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Abstract

The wave scattering by moving particles (dynamic scattering) is a well known physical problem routinely occurring
in practice. For the particles which are much smaller than the incident wavelength, the static scattering problem
can be solved by using the local perturbation method. In this paper we apply the local perturbation approach to the
problem of the dynamic scattering by the cluster of small particles. We calculate the fields scattered by the cluster
of moving particles. As an example, the scattered light field and its resonance frequency are calculated for moving
sphere in scalar approximation and in vector case.
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1. Introduction

Wave propagation and scattering in inhomogeneous media is a classical physical problem constantly reoccurring in
many practical areas such as adaptive optics, free space communication, biology, and medicine. In many practical
cases the inhomogeneous medium is actually homogeneous host medium (infinite or bounded) filled with the finite
size inhomogeneities like dust particles, water droplets, air bubbles, snow flakes, and living cells.

The wave scattering by stationary inhomogeneities (static scattering) was studied extensively, and there are many
papers devoted to this problem (Kerker, 1969; Born & Wolf, 1999). In reality, however, some scatterers do move:
snow falls, blood cells flow, and cosmic dust rovers the space.

The wave scattering by moving bodies (dynamic scattering) is a long standing problem with many practical appli-
cations (Bladel, 2007; Brown, 1993). For example, the scattering properties of the moving particles are routinely
used for velocity and object size measurements (Lee et al., 2012; Yokoi et al., 2001). The statistical properties
of the dynamic scattering are discussed by Bladel (2007), and in works Ishimaru (1978) and Rytov et al. (1989),
while the used scattering function is essentially of the static particle. The general theory of the scattering by single
tree-dimensional object in translation motion was presented by Zutter (1980), and only recently the exact theory of
the scattering by moving sphere was presented (see the work Handapangoda et al. (2011) and references therein).
The dynamic scattering by the cluster of particles was not studied yet. When the characteristic size of the inho-
mogeneity is much smaller than the incident wavelength, the local perturbation method (LPM) can be used. The
LPM was applied initially by Fermi for calculation of atomic spectra (Fermi, 1934, 1936) . Later, the method was
applied in crystal theory by Kosevich (2005) and in solid state physics by Maleev (1965) and by Bass et al. (2007).
Most recently, the local perturbation method was applied for wave scattering by cluster of static particles (Bass &
Fix, 1997; Bass et al., 2000).

There are, to authors knowledge, no studies where the LPM was used for study of the wave propagation in the media
filled with moving local perturbations. The LPM allows, in principle, to take into account multiple scattering by
moving particles, the shape of each moving scatterer, and the resonance properties of the dynamic scattering.

In this paper we use the LPM to study the dynamic wave scattering by the cluster of the particles which characteris-
tic sizes are small compared to the incident wavelength. The general formalism is presented for this problem. As an
example, we apply our method for calculation of the light field scattered by moving sphere in scalar approximation
and in vector case.
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In the following discussion we will make no distinction between particle and perturbation.

2. General Formalism: the Scattering by the Local Perturbations Moving With Arbitrary Speeds

The wave propagation in the medium filled with the N small particles can be described by the following equation

Ĥ0

{
∂

i∂r
,
−∂
i∂t

}
E(r, t) +

N∑
n=1

Ĥ1

{
∂

i∂r
,
−∂
i∂t

}
Un(r − rn(t))× (1)

Ĥ2

{
∂

i∂r
,
−∂
i∂t

}
E(r, t) = j(r, t)

where the operators Ĥ0, Ĥ1, and Ĥ2 are the tensors of the second order, E and j are the field and source vectors
respectively depending on the space and time coordinates r and t. The function Un describes the properties of the
n-th local perturbation and its dimensions, rn(t) is the position of the n-th perturbation and this position varies in
time.

We note that the operator Ĥ0 in the Equation (1) describes the field propagation in the homogeneous medium,
while the operators Ĥ1 and Ĥ2 are related to the perturbation.

We emphasize that the Equation (1) is quite general one and it can be reduced to partial differential equation, to
integral equation, or to difference equations (Bass et al., 2008). As a consequence, the solution of the Equation (1)
can describe the broad class of the fields related to different physical phenomena.

In this section we solve the Equation (1) by using the local perturbation method. For completeness, we note that
the local perturbation method (LPM) is valid for the particles (perturbations) which characteristic size Ln is much
smaller compared to the incident wavelength λ and that in this case the following relation holds (Bass & Fix, 1997)

Un(r − rn(t))E(r, t) ≈ Un(r − rn(t))E(rn(t), t), (Ln/λ ≪ 1) (2)

By multiplying the Equation (1) by the operator Ĥ−1
0 inverse to the operator Ĥ0 and by using the LPM relation (2)

we can present the field E in the following form

E(r, t) = Ĥ−1
0 j(r, t) −

N∑
n=1

Ĥ−1
0 Ĥ1Un(r − rn(t))Fn(t). (3)

Here the field Fn is defined as

Fn(t) ≡ Ĥ2E(rn(t), t) (4)

and Ĥ−1
0 Ĥ0 = Î, where Î is the unity operator.

The field E in the Equation (3) can be presented as the sum of the incident Ein and the scattered Esc fields calculated
via the Green’s tensors, i. e. as

E(r, t) = Ein(r, t) + Esc(r, t), (5)

where

Ein(r, t) ≡
∫

Ĝ0(r − r′, t − t′)j(r′, t′)dr′dt′, (6)

Esc(r, t) =
N∑

n=1

Esc,n(r, t), (7)

Esc,n(r, t) ≡ −
∫

Ĝ1(r − r′, t − t′)Un(r′ − rn(t′))Fn(t′)dr′dt′. (8)
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Here Esc,n is the field scattered by the n-th particle, Ĝ0 is the Green’s tensor of the homogeneous medium, and Ĝ1
is the Green’s tensor related to the inhomogeneity

Ĝ0(r − r′, t − t′) ≡ π
−4

16

∫
Ĥ−1

0 (q, ω)eiq(r−r′)−iω(t−t′)dqdω, (9)

Ĝ1(r − r′, t − t′) ≡ π
−4

16

∫
Ĥ−1

0 (q, ω)Ĥ1(q, ω)eiq(r−r′)−iω(t−t′)dqdω. (10)

Here and below we use infinite limits for integration and we do not write them explicitly. The expressions (5)-(9)
allow to calculate the total field E in the medium when the fields Fn are known. To find the fields Fn we multiply
the Equation (3) by the operator Ĥ2 and get the following equation for the fields Fn

Fm(t) = Jm(rm(t), t) −
N∑

n=1

∫
Ĝ21(rm(t) − r′, t − t′)Un(r′ − rn(t′))Fn(t′)dr′dt′, (11)

where the vector Jm and the Green’s tensor Ĝ21 are defined as

Jm(rm(t), t) ≡
∫

Ĝ2(rm(t) − r′, t − t′)j(r′, t′)dr′dt′, (12)

Ĝ21(rm − r′, t − t′) ≡ π
−4

16

∫
Ĥ2(q, ω)Ĥ−1

0 (q, ω)Ĥ1(q, ω)×

eiq(rm(t)−r′)−iω(t−t′)dqdω, (13)

Ĝ2(rm − r′, t − t′) ≡ π
−4

16

∫
Ĥ2(q, ω)Ĥ−1

0 (q, ω)× (14)

eiq(rm(t)−r′)−iω(t−t′)dqdω.

We note that the expression (11) is actually the system of equations with respect to the unknown vectors Fn and it
can be presented in the compact form

N∑
n=1

∫
Ŵmn(t, t′)Fn(t′)dt′ = Jm(rm(t), t), (15)

where the operators Ŵmn are

Ŵmm(t, t′) ≡ Îδ(t − t′)+ (16)∫
Ĝ21(rm(t) − rm(t′) − r′, t − t′)Um(r′)dr′,

Ŵ mn
(m,n)

(t, t′) ≡ VnĜ21(rm(t) − rn(t′), t − t′). (17)

Here Î is the unity operator and Vn is the volume of the n-th particle calculated as

Vn =

∫
Un(r′)dr′. (18)

We note that the fields (5)-(7) and the fields Fn(t) (solutions of the system (15)) give complete solution of the
dynamic multiple scattering problem in the local perturbation approximation.

We note also that, the solution of the system (15), in general case, can not be expressed in analytical form and it
should be solved numerically. However, in particular case when the perturbations move with the constant speed,
the system (15) can be resolved analytically. This solution will be discussed in the following subsection.
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2.1 The Scattering by the Local Perturbations Moving With Constant Velocities

Consider the situation when the perturbations move with constant velocities. In this case their coordinates rn(t) are

rn(t) = r0n + vnt, |vn| = const, (vn , vm) (19)

where r0n is the initial position of the n-th perturbation at time t = 0 and vn is the velocity of the n-th perturbation.
Substituting relation for coordinates (19) into general expressions (16) for operators Ŵmn, we can recast the system
of equations (15) into the following one

Ŵmm(ω)F̃m(ω) +
N∑

n,m

∫
f̂mn(q, ω)F̃n(ω + q(vm − vn))dq = J̃m(ω), (20)

or in vector components

Wmm,i j(ω)F̃m, j(ω) +
N∑

n,m

∫
fmn,i j(q, ω)F̃n, j(ω + q(vm − vn))dq = J̃m,i(ω). (21)

Here F̃n is the Fourier transform of the field Fn and the operator Ŵmn is

Ŵmm(ω) = Î +
∫

Ĥ2(q, ω + qvm)Ĥ−1
0 (q, ω + qvm)× (22)

Ĥ1(q, ω + qvm)Ũm(q)dq,

and

f̂mn(q, ω) =
Vn

8π3 Ĥ2(q, ω + qvm)Ĥ−1
0 (q, ω + qvm)× (23)

Ĥ1(q, ω + qvm)eiqrmn ,

rmn ≡ r0m − r0n. (24)

The Fourier transforms of the source function Jm(rm(t), t) and the function describing the shape of the particle
Um(r) respectively are

J̃m(ω) =
1

2π

∫
Jm(rm(t), t)eiωtdt, (25)

Ũm(q) =
1

8π3

∫
Um(r)e−iqrdr. (26)

We note that the expressions (20) and (21) are the system of equations with respect to the unknown fields F̃n, and
even these systems can not be solved analytically without further simplification.

2.1.1 Local Perturbations Moving as One Body (All Particles Have the Same Velocity

To simplify the systems (20) and (21) further, we assume that the speeds of the particles are such that the following
condition holds

|vm − vn|
c

≪ 1. (27)

This condition is automatically satisfied for the particles with small speeds, and it is also correct for the particles
with large but similar speeds. By using the condition (27), we can approximate the Fourier transform F̃n as

F̃n(ω + q(vm − vn)) ≈ F̃n(ω) +
∂F̃n(ω + q(vm − vn))

∂ω

∣∣∣∣∣∣∣
vm=vn

q(vm − vn), (28)

21



www.ccsenet.org/apr Applied Physics Research Vol. 6, No. 5; 2014

where the second term is much smaller than the first one and it can be neglected. Neglecting by the second term in
Equation (28) we effectively apply condition that all the particles have the same velocity.

Taking into account the relation (28), we present the system (21) in the following form

N∑
n=1

Wmn,i j(ω)F̃n, j(ω) = J̃m,i(ω), (29)

and its solution for the field components F̃n,i is

F̃n,i(ω) =
N∑

m=1

Ânm,i j J̃m, j(ω)

det Ŵ(ω)
. (30)

Here the tensor Ŵ has components Wmn,i j (see the formula (29)) and Ânm,i j is the matrix of cofactors. Finally,
taking into account the expression (30) for the fields F̃n, the scattered field (7) can be presented in the form

Esc(r, t) =
N∑

n=1

Esc,n(r, t), (31)

where the filed Esc,n scattered by the n-th particle is

Esc,n(r, t) = − Vn

8π3

∫
Ĥ−1

0 (q, ω + qvn)Ĥ1(q, ω + qvn)× (32)

eiq(r−r0n−vnt)−iωtdq
N∑

m=1

ÂnmJ̃m(ω)

det Ŵ(ω)
dω.

Furthermore, we note that the field (31) can be integrated over ω space by using the residue theorem and in this
case the scattered field is

Esc(r, t) =
∫

Q(ω, t)e−iωt

det Ŵ(ω)
dω = 2πi

∑
q

Q(ωq, t)e−iωqt

d det Ŵ(ω)
dω

∣∣∣∣
ω=ωq

, (33)

where the vector Q is defined as

Q(ω, t) ≡ −
N∑

n,m=1

Vn

8π3 ÂnmJ̃m(ω)
∫

Ĥ−1
0 (q, ω + qvn)× (34)

Ĥ1(q, ω + qvn)eiq(r−r0n−vnt)dq.

Here ωq is the q-th root of the equation det Ŵ(ω) = 0. Furthermore, we note that the resonance frequencies of the
dynamic scattering are defined by the equation

det Ŵ(ω) = 0. (35)

We note that the formula (33) is the essence of this section. The formula gives analytical expression for the field
scattered by the particles moving with the same speed in the local perturbation approximation.

3. Example 1: Scattering by Moving Sphere in Scalar Approximation

In this section we consider the scattering by moving sphere in scalar approximation. We assume that the particle
moves in the infinite homogeneous medium with the constant velocity v in x direction, and that the radius and
the volume of the sphere is L and V respectively. The position of the sphere is described by the radius vector
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r1(t) = r01 + vt, and r01 is the position of the particle at time t = 0. In this case, the equation for the scalar field
E(r, t) is

(
∆ − εh

c2

∂2

∂t2

)
E(r, t) − (εsc − εh)

c2

∂2

∂t2 U(r − r1(t))E1(r1, t) = j(r, t), (36)

where εh and εsc are the permittivities of the host medium and the particle respectively, U is the function describing
the shape of the sphere. Comparing Equation (36) with the general Equation (1) we can see that the operators Ĥ0,
Ĥ1, and Ĥ2 are

Ĥ0

{
∂

i∂r
,
−∂
i∂t

}
= ∆ − εh

c2

∂2

∂t2 , Ĥ2

{
∂

i∂r
,
−∂
i∂t

}
= 1, (37)

Ĥ1

{
∂

i∂r
,
−∂
i∂t

}
= − (εsc − εh)

c2

∂2

∂t2 (38)

and as the result

Ĥ0 {q, ω} = −q2 + k2, k ≡ √εh
ω

c
, (39)

Ĥ1 {q, ω} =
(εsc − εh)ω2

c2 , Ĥ2 {q, ω} = 1. (40)

By using the obtained results (32) and the expressions (39)-(40) we get for the scattered field Esc the following
expression

Esc(r, t) =
(εsc − εh)V

8π3c2

∫
(ω + qv)2eiq(r−r01)−i(ω+qv)t

q2 −
(
k +
√
εh

qv
c

)2 dqẼ1(ω)dω, (41)

where Ẽ1(ω) is the field inside the particle and it is

Ẽ1(ω) = Ẽin,1(ω) +
(εsc − εh)

c2 Ẽ1(ω)
∫

Ũ(q)(ω + qv)2

q2 −
(
k +
√
εh

qv
c

)2 dq. (42)

Here Ẽinc,1(ω) is the Fourier transform of the field incident on the particle at the point r1. We note that the integral
in Equation (41) can be calculated with the help of the stationary phase method for the large distances when kR ≫ 1
(R ≡ |r − r1(t)|). Integrating both formulae (41) and (42) over q we get for the scattered field and the field inside
particle Ẽ1(ω) the following expressions respectively

Esc(r, t) =
(εsc − εh)V

4πc2ρ(t)
µ(r, t)

∫
ω2Ẽ1(ω)eiω(φ(t)−t)dω, (kR ≫ 1) (43)

Ẽ1(ω) =
Ẽin,1(ω)
W(ω)

, R ≡ |r − r1(t)| , (44)

where the coefficients µ and φ are

µ(r, t) ≡

(
1 + βRx(t)

ρ(t)

)2

(1 − β2)
, ρ(t) ≡

√
R2 − β2R2

⊥, β ≡
√
εh

v
c
, (45)

φ(t) ≡
√
εhρ(t)

c
(
1 − β2) (

1 + β
Rx(t)
ρ(t)

)
, Rx(t) ≡ x − x1(t), (46)

R⊥ ≡ |r⊥ − r1⊥(t)| , v = |v| , (47)
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and the denominator W is

W(ω) = 1 − (εsc − εh)


1
εh

(
ln( 1+β

1−β )/2β − 1
)

+ω
2L2

2c2
1

(1−β2)2

+iω
3L3

3c3

√
εh(1+β2/3)
(1−β2)3

 . (48)

We note that for the static particle when β = 0, the formulae (43) and (48) reproduce well known result presented,
for example, in Bass et al. (2000). We note also that the formula (43) can be obtained from the vector case (see for
example Zutter (1980)) when the depolarization term is neglected, and in addition, the double Doppler shift (see
for example Bladel (1984)) can be seen in the phase of the scattered field (43).

3.1 The Resonance

The formula (48) shows that the dynamic scattering in the scalar case has resonance when

Re W(ωr) = 0. (49)

From the resonance condition (49) we can calculate the resonance frequency of the field scattered by the moving
sphere in scalar approximation

ωr =

√
2c(1 − β2)

L
√
εsc − εh

[
1 − (εsc − εh)

εh

(
ln

(
1 + β
1 − β

)
/2β − 1

)]1/2

. (50)

The expression (50) clearly shows that the resonance frequency ωr decreases with the speed of the particle and
that the resonance frequency can be even zero. Moreover, the higher the optical contrast of the particle, the faster
decrease of the frequency.

The expression (50) can be simplified for the small speeds when β ≪ 1 (while εsc − εh ≫ 1), and in this case the
resonance frequency ωr of the field scattered by the moving particle is

ωr =

√
2c

L
√
εsc − εh

(
1 − (εsc − εh)

β2

3εh

)1/2

, (β ≪ 1, εsc − εh ≫ 1) (51)

and the resonance width ξ is

ξ ≡ Im W
∂Re W
∂ω

∣∣∣∣∣∣∣
ω=ωr

=
2c
√
εh

9L(εsc − εh)

(
3 + β2

)
(1 − β2)3

(
1 − (εsc − εh)

β2

3εh

)
. (52)

We note that the resonance frequency and the resonance width are the functions of the particle’s speed v. At zero
speed when β = 0, the formula (51) reproduces the result obtained previously for the resonance scattering by static
particle (Bass et al., 2000). Here assumed that the refractive indexes of the particle and the host medium are real
values.

The formula (51) shows that the resonance frequency decreases with the speed of the particle (we consider the most
commonly encountered case when εsc > εh), and for particles with relatively high speeds the resonance frequency
may be even zero. Physically this means that light propagating inside particle with the speed about c/

√
εsc does

not interact with boundaries of the particle moving with the speed v.

The resonance width (52) is more complicated function of the particle’s speed: it can increase or decrease its value
at some conditions. For the small speeds when β ≪ 1, we have

ξ ≈
2c
√
εh

3L(εsc − εh)

(
1 +
β2

3

(
11 − εsc

εh

))
, (β ≪ 1, εsc − εh ≫ 1) (53)

meaning that the width increases with the increase of the particle’s speed when εsc < 11εh. On the contrary, when
εsc > 11εh, the resonance width decreases with the increase of the speed of the particle when β ≪ 1.
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3.2 The Scattered Intensities

The scattered field (43) can be calculated even further when the incident field Ẽin,1 is somehow specified. Consider
two most common cases below.

3.2.1 Case 1: Monochromatic Incident Light

Suppose that the incident field is a monochromatic light with the angular frequency Ω. In this case the incident
field can be presented in the following form

Ẽin,1(ω) = E1δ(ω −Ω), (54)

where E1 is the amplitude of the field and δ is the delta function. In accordance with (43) and (54) the expression
the scattered field and its intensity Isc ≡ |Esc(r, t)|2 is

Esc(r, t) =
(εsc − εh)V

4πc2

Ω2

ρ(t)
µ(r, t)E1

W(Ω)
eiΩ(φ(t)−t), (55)

and

Isc(r, t) =
|εsc − εh|2 V2

16π2c4

Ω4

ρ2(t)
µ2(r, t) |E1|2

|W(Ω)|2
. (56)

The formula (56) shows that the intensity of the scattered field vary in space and time via the coefficient µ(r, t).
The intensity increases when the particle heads in the direction of observer and it goes down when the particle flies
away from the observer. The scattered intensity is maximal then the frequency of the incident light Ω coincides
with the resonance frequency ωr of the field scattered by the moving particle (Equation (51)), because in this case
the denominator W is minimal.

3.2.2 Case 2: Broad Band Light

Suppose now that the incident field is relatively broad function in frequency domain and that the resonance fre-
quency ωr of the particle is inside this frequency band. In this case the integral in (43) can be calculated with the
help of the residue theorem and we get the following expressions for the scattered field and its intensity

Esc(r, t) = i
(εsc − εh)V

2c2

ω2
0µ(r, t)
ρ(t)

Ẽin,1(ω0)
∂W
∂ω

∣∣∣
ω=ω0

eiω0(φ(t)−t), (57)

and

Isc(r, t) =
|εsc − εh|2 V2

4c4

∣∣∣ω2
0

∣∣∣2 µ2(r, t)
ρ(t)2

∣∣∣∣∣∣∣ Ẽin,1(ω0)
∂W
∂ω

∣∣∣
ω=ω0

∣∣∣∣∣∣∣
2

e−2 Im[ω0(φ(t)−t)]. (58)

where ω0 is the solution of the equation W(ω) = 0 (see Equation (48)) and ω0 is, in principle, complex number.
The formula (58) for the intensity of the scattered field is correct when the condition

Im[ω0(φ(t) − t)] ≥ 0 (59)

is satisfied. The formula (58) shows that the intensity of the scattered field decreases exponentially for the times
which are not equal to t = φ(t).

When the resonance is narrow, Imω0 = −ξ meaning that the intensity (58) decrease is related to the resonance
width: the broader the resonance the faster the scattered intensity drops. In the limit, when the resonance width
tends to zero, the scattered intensity does not decay exponentially in time.

4. Example 2: Scattering by Moving Sphere in Vector Case

In this section we consider the light scattering by moving sphere in vector case. As well as in the scalar case, we
assume that the particle moves in the infinite homogeneous medium with the constant velocity v in x direction, and
that the radius and the volume of the sphere is L and V respectively. The position of the sphere is described by the
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radius vector r1(t) = r01 + vt, where r01 is the position of the particle at time t = 0. In this case, the equation for
the vector field E(r, t) is

(
∆ − ∇ ⊗ ∇−εh

c2

∂2

∂t2

)
E(r, t) − (εsc − εh)

c2

∂2

∂t2 U(r − r1(t))E1(r1, t) = j(r, t). (60)

Here ∆ and ∇ are the Laplacian and nabla operators, ⊗ defines tensor product, εh and εsc are the permittivities of
the host medium and the particle respectively, U is the function describing the shape of the sphere. Comparing
Equation (60) with the general Equation (1) we can see that the operators Ĥ0, Ĥ1, and Ĥ2 are

Ĥ0

{
∂

i∂r
,
−∂
i∂t

}
= ∆ − ∇ ⊗ ∇ − εh

c2

∂2

∂t2 , Ĥ2

{
∂

i∂r
,
−∂
i∂t

}
= 1, (61)

Ĥ1

{
∂

i∂r
,
−∂
i∂t

}
= − (εsc − εh)

c2

∂2

∂t2 (62)

and as the result the operators Ĥ0, Ĥ1, and Ĥ2 are

Ĥ0 {q, ω} = −q2 + q ⊗ q + k2, k ≡ √εh
ω

c
, (63)

Ĥ1 {q, ω} =
(εsc − εh)ω2

c2 , Ĥ2 {q, ω} = 1. (64)

By using the obtained results (32) and the expressions (63)-(64) we get for the scattered field Esc the following
expression

Esc(r, t) =
(εsc − εh)V

8π3c2

∫ Î − q ⊗ q(
k +
√
εh

qv
c

)2

 Ẽ1(ω)dω× (65)

(ω + qv)2eiq(r−r01)−i(ω+qv)t

q2 −
(
k +
√
εh

qv
c

)2 dq,

where Ẽ1(ω) is the field inside the particle and it is

Ẽ1(ω) = Ẽin,1(ω) +
(εsc − εh)

c2 × (66)∫ Î − q ⊗ q(
k +
√
εh

qv
c

)2

 Ẽ1(ω)Ũ(q)(ω + qv)2

q2 −
(
k +
√
εh

qv
c

)2 dq.

We note that the integral in Equation (65) can be calculated with the help of the stationary phase method for the
large distances when kR ≫ 1 (R ≡ |r − r1(t)|). Integrating both formulae (65) and (66) over q we get for the
scattered field and the field inside particle Ẽ1(ω) the following expressions respectively

Esc(r, t) =
(εsc − εh)V

4πc2ρ(t)(1 − β2)

(1 + βRx(t)
ρ(t)

)2

− (67)

u
ρ(t)
⊗ u
ρ(t)

] ∫
ω2Ẽ1(ω)eiω(φ(t)−t)dω,

ρ(t) ≡
√

R2 − β2R2
⊥, R ≡ |r − r1(t)| , (kR ≫ 1).
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Here the vector u is defined as

u ≡ r − r1(t) − β2R⊥ + βρ(t)v/v,

and the field Ẽ1(ω) is calculated via the following formulae

D̂(ω)Ẽ1(ω) = Ẽin,1(ω), and Di j = δi jW j. (68)

The coefficient φ is explained in the formula (46), and the coefficients W j are

Wx(ω) = 1 − (εsc − εh)


1
εhβ2

[
1 − β2 +

β2−1
2β ln

(
1+β
1−β

)]
+

L2ω2

2c2β2

[
1

(1−β2) − ln
(

1+β
1−β

)
/2β

]
+

i 2ω3L3

9c3

√
εh

(1−β2)2

 , (69)

Wy,z(ω) = 1 − (εsc − εh)


1
εhβ2

[
β2 − 1/2 + β

2+1
4β ln

(
1+β
1−β

)]
+

L2ω2

2c2β2

[
3β2−1

2(1−β2)2 + ln
(

1+β
1−β

)
/4β

]
+

i 2ω3L3

9c3

√
εh(1+β2)
(1−β2)3


, (70)

and β ≡ √εh
v
c
. (71)

For the static particle, the expressions (69) and (70) transform to the known formula presented, for example, in
Bass et al. (2000). We note also that the formula (67) reproduces the one obtained in the vector case (see for
example Zutter (1980)).

4.1 The Resonance Frequencies

The formulae (69) and (70) suggest that the dynamic light scattering in the vector case has two resonances defined
by two following equations

Re Wx(ωr,x) = 0, Re Wy,z(ωr,yz) = 0. (72)

The resonance frequencies are

ωr,x =

√
2c

L
√
εsc − εh

√√√√
β2 − (εsc−εh)

εh

[
1 − β2 + (β2 − 1) ln

(
1+β
1−β

)
/2β

]
1

(1−β2) − ln
(

1+β
1−β

)
/2β

(73)

ωr,yz =

√
2c

L
√
εsc − εh

√√√√
β2 +

(εsc−εh)
2εh

[
1 + 2β2 − (β2 + 1) ln

(
1+β
1−β

)
/2β

]
3β2−1

2(1−β2)2 + ln
(

1+β
1−β

)
/4β

(74)

The obtained expressions for the resonance frequencies (73) and (74) are not transparent due to complex relations
between β and logarithmic function. For the small speeds when β ≪ 1, the resonance frequencies ωr of the field
scattered by the moving particle are

ωr,x = ωr,0

(
1 − ςβ2/5

)
, ωr,yz = ωr,0

(
1 − 2ςβ2/5

)
, (75)

ωr,0 ≡
c
L

√
2εh + εsc

εh(εsc − εh)
, ς ≡ (4εsc + 5εh)

(εsc + 2εh)
, (β ≪ 1). (76)

We do not consider the resonance width here, because the resonance is broad even for the static particle (Bass et
al., 2000).
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The expressions (73)-(75) show that as well as in the scalar case, the resonance frequencies decrease with the
speed of the particle (we assumed that εsc > εh). However, in distinction to the scalar case, there are two reso-
nance frequencies of the scattered field in the vector case: in the direction of the particle propagation and in the
perpendicular direction. In addition, the formulae (75) shows that ratio of the frequencies ωr,x/ωr,yz grows with the
particle’s speed as

ωr,x

ωr,yz
= 1 + ςβ2/5. (77)

We note, that the scattered intensities can be discussed in the similar way as it was done for the scalar case in the
previous section, and we will not do it here.

5. Conclusions

The method describing the wave propagation and scattering in the medium filled with the small moving particles
has been proposed. The explicit analytical solution was presented for the field scattered by the particles moving
with the constant speed.

As an example, the light scattered by small moving sphere is calculated in the scalar approximation and in the
vector case.

It was found that in the scalar approximation there is one resonance frequency of the scattered light, and the fre-
quency decreases with the speed of the particle when the optical contrast of the particle is positive. The resonance
width, however, can decrease or increase its value depending on the amount of the optical contrast of the moving
particle.

It was also found that in the vector case there are two resonance frequencies: one in direction of the movement
of the particle and another one in the direction transverse to the movement. Both resonance frequencies decrease
with the speed of the moving particle when the optical contrast of the particle is positive.
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