric dipoles. By a simple generalization, its applicability can be extended to a real materials, in 
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which seldom do all of its charged particles have the same dielectric behavior in different frequency regions; they 
may divide into electrons and ions, as in ionic substances, or into electrons and permanent electric dipoles exist in 
molecular materials, or into electrons in different inner (core) and outer (valence) orbits of an atom. If there are  
identical particles, each of charge , mass , natural frequency , and damping frequency , in a linear, 
dispersive substance with losses, the formula of its ̂  arising from polarizability  contributions of all 
electric dipoles would have the form  

 ∑ 	 	∑ 		 B26  

Since  is proportional to  as ≡ ⁄  for each collection of identical particles of type , each of a 
complex electric polarizability , Equation (B26) resembles Equations (B7) and (B8), the generalized 
frequency-dependent Clausius-Mossotti formula, with ̂  being dimensionless, the MKS units of α  and 

 are F.m  and m , respectively, with  in rad/s. The mass  in this dispersion relation depends on the 
nature of electric dipole and is the reduced mass /  of its charges. In ionic solids the 
charge  is less than  on an isolated ion of valence , because charged electron-cloud distributions around 
neighboring ions overlap somewhat in a solid (Christman, 1988). At optical frequencies where one of the 
resonance peaks of Equation (B26) dominates all others, then Equation (B25) describes a single-resonance peak 
with an effective resonance frequency 

/
. Dissimilar loss mechanisms rarely contribute to 

dielectric behavior in the same frequency region, so the frequency dependence of ̂ 	  or ̂  can be pictured 
by a harmonic oscillator (Lorentz) model of a shifted resonance frequency . This can be applied to many 
practical problems where electric polarizability of various origins (electronic, or ionic, or dipolar) can be described 
by a harmonic-oscillator dispersion formula  

 ̂ ≡ 	 	 	 	  

The 1 and  in Equation (B27) can then be inserted into Equation (B6) to get 
explicit frequency-dependent expressions for the substance optical constants  and ; however, the 
results are unwieldy to reveal analytical features of the dispersion phenomena, unless simplifying assumptions are 
used, but this is not a nuisance problem in numerical iterative curve-fitting optical analysis.  
B.4.2.1 Electronic Contribution to Dielectric Behavior of Linear, Dispersive Media With Losses  
Let all charged particles to have the same charge  and mass , as if there are  identical atoms per unit volume, 
each of  electrons distributed over its different orbits. In an oscillating electric field, orbital atomic electrons 
oscillate relative to their respective nuclei, with the center of mass of the electron charge distribution in an atomic 
orbit at any time  being at the position vector  around its nucleus at . Each of the field-induced orbital 
atomic dipoles has a moment 	  and their oscillatory motions are governed by different 
damping and restoring forces (bindings). So, in view of classical forced-damped harmonic oscillator model, there 
are, instead of a single natural (resonance) frequency for all electrons,  bound orbital electrons (  oscillators of 
type ) per atom, with their own resonance frequency  and damping frequency . The resulting 
polarizabilities due to all these differently-bounded  electrons lead to a dispersion relation for ̂  having 
the form of Equation (B26), viz. (Reitz et al., 1993; Jackson, 1998)  

 	∑ 	∑ 	 		 B28  

where ⁄  is the plasma frequency for a collection of  atoms per unit volume, different from the 
plasma frequency Λ ≡ ⁄  of a solid due to its total number  of bound electrons per unit volume, 
where  had to be replaced by the effective mass ∗ of the electron (hole) in the solid (Christman, 1988; 
Rogalski & Palmer, 2000; Palik, 1998). As mentioned above, quantum mechanics must be used to get accurate 
picture of electronic polarizability due to the atomic electron system oscillating under the influence of an 
oscillatory electric field at an atom site, which causes distortion (perturbation) of the wave functions of its 
electrons, resulting in oscillating electric dipole moments. The average values of these time-dependent dipoles can 
be calculated using the standard quantum-mechanics time-dependent perturbation theory, which are related to the 
local electric field via a tensor-like constant of proportionality, the electronic polarizability tensor (Rogalski & 
Palmer, 2000). The solution of classical model, where electrons are pictured as particles bounded to their fixed 
atomic sites by elastic Coulombic forces, yields the same accurate quantum description of the contribution of 
time-dependent perturbed bound electron clouds around atoms to the medium susceptibility, but with different 



www.ccsenet.org/apr Applied Physics Research Vol. 6, No. 6; 2014 

15 

definitions of , , and . Classically, the fraction of classical oscillators of type  out of the total number of 
oscillators is , while in quantum mechanics,  is the oscillator strength, which is characteristic of resonance 
atomic transitions satisfying a relation called the Thomas-Kuhn sum or -sum rule (∑ ) (Jackson, 1998). In 
quantum mechanics description, maximum absorption (resonance) corresponds to an electron transition from one 
quantized energy level (state) to another and occurs when the exciting photon energy  matches the difference 
in energy ∆  between the two energy states of the electron system involved in the electron transition taking place 
upon a photon absorption- that is, ∆ . Many electron resonances (transitions) contribute to the 
overall polarizability of the solid and we must sum their contributions, but since the wave functions associated 
with different transitions between occupied and unoccupied states are unalike, electron resonances do not 
contribute equally; thus a different factor (the oscillator strength ) must multiply each term of this sum. Equation 
(B28) reduces to equation (B27) if 0 or, for any , if transitions of only outer valence orbital electrons of the 
same , , and  are involved in the absorption (resonance) process, with a shifted resonance frequency , 
a situation that is justified in practice as oscillator strengths of atomic tightly-bound and core-core electrons are 
relatively small (Christman, 1988).   
For pure crystalline insulator or semiconductor the resonance region begins when conditions are right for an 
electron to absorb a photon and jump the energy-band gap of the solid between the valence band (VB) and 
conduction band (CB)- that is, a band-to-band (interband) electronic transition takes place. The corresponding 
photon energy (frequency ) is known as the fundamental absorption edge, which is, for parabolic valence and 
conduction bands, is the band-gap energy  or the separation, in -space, between CB-minimum and 
VB-maxima at 0 (Christman, 1988). Electromagnetic radiation of photon frequencies equal to or larger than 
the fundamental absorption edge can excite electrons from occupied energy states  having the wavevector 

 in a lower VB to unoccupied energy states  in an upper empty CB. Crystal momentum as well as energy 
should be conserved in an absorption (resonance) electronic process. If  is the crystal momentum of the final 
electron state,  is the crystal momentum of the initial electron state, and  is the propagation vector of the 
electromagnetic radiation wave, then the corresponding oscillator strength vanishes unless . Since  
for frequencies in the infrared, visible, and ultraviolet spectral regions is much shorter than any Brillouin zone 
dimension, we may neglect it and take ≅ . A vertical line connects the initial and final electron states in the 
conduction and valence bands on a reduced Brillouin zone (BZ) band diagram and the electronic transition is 
called vertical (direct) band-to-band (interband) transition, which takes place in a crystal with its conduction and 
valence band states at the same -point in BZ, so 0 0 , the lowest interband resonance 
frequency ≡ ⁄ . For some insulators,  is as large as 10 eV wide, corresponding to an angular 
frequency  up to 10 	rad/s or wavenumber ̅ ≅ 8	x	10 	cm , lying deep in the ultraviolet. For crystalline 
semiconductors,  ranges from a small fraction of eV up to few eV; for silicon (Si) and germanium (Ge),  
lies in the near infrared (IR), while for selenium (Se) 	~	2	eV, equivalent to a visible-light frequency of 3	x	10 	rad/s ( ̅ ≅ 1.6	x	10 	cm ).  
Amorphous semiconductors, however, do not have definite and sharp band-energy structures with abrupt band 
edges like perfectly crystalline ones, but have smeared band edges as tailing energy states are formed throughout 
the forbidden bandgap, and hence narrowing the bandgap and modifying their optical absorption features. Some 
crystalline and amorphous semiconductors have complicated band structures with many valleys and hills for 
valence and conduction bands, with the minima in conduction band being located in at -points different from that 
of the maxima in the valence band; thus, yielding complicated dispersion and absorption spectra. More details on 
the various types of interband electronic transitions that may take place between occupied and empty energy states 
lying in the valence and conduction bands as well as in band tails of crystalline and amorphous insulating and 
undoped semiconducting solids and the associated dispersion and absorption phenomena occurring in these solids 
will be given later.  
Field-induced electronic transitions can occur between energy states within a partially-filled energy band 
(intraband transitions) of a substance exposed to certain electromagnetic radiations, leading to the so-called 
quasi-free carrier effects, the contribution of which to its dielectric and optical behavior is often exemplified by a 
dispersion formulation describing its macroscopic complex electrical conductivity  that can be found by the 
use of the relaxation-time approximation approach (Christman, 1988) or linearity-causality approach (Reitz et al., 
1993; Jackson, 1998). The dispersion and optical formulations related to intraband electronic transitions in an 
electrically-excited solid are usually underlined in the classical Drude and modified Drude-like dielectric functions, 
which are particularly employed in the analysis of optical behavior of highly-conducting substances (e.g., metals 
and doped semiconductors) excited by monochromatic electromagnetic radiations having spectral wavelengths in 
the infrared and microwave regions of the spectrum (Christman, 1988; Reitz et al., 1993; Jackson, 1998).  



www.ccsenet.org/apr Applied Physics Research Vol. 6, No. 6; 2014 

16 

B.4.2.2 Dielectric Functions in Spectral Regions Near and Far From the Resonance of a Lorentz Oscillator   
To exemplify the nature and frequency-range of bound-charge contribution to the dielectric response of solids, let 
us apply the results of the preceding section to a system of bound charges in materials which do not conduct direct 
electric currents- that is, to perfect insulators of zero static (dc) electric conductivity. This can be achieved if one 
has reasonable estimations for values of the natural resonance frequency , plasma frequency , and damping 
constant  for the bound outer-shell (valence) and inner-shell (core) electrons of an atom having a total number of 
electrons , as well as of the oscillator strength  of different interband transitions- that is, the probability for 
transitions of bound charges (valence or core) in atomic orbits to occur upon exciting the solid with 
electromagnetic radiations. Depending on type and size of atom in the solid, electron resonance frequencies around ⋚ 6 10 	rad/s, corresponding to wavelengths in air ⋛ 315	nm, spanning spectral ranges from UV-side 
near visible region down to lowest UV, where, however, oscillator strengths of electronic transitions are negligible 
(Reitz et al., 1993). For closely-packed collection of atoms in highly-dense substances, ⁄ ≳ 1 , but 
reasonable values for  are more difficult to estimate as the physical origin of loss and damping mechanisms in a 
real substance are not known for certain. There are few physical processes responsible for damping mechanisms 
that lead to a loss of energy of an oscillating electric dipole in a real sample arising from mutual interactions among 
phonons (lattice vibrations), impurities and defects in the solid, where ⁄ ≪ 1  is valid for practical 
dispersion cases of interest.  
Examining the forced-damped harmonic-oscillator dispersion model when 0 (no damping) is sometimes 
informative, but it is unphysical for revealing interesting features of the dielectric and optical responses of a real 
linear, dielectric substance exposed to electromagnetic radiation of a wide range of frequencies. Therefore, it is 
more realistic to examine its dispersion and loss behavior in the presence of small damping such that 0 and ≪ 3⁄ , in the spectral regions far from and near the effective absorption (resonance) 
frequency . The single-resonance absorption curves for real  and imaginary  parts of the 
complex dielectric constant ̂ 	  of a real sample is complicated as damping (loss) effects is not accurately 
known or large. The average time rate of energy loss 〈d d⁄ 〉  from electromagnetic radiation of angular 
frequency  and electric-field amplitude  to a linear, isotropic, non-magnetic and lossy solid pictured by a 
single forced-damped harmonic oscillator dispersion model is given in terms of  by (Christman, 1988; 
Jackson, 1998)  

 〈d d⁄ 〉 	 	 		 B29  

The response of a single-resonance Lorentz dispersion model for exciting frequencies near → 0 and → ∞ 
can be realized from Equation (B27) when 0, ≪ , and ⁄ ≳ 1. At exciting frequencies far less 
than  and near 0 (dc case), where the dc conductivity of pure dielectrics and dissipation are vanishing, 
the bound-electron zero-frequency asymptotic real part → 0  of the complex dielectric constant is sizable 
with values greater than 1, while the magnitude of its zero-frequency asymptotic imaginary part → 0  tends 
to zero. For small damping and very high frequencies far above , → ∞  approaches 1 and → ∞  
tends to zero, as if the dielectric were vacuum, in the sense ≡ ≅	 ⁄  and ≡ 1	 ≅ 1 	 ⁄ . In addition to modifying microscopic and macroscopic dielectric functions of a 
substance, the damping mechanisms remove singularities expected in zero-damping dielectric behavior (Reitz et 
al., 1993). For exciting frequencies in the neighborhood of  (   3 ), the dielectric and optical 
behavior of a single harmonic oscillator dispersion model with small damping ( 0 and ≪ ) can be 
described by the -	  and -	  dependencies given by (Reitz et al., 1993)  

 1 . 				and			 	 B30  

where ⁄ . ⁄  is the maximum value (amplitude) of  at a frequency  that matches 
. The dispersion behavior has the Lorentzian line shape which embodies a variety of properties of the 1 - and - functions. The  function is even with respect to  and 1  

function is odd and vanishes at . The  –	  curve (absorption line) has a full width at half 
maximum (FWHM) equals to  and the frequencies at which  is /2 are 2⁄ , where the 
extremes ( 2⁄ ) of the 1  function occur. Depending on relative magnitudes of resonance, plasma, 
and damping frequencies in a dielectric, the -amplitude is somewhat large that gives a real electric 
conductivity σ ≡ ϵ ϵ  at resonance comparable with the dc conductivity of a metal.  
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B.4.2.3 Optical Constants in the Normal Dispersion Region in View of the Lorentz-Oscillator Model   
The frequency dependence of the real and imaginary parts  and  of the complex optical constant ≡ 	in a single-resonance damped harmonic-oscillator dispersion model can be found from the 
dispersion function of ̂  given in Equation (B25), which describes a linear, dispersive lossy dielectric, even if 
free charges are absent ( 0). If the electron-system plasma frequency  is small enough for the absolute 
value of the complex quantity on the right-hand side of Equation (B25) to be small when compared to unity, for all 
frequencies, so that we may justify the approximation in the binomial expansion given below  

 ≡ 1 	 ≅ 1 	 		 B31  

Equation (B31) yields approximate formulas for  and  or ≡ 2 	 ⁄  given by (Rogalski & 
Palmer, 2000; Reitz et al., 1993)  

 ≅ 1 	 				 B32  

 ≅	 																									or													 ≅ 	 ⁄ 	 			 B33  

Accurate but involved - and - formulas for a Lorentz dispersion model can be found by putting  and 
 of Equation (B27) into Equation (B6), which are in numerical calculations of  and . In the optically 

transparent region, where  is well below  and ≫ , Equations (B32) and (B33) reduce to  

 ≅ 1 	 								 ≅ 	 → 0					or				 ≅ 	 ⁄ 	 	→ 0	 B34  

Equation (B34) tells us that the index of refraction ≪  of a real linear, non-magnetic dielectric 
substance in its optically transparent region is greater than unity and is dispersive such that it increases with 
increasing frequency up to a certain frequency  ( )- that is, ⁄ 0, before starting to drop 
sharply in the vicinity of . Such a frequency-dependent behavior of , which is characteristics of dielectric 
materials in spectral regions below resonance as well as of ionic and molecular crystals in visible region of the 
spectrum, is called normal dispersion, where → 0 and → 0 as → 0 -that is, optical absorption 
increasingly ceases with decreasing frequency in the optically transparent region of such substances. In the 
optically transparent (normal-dispersion) region, where ⁄ ≪ 1, the -formula given in Equation (B34) 
can be expanded in the form of a Taylor’s series to obtain a simple formula for the variation of  with the 
exciting frequency  as described below  

 ≅ 1 	 1 ⋯ 		 B35  

In terms of spectral wavelength ≡ 2 ⁄  and defining a plasma wavelength ≡ 2 ⁄  and a resonance 
wavelength ≡ 2 ⁄ , Equation (B35) becomes an even function of  of the form  

 ≅ 1 	 1 ⋯ ⋯ ∑  B36  

Equation (B36) resembles a multi-term Cauchy dispersion relation with constant coefficients , , , etc. The 
Cauchy relation is an empirical dispersion formula often quoted with its first few terms for use in curve-fitting of 
experimental data of the index of refraction of transparent materials to determine its adjustable constants. The 
empirical relation ∑ ⁄  has been suggested to model dispersion of the extinction coefficient 

 of transparent substances (Poelman & Smet, 2003). However, at the low-frequency (long-wavelength) side of 
the transparent region where Equation (B34) is valid, a multi-term -dispersion expression in  can be 
attained, with the result being given below  

 ≅ ⋯ ∑ 			 B37  

If there are several kinds of elastically bound electrons with the ̂ -function of a linear, non-magnetic dielectric 
sample being described by Equation (B28), then Equation (B31) may be re-written in the approximate form 
(Rogalski & Palmer, 2000)  
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 ≡ ≅ 1 	∑ 	∑ 	 	 B38  

Equation (B38) can be shown to give an approximate -	  relation for transparent dielectric substances and 
undoped semiconductors that may be valid in the infrared region of the spectrum as depicted below (Rogalski & 
Palmer, 2000)  

 1 	∑ 	 1 ∑ 	 	 1 S 	 S 	 ⋯		 B39  

Equation (B39) with the constants S , S , etc. is known as the multi-term Sellmeier-like dispersion relation, which 
can also be used for experimental curve-fitting of measured values of  in the transparent region of a dielectric 
material. At very low frequencies close to 0 (static regime), Equation (B39) reduces to the so-called 
Maxwell relation for the static index of refraction  of transparent media, given by (Rogalski & Palmer, 2000)  

 1 	∑ 	 	 1 	 ∑ 	 	 B40  

A three-constant Sellmeier-like dispersion formula that is most commonly used to describe spectral dependence of 
 ( ) of a dielectric in its transparency region far above its fundamental absorption edge can be 

found from Equation (B31). This is often termed as the first-order Sellmeier-like dispersion relation, which can be 
written in terms of the spectral wavelength  and three constants: a threshold bandgap wavelength  (≪ ), c  
( 1), which is equal to unity in original Sellmeier equation, and c  ( 0), viz.  

 c 	 B41  

The constant parameter c  in the Sellmeier-like relation given in Equation (B41) can be taken to account for a 
constant electronic contribution to the dielectric constant that is considered to approach a limiting value at long 
spectral wavelengths ( → ∞). An equivalent relation to the Sellmeier-like dispersion relation given in Equation 
(B41) is often expressed in terms of the light photon energy ≡  to get the familiar Wemple-DiDomenico 
(WDD) dispersion relation underlying a single-effective-oscillator model (Wemple & DiDomenico, 1971), which 
is valid in the transparency region above the absorption edge of an undoped semiconductor, commonly written in 
an analytical energy-dependent form  

 1 	 B42  

The physically significant dispersion parameters E  (≫ ) or the single-oscillator resonance energy, and E , 
the dispersion energy or single-oscillator energy strength, which is a measure of the strength of interband optical 
transitions, are constants that relate to the structural and material properties (Wemple & DiDomenico, 1971). At 
very low frequencies where → 0 ( → ∞), the corresponding static dielectric constant 0  and 
static index of refraction ∞  are expressed as 0 1 E E⁄ , which is 
equivalent to c c  in the framework of Sellmeier dispersion relation described in Equation (B41). The 
parameter E  is an “average” gap energy whose actual value depends on the material and is connected to 
differently defined bandgap energies in more or less an empirical way (Wemple & DiDomenico, 1971). To a good 
approximation, E  varies in proportion to Tauc (optical) bandgap energy  and is frequently quoted as E 2  (Wemple & DiDomenico, 1971), or to the lowest direct bandgap energy  ( ), a 
threshold photon energy for photogeneration of free charge carriers in substance with E ≅ 1.5 , as quoted for 
many materials (Wemple & DiDomenico, 1971). For pure (undoped) amorphous selenium (a-Se), ≅ 2.53	eV, 
or a photon wavelength ~	490	nm, at which  is supposed to exhibit a maximum amplitude (Adachi & 
Kao1980). The parameter E  obeys an empirical relation E eV β , which is applied to several glasses 
and amorphous semiconductors, where β is a constant that takes values between 0.26 (ionic materials) and 0.37 
(covalent substances),  is the coordination number of the cation nearest-neighbor to the anion,  is the formal 
chemical valence of the anion, and  is the effective number of valence electrons (cores excluded) per anion 
(Wemple & DiDomenico, 1971).  
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B.4.2.4. Anomalous Dispersion and Absorption in Dielectrics Near a Lorentz-Oscillator Resonance  

The shape of -  and -  curves in the neighborhood of a resonance frequency  related to the 
Lorentzian dielectric functions  and  depicted in Equation (B30) depends on the -amplitude. 
Equations (B32) and (B33) can be used to get a couple of  and  formulas in the region near resonance 
of a Lorentz harmonic oscillator, with  and  being taken to be small compared to , viz. (Rogalski & 
Palmer, 2000; Reitz et al., 1993) 

 ⇋ ≅ 1 	 ⁄ 			 B43  

 ⇋ ≅ 	 ⁄ ⁄ 	 B44  

In the immediate neighborhood of a resonance of a Lorentz harmonic oscillator in a dielectric, both  and 
 depend on frequency, with some interesting features can be concluded from the -dependency of  

and  close to resonance. The frequency range 2⁄  over which  is non-zero is called the 
absorption region, where  reaches a maximum ( 1 4⁄ ) for the frequency 2⁄  
and then falls sharply to a minimum ( 1 4⁄ ) at 2⁄ . In other words, the -	  curve 
in the region of the -peak always has a region of a negative slope such that ⁄ 0 and the 
substance may be opaque in this frequency range, where the electrons are being driven at their resonating 
frequency; thus, the amplitude of their oscillation is relatively large, and a correspondingly large amount of energy 
is dissipated by the damping mechanism, as seen from the 〈d d⁄ 〉 -formula given in Equation (B39). This 

-	  behavior is atypical and is called anomalous dispersion, where  runs below 1 above the resonance, 
but contributions of other terms in the sum described in Equation (B38) add a relatively constant index of 
refraction  that keeps 1 on both sides of the resonance.  
The simple forced-damped harmonic motion of electrons (ions) in a non-conducting (ionic) material can account 
for the frequency dependence of its index of refraction  and it explains why  is ordinarily a slowly 
increasing function of  (normal dispersion), with occasional anomalous dispersion regions where it swiftly 
drops. It also clarifies that the resonant frequency  of electronic (ionic) contribution to relative permittivity is 
shifted when electrons (ions) are bound to a crystal lattice rather than to isolated atoms (ions)- that is, resonances 
will occur at different effective frequencies  given by Ω 3⁄ , where Ω  is a plasma 
frequency. The connection between absorption and dispersion of a linear material is contained in the fundamental 
Kramers-Kronig integrals. If damping is not small, none of the foregoing simple relations would hold 
quantitatively, but a qualitative behavior of ̂  and  is supposed to be still similar (Reitz et al., 1993). A 
single Lorentz harmonic oscillator dispersion model is not at all times suitable for explaining experimental 
dispersion and optical absorption spectra of real substances, mainly the disordered non-crystalline ones, over a 
broad range of spectral wavelengths, including those lying nearby the absorption edge region, where other rigorous 
dielectric models seem to be more applicable, as will be briefed in next sections.  
B.5. Full Parameterization of Dielectric and Optical Functions of Insulating and Undoped Semiconducting 
Substances in the Interband Transition and Sub-Band Spectral Regions  
Optical absorption and reflection spectra of a dielectric or undoped semiconducting substance are in general 
related to its band-energy structure, quality, and crystallinity. Under certain experimental conditions, the 
as-measured optical data of a substance often mimic immaculately many of its structural features in its absorption 
edge and nearby spectral regions, which can be assisted by a quantitative analysis of the spectral dependence of its 
dielectric and optical parameters. A compelling parameterized dispersion model that is consistent with the 
principle of causality (Kramers-Kronig relations) and that works appropriately in the band-to-band (interband) 
transition region of a substance and in faraway sub-bandgap spectral regimes is, however, demanding. Theoretical 
and empirical models that are mostly used for discussing dielectric and optical functions of crystalline and 
amorphous semiconductors will be presented below.  
B.5.1 Lorentz-Like Oscillator and Drude-Like Dispersion Models 
In some cases, parameterization of dielectric and optical functions of a semiconductor or dielectric of  atoms, 
each having  bound electrons, as a function of angular frequency  (wavelength ) of the light incident on a 
sample can be managed on the basis of the forced-damped harmonic (Lorentz) oscillator model. A sum of two or 
more Lorentz oscillators with diverse resonance frequencies , quantum-mechanical strengths  (~	 ), 
with ∑ , and damping frequencies (broadening linewidths)  may be adequate to describe the complex 
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dielectric constant function ̂  of a dielectric sample in ultraviolet, visible, and near infrared spectral regions. A 
common form of an oscillator-like formulation for a collection of  non-interacting atoms in a substance (zero 
Lorentz field-correction factor) that is frequently adopted in literature is given by the expression (Reitz et al., 1993; 
Jackson, 1998)  

 ̂ ∑ 		 B45  

The plasma frequency ∗⁄ ,  is the magnitude of electronic charge and ∗ is the effective mass 
of the electron in the substance. The parameter  ( ) represents a constant dielectric function at infinite 
photon energy or zero wavelength, which is often introduced, instead of 1 often written in standard forms of 
Lorentz oscillator model, as a fitting parameter to account for the dielectric function at spectral wavelengths much 
smaller than measured (Poelman & Smet, 2003), where  is the corresponding zero-wavelength index of 
refraction. For a linear, isotropic and non-magnetic lossy dielectric, the optical constants  and  can be 
evaluated from the values of  and 2 κ by making use of Equations (B4) to (B6). 
Recall that the set of coupled Lorentz-like oscillator formulas of the macroscopic dielectric functions  and 

 or of the optical constants  and  of a substance are consistent with the fundamental 
Kramers-Kronig (KK) relations (Jackson, 1998), in contrary to the empirical Cauchy-like and Sellmeier-like 
dispersion relations, usually utilized in computational curve-fitting analysis of optical data in the transparency 
region of a material. In disordered substances, the simple Lorentz oscillator model is sometimes modified to 
account for distribution of resonance frequencies (Brendel oscillator (Theiss, 2012)) or for a frequency 
dependence of the damping constant by introducing a parameter σ , called Gauss-Lorentz switch, with σ 0 
(Gaussian-line) and σ 5 (Lorentzian-line) in dispersion functions, as in Kim oscillator (Theiss, 2012) that is 
useful when one works with many oscillators. Further, when optical response of a metallic-like sample or a layer 
made from doped semiconducting materials, where a significant number of free charge carriers supplied from their 
impurity donors or acceptors, is investigated over a wide spectral range, including the infrared region of the 
spectrum, it may be obligatory to combine oscillator-like dispersion formulations with formulas of classical and 
extended Drude dielectric models (Theiss, 2012) to describe its measured optical data as contributions of 
electronic transitions due to intraband absorption (free-carrier effects) to its dielectric and optical functions turn 
out to be significant. No further details will be given here on Drude-like dielectric functions as free-carrier 
contribution is supposed to be irrelevant in an undoped a-Se film when its optical response is studied at 
wavelengths much below those conforming to intraband absorption.  
A combined dispersion formulation that integrates multi-Lorentz oscillators would be in reality unsatisfactory to 
account for the observed optical behavior of a crystalline or non-crystalline undoped semiconducting substance in 
the region of its absorption edge, since all energy states in valence and conduction bands separated in energy by the 
exciting photon energy  are involved in radiation-induced electronic transitions and many fitting parameters 
are required in a comprehensive optical analysis. So, one needs dispersion models which takes into consideration 
most of possible contributions to dielectric response and optical absorption of a substance over a wide range of 
photon energies that cover both of its band-to-band (interband) and sub-bandgap regions. Further, these models 
should have closed analytical forms that will be virtually convenient and computationally feasible for analyzing its 
experimental optical data, but with few parameters of physical significance, as briefed below.  
B.5.2 Dielectric Functions in the Band-To-Band (Interband) Transition Region  
There are at present several physical dispersion models that could be used for interpreting the dependency of index 
of refraction and extinction coefficient of solid substances on the spectral wavelength (or photon energy) in the 
band-to-band (interband) absorption region. The single- or multi-term Forouhi-Bloomer (FB-) set of  and 

 formulations (Forouhi & Bloomer, 1986; Forouhi & Bloomer, 1988), also consistent with the fundamental 
Kramers-Kronig relations, and their modifications were proposed to model optical absorption in crystalline and 
amorphous materials in the interband transition region. Although the FB-like dispersion formulations were 
adopted by a number of workers to fit experimental  and  data sets in the interband and sub-bandgap 
energy regions of some amorphous materials, they suffer from few physical limitations (Jellison & Modine, 1996) 
as, for example, they are not apposite to model optical behavior in the sub-bandgap or normal dispersion regions 
(Jellison & Modine, 1996). Interband transition models are quite asymmetric and are not easy to formulate 
theoretically without model approximations, as numerous electronic transitions between occupied and empty 
energy states of valence and conduction bands of a substance overlap each other, giving rise to convoluted 
dispersion and absorption spectra, so, it may be difficult to resolve different contributions using a single interband 
transition model. Quantum-mechanical interband transition models yield an expression for only the imaginary part 
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 of the sample’s complex dielectric function or absorption coefficient ≡ ⁄ , a viable 
form of which cannot be found unless structures of its energy bands involved in electronic transitions are known. 
The KK -integral is then used to construct an analytical expression for real part  of its dielectric 
function, which is either intricate or unwieldy. An -spectrum of a sample can be computed via the KK 

-integral from a large amount of accurate numeric -data measured at all frequencies from 0 to ∞, 
and we may run into severe difficulties with spectral resolution in the infrared, a flaw that is not met when KK 
relations are used to describe interband transitions in ultraviolet and visible regions. Spectrophotometric data, 
which yield indirectly  and -data, over an infinitely wide range of spectral wavelengths cannot easily 
be acquired and are in practice limited in the range 0.2 3.5	μm, shortcomings that may not be encountered in 
spectroscopic ellipsometry, where both  and  data is calculated directly from measured macroscopic 
quantities over a range of photon energies  (⋚ ), though taking ellipsometric data is not always feasible at 
certain experimental conditions (Adachi & Kao1980; Innami et al., 1999).  
B.5.2.1 Quantum-Mechanical Direct and Indirect Interband Dielectric Models for Crystalline Substances  
If a crystalline semiconductor is illuminated with electromagnetic radiation of an angular frequency  equal to or 
larger than its absorption edge, the radiation will be partially absorbed, mainly due to induced band-to-band 
(interband) electronic transitions. Quantum mechanical time-dependent perturbation theory of interband 
transitions Rogalski & Palmer, 2000; Bassani & Parravicini, 1975; Sólyom, 2009) elucidates that the material’s 
absorption coefficient  at a certain  is governed by the probability  of transition of electrons from an 
initial energy state |  to a final energy state |  and by both of the density of energy states  in the initial | -states in the valence band and the density of empty energy states  in the final | -states lying in an upper 
conduction band, including all occupied and empty energy states in lower valence and upper conduction bands 
separated by an energy equals to the exciting photon energy . Interactions between electrons in a solid and 
monochromatic electromagnetic field ,  (electron-photon interactions) can be treated as a slight 
time-dependent perturbed Hamiltonian in the dipole approximation, where effects of the electromagnetic field ,  are neglected, or as a small time-dependent perturbed Hamiltonian via specifying the electromagnetic field 
by a magnetic vector potential , exp 	 . c. c., where  and  are the angular 
frequency and wavevector of the radiation field, respectively, where  is a real photon polarization unit vector in 
the direction of ,  and the first term gives rise to the absorption of photons, with the c. c.-term being the 
complex conjugate of the first term corresponding to emission of photons. A time-depending oscillating electric 
field ,  of monochromatic electromagnetic radiation of an angular frequency  and photon wavevector 

 may cause interband electronic transitions from all conceivable initial occupied valance-band energy states, 
each is characterized by the wavevector v , spin state indexed by , wavefunction , and energy eigenvalue 

, to all available (empty) final conduction-band energy states, each is characterized by the wavevector c , spin 
state indexed by , wavefunction , and energy eigenvalue . The corresponding transition probability →	  per unit time, taking all possible electronic transitions between occupied initial and empty final 
energy states, separated by an energy , can be described in the adiabatic and one-electron 
approximation within the first-order time-dependent perturbation theory (Fermi’s Golden Rule) by the following 
general expression (Bassani & Parravicini, 1975)  

 → ∗ , . 	 . 	 B46  

Note that the transition probability is only non-vanishing if  and that ∗  is the effective mass of 
the charge carriers (electrons), excited from valence-band energy states to conduction-band energy states. Further, 
one can argue that equation (B46) is one of the basic quantum- mechanical formulations for computing dielectric 
and optical constants of a substance in the frequency region of its interband electronic transitions, with ,  and 

 being, respectively, the Kronecker and Dirac delta functions. The quantity . 	 .  represents the single-electron momentum matrix element for an electronic transition 
from a valance-band state v  to an empty conduction-band state c , with the vector  being the corresponding 
single-electron momentum vector operator . In a quantum mechanical transition with non-vanishing 
matrix element, both total energy and momentum (wavevector) of the electron-photon system involved in 
field-induced electronic transitions in a periodic crystalline lattice are conserved, often written in terms of selection 
(conservation) rules specified by the relations (Bassani & Parravicini, 1975)  

 0																																																										∆ 0 		 B47  
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where  is any reciprocal lattice vector in first Brillouin zone. For photons in the ultraviolet, visible, and infrared 
regions of the spectrum, ≪  or , the range of their variation in a solid of lattice constant  of the order 
of a few angstroms is 2 ⁄ - that is within the width of the first Brillouin zone of the respective band; thus, for the 
so-called “vertical” (direct) interband transitions induced by the electromagnetic radiation field of angular 
frequency  between occupied valence-band states of energy  and empty conduction-band states of energy 

, separated by , we may write ≅ 0 and ≅ . Direct interband transitions are observed in a 
crystalline substance where the top -point in its valence band has the same wavevector as the bottom -point in 
its conduction band and this substance is referred to as a direct bandgap material. The transition probability per 
unit time can be written in a simpler form as  

 → ∗ | . | 	 	 B48  

The single-electron momentum matrix element  of the field-induced transition can be evaluated from an 
integral, which when is carried out over three-dimensional (3D) crystal volume  , is given by  

 . | . | | . | . ∗ , 	 , 	 B49  

To get the number of electronic transitions W  per unit time per unit volume induced by light of frequency , 
Equation (B48) is summed over all possible energy states per unit volume- that is, over , the spin variable , and 
energy band states indexed by v (occupied) and c (empty). Since the allowed wavevectors  in a 3D crystalline 
solid of geometrical volume  are distributed equally-spaced in a Brillouin zone with a density of states (in 

-space) equals to 2⁄ , W  can be expressed by the following general form (Bassani & Parravicini, 
1975)  

 W ∗ ∑ | . | 	,  B50  

The integral extends over the first Brillouin zones of energy bands involved in electronic transitions and the factor 
2 arises from the contribution of the two possible electron spins (spin up and spin down) in each -state. Now, a 
closed analytical form of the sought-for dielectric (or optical) function of a linear, isotropic, non-magnetic 
crystalline dielectric or semiconducting solid can be found by combining the W -expression given in 
Equation (B50) and the time-average energy density 〈 〉  of monochromatic electromagnetic radiation of angular 
frequency  propagating through solid. The expression for the electromagnetic energy density 〈 〉  in a solid can 
be written in terms of its index of refraction  and amplitude of the magnetic vector potential , by making 
use of the relation , 	 , ⁄  and the above-defined , -formula, as (Bassani & Parravicini, 
1975)  

 〈 〉 		 B51  

The absorption coefficient  of a sample at a frequency  is by definition equal to the total electromagnetic 
energy absorbed inside it per unit time per unit volume- that is, 	W , divided by the product of the average 
energy density 〈 〉  of the electromagnetic radiation and its wave propagation velocity inside the solid- that is, the 
energy of incident electromagnetic radiation per unit time per unit area (radiation energy flux), viz.  

 ≡ 	〈 〉 ⁄ 	 ∗ ∑ | . | 	,  B52  

The imaginary part  of the complex dielectric constant of the solid can then be described by the formula 

 ≡ 	 ∗ ∑ | . | 	, 	 B53  

The -formula given in Equation (B53) does not depend on the index of refraction  of the substance, 
and hence eliminating the effect of the variation of  with  on its , and is alleged to be the basic 
formulation that connects its band energy structure with its optical properties. The corresponding -formula 
can now be found from the Kramers-Kronig -integral relation given in equation (B22) using the 

-formula of Equation (B53) and making use of the features of Dirac delta function formalism (Bassani & 
Parravicini, 1975), viz.  

 1 ∗ ∑ | . |⁄ ∗ ⁄ 	, 	 B54  
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The dielectric and optical functions satisfy some general relations, called the sum rules, which are often used to test 
the consistency of the approximations involved in their computation. The dipole transition matrix elements | . |  between valence and conduction bands can be taken to be smooth slowly functions of  and one can 
then presume that .  is a constant, independent of | | of such energy states; so, the contribution to the 
dielectric function  from electronic transitions between a pair of energy bands will be proportional to 1⁄  
and to a quantity  called the joint density of states (JDOS), which is a combined density of pair of states 
involved in the transition- one occupied and the other empty, separated by an energy , that is described by the 
expression (Bassani & Parravicini, 1975)  

 ≡ 	 	 B55  

In order to calculate the JDOS, one needs to integrate Equation (B55) over all possible transition channels in the 
entire first Brillouin zone, which can be made for a given band structure, in terms of which the integral of Equation 
(B55) can be expressed explicitly via making use of the properties of Dirac delta function given by  

 ∑ 	 B56  

The parameter  represents a zero of the function  contained in the interval , . In three dimensions, 
the -expression of Equation (B55) reduces to the more workable integral-type formula given below (Bassani 
& Parravicini, 1975; Sólyom, 2009)  

 ≡ 	 | |		 B57  

where S  represents an infinitesimal areal element in -space for all possible optical transitions on the 
constant-energy surface defined by the equation . The joint density of states for the interband 
transitions in a crystalline solid as a function of the energy  ( ) shows strong variations in the neighborhood 
of certain values of , called critical-point energies, where singularities in the JDOS (van-Hove singularities) 
occur when 0 at any  vector (Bassani & Parravicini, 1975; Sólyom, 2009). In terms of 
the JDOS  and the dipole transition matrix elements | . |  between energy states in valence and 
conduction bands, we can re-write Equation (B53) to get a closed analytical form for the imaginary part  of 
the transverse complex dielectric constant of a crystalline semiconducting substance, which determines the optical 
absorption in its interband transition region, as (Sólyom, 2009)  

 ∗ ∑ | . |, ∗ ∑ |〈c, | . |v, 〉|,  B58  

To evaluate the closed analytical form for the frequency dependency of  corresponding to direct-band 
optical absorption in a crystalline solid, one needs to calculate the momentum matrix element .  of the 
electron-photon interaction Hamiltonian, taken to be independent of radiation frequency  and wavevectors  of 
energies states in its bands, and to find the frequency dependence of the JDOS function , both of which 
are dependent on the detailed structure of its valence and conduction energy bands involved in electronic 
transitions between their energy states, separated by the energy . For simple parabolic-like conduction and 
valence energy bands of an isotropic crystalline solid, in which electrons and holes have the effective masses ∗ 
and ∗ , respectively, the lowest energy separation is 0 0  and the energies of their 
states having | |-values near 0 vary, relative to the valence-band energy 0 , with  (| |) as  

 0 ∗ 																																 		 0 ∗ ;		 B59  

The difference in energy  of states separated by  can be written in terms of a reduced 
effective mass ∗  of the exciting electron-hole (e-h) pair as (Christman, 1988)  

 	 	 ∗ ∗ 	 ∗ 		 B60  



www.ccsenet.org/apr Applied Physics Research Vol. 6, No. 6; 2014 

24 

The frequency dependence of the joint-density-of-states  corresponding to the allowed direct interband 
electronic transitions in a linear, isotropic crystalline solid can now be found from Equation (B57) by integrating 
over a spherical constant-energy surface of a constant wavevector 2 ∗ ⁄ / /

, viz.  

 
0 																∗ / / 																 		 B61  

When electromagnetic radiation of photon energies  smaller than the fundamental absorption edge  of a 
linear, isotropic crystalline dielectric or semiconducting sample deficient of lattice imperfections and defects, no 
allowed direct interband electronic transitions (optical absorption) will take place in such a sample and hence the 
corresponding imaginary part  of its complex dielectric constant will be zero, and the sample is said to be 
transparent; however, for , its  and absorption coefficient ≡ ⁄  due to 
allowed direct interband transitions are described by, assuming the momentum matrix element .  of the 
electron-photon interaction is frequency and | | independent, the following expressions (Bassani & Parravicini, 
1975)  

 ∗ ∗ / ∑ | . |, / / 	 B62  

 	 ∗ ∗ / ∑ | . |, ∗ ∗  B63  

The pre-factors  and  are frequency-independent constants of the material itself. When analyzing variation 
of  with photon energy  in the region of the absorption edge of a crystalline substance, the index of 
refraction  is often taken to be a slowly-varying function of frequency- that is, treated as a constant value.  
The contribution of allowed direct interband transitions to the dispersion of the real part  of the complex 
dielectric constant of a defect-free crystalline sample near its absorption edge can be obtained by making use of 
Equations (B54) and (B60) or by inserting the -expression described in Equation (B62) into the KK 

-integral given in Equation (B22). The final result can be described by the following expression  

 1 ∗ ∗ ∑ | . |, 2 Θ
																																																																																																																																																																																								 B64  

The Heaviside step function Θ  is often defined by the identity (Jackson, 1998)  

 Θ 1 if	 	0 if	 		 B65  

Plots of - 	  and - 	  show that  displays a maximum at ⁄  and falls off as /
 at frequencies right below . In a direct bandgap crystalline solid there are small changes in the 

wavevector  near absorption edge at 0, which may originate from scattering of electrons with phonons or 
other scatterers in solid. Due to scattering processes, forbidden direct interband transitions among energy states in 
valence and conduction bands of slightly different  are possible. The transition matrix element probability of 
forbidden direct interband transitions is proportional to | | ∝ , giving rise to additional energy 
dependency for  of a functional form that differs from that governs allowed direct interband absorption 
processes, viz.  

 
/ 	 B66  

where  is frequency-independent constant of the material and its  is presumed to vary slightly with .  
Now, consider an indirect bandgap crystalline material with the empty energy states near the bottom point 
(minimum) in its conduction band have wavevectors c  quite different from the wavevectors v  of occupied 
energy states near the top point (maximum) in a lower valence band. Then electronic transitions induced directly 
across the absorption-edge bandgap by an electromagnetic field of wavevector  (≪ , ) are not allowed 
(forbidden) in view of the dipole-approximation momentum conservation (selection) rule of Equation (B47), 
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which is only applied to direct interband transitions taking place at ≅ 0; yet, optical transitions between 
valence-band and conduction-band extrema lying at quite different wavevectors v  and c  are still possible in 
an indirect bandgap crystalline substance, albeit they are much weaker than the direct interband transitions. 
Electronic transitions between extrema (maxima and minima) energy states in the valence and conduction bands of 
dissimilar wavevectors are usually referred to as indirect interband transitions, which only take place via the 
participation of normal-mode lattice vibrations (phonons), each of which is specified by the wavevector , 
dispersive frequency , and quantized energy  (Bassani & Parravicini, 1975). The interaction of phonons 
with radiation-induced electrons (electron-phonon-photon interaction) or one-photon phonon-assisted electronic 
transition is only possible under energy and momentum conservations (selection rules) given by  

 0																																																															 v c 	 B67  

The energy  corresponds to the energy difference c v  between energy states at the maximum 
of the valence band having wavevectors v  and energy states lying at the minimum of the conduction band 
having wavevectors c 0 ( v ). For indirect bandgap materials, this bandgap energy is usually referred to 
as indirect bandgap energy  ( 0 0 , the direct bandgap energy of the solid). The 

 sign in Equation (B67) shows that for electrons in the upper valence-band states to get to energy states at the 
minimum of the conduction band, indirect interband transitions take place by absorption ( ) or emission ( ) of 
phonons when the crystal is illuminated with photons of energy   or  . The formal calculation of 
the transition probability →  of indirect band-to-band electronic transitions is too involved and awkward 
(Bassani & Parravicini, 1975), in addition to that it is of no primary concern in the present work. Therefore, we 
shall only quote here the final forms for the non-vanishing indirect-band absorption coefficients  for ∓  resulting from absorption ( ) and emission ( ) of phonons with a quantized energy k , the energy of the phonon of wavevector  that connects extrema of valence and conduction bands 
involved in allowed indirect interband electronic transitions. The optical absorption spectra accompanying 
radiation-induced indirect interband transitions are, in contrast to the temperature-independent direct interband 
transitions, strongly dependent on the absolute sample’s temperature  via the Boltzmann energy factor ⁄  
in the Planck’s (statistical Bose-Einstein) distribution law describing the average occupation number of phonons 
(bosons) of energy  at the temperature , where k  is the Boltzmann constant (Christman, 1988). The final 
functional forms of the dependency of  on the photon frequency  are often written as (Bassani & 
Parravicini, 1975)  

 	 ⁄ ; 				 	 ⁄ 	 B68  

Experimentally, however, one usually observes the contribution of both of the absorption and emission of phonons 
involved in allowed indirect electronic transitions in a crystalline solid, giving rise to a total absorption coefficient 	  that can be described by a compact expression of the form  

 	 ⁄ 	 ⁄ 	 B69  

To a good degree of approximation, the pre-factor  does not depend on wavevectors in conduction and valence 
bands and is a constant of the material. The total absorption coefficient  due to allowed indirect interband 
transitions in a crystalline sample depends quadratically on  and, for a wavevector , both absorbed and 
emitted phonons can participate in optical transitions. When absorption coefficient of an indirect crystalline 
sample is plotted against , two linear regimes would be obtained for phonon-assisted indirect interband 
transitions (Bassani & Parravicini, 1975) and their crossings with the -axis yield two threshold frequencies 
(energies):  satisfies , corresponding to an indirect interband transitions involving 
absorption of phonons of energy  and  given by  related to an indirect interband 
transition process where phonons of energy are emitted, so, 2 2 . The 
absorption edge frequency  (indirect bandgap energy ) is 2⁄ , while the frequency 

 of phonons is 2⁄ . At a low ambient temperature , there are no phonons to be absorbed 
and only  due to phonon emission is observed, but upon increasing temperature, contribution of  
comes in with relative intensity governed by the Boltzmann factor ⁄ . Forbidden indirect interband 
electronic transitions are also possible in an indirect bandgap sample, the variation of its absorption coefficient 
with the exciting photon energy  is analogous to that of allowed indirect interband electronic transitions, but 
with a stronger power-law frequency dependency of the form 	 ∝ 	⁄ , 
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however, with much smaller probability of transition compared to that of the allowed indirect band-to-band 
electronic transitions.  
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