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Abstract 
We study the minisuperspace quantization of the theory of gravity where an R2 term is included in the Einstein 
Hilbert action. Matter is described by a perfect fluid and we employ the generally relativistic hydrodynamic 
formulation of Schutz. We set up the Wheeler-DeWitt equation and obtain its solutions. A finite norm wave 
packet solution is constructed and used to calculate asymptotic values for the expectation values of the scale 
factor and the Ricci scalar 
Keywords: higher order gravity, Wheeler-DeWitt equation, minisuperspace 

1. Introduction 
The difficulties encountered when attempting to construct a full quantum theory of gravity have led to the 
development of minisuperspace models of quantum cosmology. In this framework all but a few of the degrees of 
freedom which describe the gravitational field and its sources are “frozen out” (DeWitt, 1967). Numerous 
investigations of Friedmann-Robertson-Walker (FRW) universes were carried out within this framework 
(Halliwell, 1991). Of particular interest are the investigations in which matter is described as a perfect fluid and 
quantization is performed using both the ADM method (Arnowitt, Deser, & Misner, 1962) and the method of 
superspace quantization (Wheeler, 1968). Detailed analyses were undertaken by Lapchinsky and Rubakov 
(1977) and others (Lemos, 1996; Alvarenga & Lemos, 1998; Alvarenga, Fabris, Lemos, & Monaret, 2002) in this 
regard. These analyses were conducted using the canonical formulation of the generally relativistic 
hydrodynamics of a perfect fluid due to Schutz (1970, 1971). This formulation is characterized by ascribing 
dynamical degrees of freedom to the fluid. The works cited above employ the standard Einstein-Hilbert action to 
describe gravity. 

The works cited above employ the standard Einstein-Hilbert action to describe gravity.  

In the present work we use the aforementioned method to study an f(R) gravity model,  being the scalar 
curvature. The suggestion that the gravitational lagrangian can be taken as a function of R was first made by 
Buchdahl (1970). Here we consider the case where the Einstein-Hilbert action is modified by the addition of an 
R2 term (Starobinsky, 1980; Barth & Christensen, 1983; Hawking & Luttrell, 1984; Horowitz, 1985). Hawking 
and Luttrell (1984) discussed the minisuperspace quantization of this higher derivative theory while Vilenkin 
(1985) studied the quantization of the Starobinsky model. The author has recently studied the quantization of the 	theory and obtained solutions of the Wheeler-DeWitt equation in two-dimensional spacetime (Ahmed, 2012). 
Here we quantize the R2 theory, set up the Wheeler-Dewitt equation and obtain its solution in four-dimensional 
spacetime. The material is organized as follows. In section 2 we discuss the minisuperspace canonical 
quantization of the model by two different methods and obtain the super-Hamiltonian in each case. In section 3 
we write down the Wheeler-DeWitt equation, define the inner product and establish the boundary conditions on 
the wave function. Exact solutions are obtained and wave packets are constructed. Section 4 is devoted to 
computing some expectation values and in section 5 we present some concluding remarks. 
2. Quantization of 	Gravity 
We start by writing down the FRW metric as  																															 	 	,																								               (1) 
where , 1,2,3,  is the lapse function and  is given by 																																											 	 																																													                (2) 
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In Equation (2) 	  is the scale factor and  represent the metric for the three dimensional space of constant 
curvature 1, 0, 1 corresponding to spherical, flat, or hyperbolic space-like sections, respectively. The 
action for	  gravity in the absence of matter reads (Weinberg, 1972) 																													 	 	 	.																																			               (3) 
We shall specifically take f(R) to be of the form (Barth & Christensen, 1983; Hawking & Luttrell, 1984; 
Horowitz, 1985) 																																									 	 	,																																														              (4) 
and describe matter by a perfect fluid with the action 																																				 	 		 	,																																														              (5) 
where p is the pressure. We also employ Schutz’s description of the dynamics of a relativistic fluid in interaction 
with the gravitational field in terms of velocity potentials (Schutz, 1970, 1971). The degrees of freedom ascribed 
to the fluid are five scalar potentials , , , ,  in terms of which the four-velocity of the fluid is given by  																													 	 	ϕ, 		 	 , , 				 																																	               (6) 

where  is the specific enthalpy and  is the specific entropy. The potentials  and , which describe vortex 
motion are zero in the FRW model because of its symmetry. The potentials 	and  do not have direct physical 
meaning. Two common choices for the lapse function N are 1	and 	(Lapchinsky & Rubakov, 1977). 
Choosing 1 and inserting the metric into Equations (3) and (5), the actions become 																																													 	,																										                  (7) 																																												 	 	 																																																					          (8) 
where an overall factor of the spatial integral of det /  has been discarded as all functions are taken to 
depend on t only. We are using units such that 16 1.   
The total action is given by  																																																	 	 		.																																														              (9) 
We first consider Equation (7) for  and note that the scalar curvature for the FRW metric is  																																 	 6 	 	 	.																																           (10) 
Now in the general case of Equation (3) and with Equation (10) for R, one cannot remove the second derivative 
of the scale factor a using integration by parts. In such a case, the procedure followed in canonical quantization, 
is to introduce beside a, a second variable which can be chosen to be the scalar curvature R (Vilenkin, 1985), and 
to express the action  in the form  																							 	 	 , , 	 , 	.																																																	      (11) 
In our case of Equation (7) we substitute Equation (10) for the term linear in R and for one factor R in the  
term thus obtaining  	6 	 	 	 	 	 	 	 	 .																												    (12) 
Integrating by parts, we eliminate the  term and obtain  6 1 	 	 	 1 	,											          (13) 
and the Lagrangian thus reads 6 1 	 1 	 	,																																   (14) 
which is indeed of the form indicated in Equation (11). As we shall see the quantization based on Equation (14) 
leads to non-trivial results for the expectation values of the Ricci scalar and the scale factor. The canonical 
momenta are  	 12 1 6 , 																																																																	 6 	.																																																			          (15) 
Next expressing  and  in terms of  and  we obtain the following expression for the Hamiltonian  																							 	 1 6 1 	.													           (16) 

One can alternatively approach canonical quantization using a method due to Vilenkin (1985) where one regards 
Equation (10) as a constraint and write the gravitational action as  
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															 ′ 	 	 6 	,															        (17) 
where  is a Lagrange multiplier. By varying  with respect to R we determine  																																																									 1 2 		.																																																			           (18) 
Substituting Equation (18) back into Equation (17) and integrating by parts to eliminate , we obtain 									 6 1 2 12 6 1 2 	,										      (19) 
and hence the Lagrangian reads 																			 6 1 2 12 6 1 2 	.														      (20) 
The canonical momenta are given by 																																	 	 12 1 2 12 	,																																													    (21) 															 12 																																																												       (22) 
and the corresponding Hamiltonian reads 1 2 6 1 2 	.			      (23) 

We first continue with the quantization of the theory based on the gravitational Hamiltonian given by Equation 
(16). Using the equation of state of a perfect fluid , with  being the energy density, and following the 
procedure described by Lapchinsky and Rubakov (1977), we obtain the following expression for the action of 
the combined system of gravitational field plus matter 	 ϕ 	 	 ℋ 	,																																        (24) 
where the super Hamiltonian ℋ is given by  																																																									ℋ ℋ 	P a e ,																																														         (25) 

and  																																											P a 1 ω / ϕ θS / e / 	.																																																			 26) 

Specializing now to the case of radiation filled universe with  , we make following canonical transformation 

to new variables (Lapchinsky & Rubakov, 1977) T 	 e P P ,													P 	 P e 	,	 
                                          (27) Φ ,     	. 

One then easily shows that 																																																 	 	 Φ	,																																			           (28) 

and the action becomes  																																													 	 Φ	 ℋ 																									            (29) 

where we have dropped the 	 term since it a total derivative. The super-Hamiltonian ℋ is given by  																		ℋ 	 1 	 6 1 	.																          (30) 

The variable  is a global time since it does not involve the canonical momenta (Alvarenga & Lemos, 1998; 
Hajicek, 1986; Beluardi & Ferraro, 1995). A similar analysis can be carried out for the model based on  
leading to the following super-Hamiltonian ℋ 1 2 	 6 1 2 		.		        (31) 

3. Quantization and the Wheeler-DeWitt Equation 
We first deal with the model based on the super-Hamiltonian given in Equation (30). The Wheeler-DeWitt 
quantization scheme requires the standard representation of canonical momenta into operators 																																										 → 	 	,     → 	,      → 	,                    (32) 

in order to form the operator Ĥ. The Wheeler-Dewitt equation reads 																																																																						ĤΨ 0,																																																																				        (33) 
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where Ψ is the wave function of the Universe. In our case this equation reads 																					 6 1 Ψ																												        (34) 

Equation (34) has the form of a Schroedinger equation with  playing the role of the time. In writing Equation 
(34) we have ordered the factors so that the variables  and  appear on the left of the derivative operators. 
We shall seek solutions of Equation (34) of the form 																																								Ψ , , 	 , 	,																																																																(35) 

where  is a constant. The wave function  satisfies the equation 																														 6 1 E ψ 0	.																							         (36) 

Equation (36) is a second order hyperbolic linear partial differential equation. Now in order to interpret  as a 
true time and Equation (34) as a genuine Schroedinger equation, the operator 																																					Ĥ 6 1 ,																								          (37) 

must be self-adjoint. The scale factor  is restricted to the domain 0,  so that the minisuperspace 
quantization deals with the wave functions defined for a restricted to the half-line 0,∞ .	 As is well known 
certain conditions have to be imposed on the wave functions in order to ensure the self-adjointness property. To 
do this we first define the inner product by 																																																									 , 	 	 	 ∗ , , 	.																																			      (38) 

The factor  in Equation (38) will remove the 	factor in front of the differential operator /  thereby 
rendering establishing its self-adjointness dependent only on the boundary conditions on the wave function. It is 
the simplest way to achieve self-adjointness for the second term on the right hand side of Equation (37) and also 
obviates the need for further factor ordering beyond that indicated in Equation (34) for that term. Thus the 
conditions of square integrability, which are necessary to ensure the existence of the inner product, as well as 
either of the two conditions 																																																											 0, 	0	,																																																																        (39) 

or  																																																										 0, 0																																																														          (40) 

are required.  

Next we make the following replacement in the first term of Equation (37) for Ĥ 																																							 → .																																												        (41) 

This replacement is dictated by the need to make Ĥ self-adjoint. It is of course not the most general choice but 
we choose it for its simplicity. We readily conclude that the requirement of square integrability for the wave 
function and its first and second derivatives are enough to ensure self-adjointness for the operator . Needless to 
say the factor a introduced in the definition of the inner product above does not affect the operation in Equation 
(41) which is needed to ensure self-adjointness properties of the first term on the right hand side of Equation 
(37). Making the replacement of Equation (41) in Ĥ, Equation (36) gets replaced by  										 6 1 E Ψ 0	.											           (42) 

Equation (42) is again hyperbolic and we proceed to reduce it to a canonical form. We introduce new coordinates 																								 , 	,											 , 	,																																																																(43) 

and readily show that the canonical form is  																																																		 6 	,																																											           (44) 

with  																																						 , ,				 , ln |1 | 	.																											           (45) 

We look for a factorizable solution of Equation (44) 																																																							 , 	,																																												             (46) 
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and obtain  																																																 6 	,																																	              (47) 

where the prime indicates differentiation with respect to the argument. Clearly we can separate the  and  
dependencies only for 0. For 1	we cannot disentangle the  and  dependencies and the method 
of obtaining factorizable solutions in the manner of Equation (46) does not work. For the case 0, we obtain 
the equation 																																																				 / 	,																													                (48) 

where  is a constant. This leads to the solutions 																																							 exp 	 	,																																																				        (49) 																																												 exp 6 	.																																																	         (50) 

where ,  are constants. In terms of the original variables ,  the solution reads 																														 , 	 exp 6 1 	,																														          (51) 

where 	is a constant. If 0 we must have 0 in order for the wave function to vanish as → ∞. 
Taking 0,	good asymptotic behaviour also obtains for → ∞. However the wave function blows up for → ∞. On the other hand if 0, then good asymptotic behaviour in  requires 0. In this case the 
wave function vanishes for → ∞ but blows up for → ∞. We note that the wave function satisfies the 
boundary condition of Equation (40) dictated by the requirement of self-adjointness. 

The stationary solutions of Equation (51) thus have infinite norm and to obtain finite norm solutions we have to 
construct wave packets by superposing these stationary solutions.  

To do this we first note from Equation (48) that we can write 																																																				 	 	,																																																															      (52) 

where  is a constant and we have 	 . Taking 0 for definiteness, it follows that 0 since 0. Upon including the dependence we can write our solution in terms of  and  as 																															Ψ a, R, T 	Z exp 	 μa a 1 βR iET 	,																            (53) 

and construct the wave packet as,  																				Ψ 	 exp 	 1 	,																          (54) 

where  is suitably chosen. As an illustration we choose 																																													 	 √ 	 	; 							 	 0	.																																	           (55) 

Equation (55) for  represents a Gaussian function modulated by the factor √ . This choice is found to 
give rise to a wave function that has the requisite asymptotic behaviour which would ensure the finiteness of the 
inner product and hence normalizability.  

Defining  																																																			 	 1 	 	,																																													          (56) 

we express Ψ  as 																																					Ψ 	√ 	 exp 	.																						           (57) 

The integration is carried out (Prudinov, Brychkov, & Marichev, 1986) yielding 																								Ψ / exp / / 	,								            (58) 

where  is the modified Bessel function. Using the asymptotic expansion of  (Bender & Orszag, 
1999) ~	 	 1 	 	…… . . ,			 → ∞;							| | 	,							         (59) 

we obtain the following asymptotic expression for Ψ  
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Ψ 	~ √ 	 	 	 36	 1 12	 	 	 1 / 	,				        (60) 

as → ∞ with 																																| tan | 	,																													              (61) 

and we have taken 	to be real for simplicity. The asymptotic behaviour of Ψ  expressed by Equation (60) 
ensures the finiteness of the inner product and hence the normalizability of the wave function given in Equation 
(58). In fact since the limit → ∞ can be achieved by any of the variables going to infinity we have 																							Ψ ~	 / 	 		,								 → ∞	,									 , 			 	,																														        (62) 																							Ψ ~	 / 	 		,							| | → ∞	,								 , 			 	.																										          (63) 

Next we turn to the Hamiltonian ℋ , given by Equation (31). Following a similar procedure and writing the 
wave function Φ in the form of Equation (35) as Φ exp 	leads to  	 6 1 2 0	.				      (64) 

The canonical form for 0	reads 																																										 0																		                 (65) 

where  as before and  is given by 																																																					 ln |1 2 | 	.																																																											     (66) 

Equation (65) does not possess factorizable solutions. We seek solutions for large  at fixed ′. Approximating 
the equation to read 																																									 	 0																																												        (67) 

we obtain the solution  																																							 exp 6	 	 	,																																							        (68) 

where  and  are constants. In terms of the variables  and  we have 																													 exp 6 	 1 2 	.																																							     (69) 

We can also obtain approximate solutions of Equation (65) for → 0. We get 																																						 exp 	6	 	 1 2 	,																																													     (70) 

where  and  are constants. This solution differs from that of Equation (51) in that the coefficient of  is 
doubled and in the fact that it holds for → 0 only in the model at hand. 

4. Computing Expectation Values 
The expectation value of an operator  in the state Ψ  is given by 																																												 	 	 , 	, 																																																													      (71) 

where the inner product is defined by Equation (38). We are particularly interested in computing the expectation 
values for the scale factor and the Ricci scalar. However it is difficult to do this in general for Ψ  given in 
Equation (58). Instead we shall consider two limiting values of ,  namely 0  and 	 → ∞  where 
computations become manageable. We denote by 0  the value of the variable  given by Equation (56) 
when 0 and perform a change of variables from ,  to , ᴠ  given by 																																 ,						ᴠ 0 	 1 .																																				        (72) 

The Jacobian of the transformation is easily calculated to be 																																																							 ,, 				 ᴠ / 																																																	             (73) 

and the inner product then reads 																	 Ψ ,Ψ 	 ᴠ	 	ᴠ , ᴠ 	,																																								     (74) 

where  
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, ᴠ | | ᴠ / exp 2 ᴠ / ᴠ / ᴠ 			.											        (75) 

The factorization of the integrand in Equation (74) into a function of  multiplied by a function ᴠ makes the 
calculations of  very simple as it obviates the need of computing the integration over the variable ᴠ.  
The integral over ᴠ	simply cancels between the numerator and denominator in Equation (71) and we find for 

, the expectation value at 0, the result 																																																												 	.																																																					             (76) 

We remark that this result is exact and we can interpret this equation to mean that the constant μ is determined 
by the expectation value of the scale factor at 0. Calculating  in this fashion however is not 
feasible as we do not have the factorization property for the integrand alluded to above.  

Next we turn to the case of → ∞. For this purpose we use the asymptotic form of Ψ  given by Equation 
(60). In the expression for the inner product we encounter the following integral over  																																								 	 	 , , 		,																																																		         (77) 

where , , 1 	 1 / 																     (78) 

and  																																									 	,									 	 		.																																																				         (79) 

We change variable to 1 			and furthermore let 																																																			 	.																																																					             (80) 

The integral I then reduces to the following 																																														 	 / 	,																																													          (81) 

which is readily evaluated to give 																																										 	 				.																																																																	       (82) 

Proceeding in this manner we finally arrive at the following results for the expectation values in the asymptotic 
limit → ∞ 																																																															 	~	 																																											                  (83) 

and  																																																										 	~ 		.																																										                 (84) 

We remark that  in general has non-trivial 	dependence as the expression for it in terms of the modified 
Bessel functions shows. It is however interesting to find that asymptotically, as → ∞,  assumes the 
same value it did at 0. It is also interesting that the quantity  which appears in Equation (4) as an 
arbitrary parameter, acquires a physical meaning in terms of the inverse of the expectation value of the Ricci 
scalar in the limit → ∞. 

5. Conclusions  
In this work we have studied quantization of the  gravity model within the minisuperspace framework with 
matter being described by a perfect fluid. The velocity potential formalism of Schutz (1970, 1971) was used to 
describe the dynamics of the fluid. When performing the canonical quantization we employed the scale factor  
and the curvature scalar  as our variables and eliminated the second derivative of the scale factor 	through 
integration by parts. This method of quantization gave rise to a Wheeler-DeWitt equation that we were able to 
solve exactly in the case of flat space-like sections. A different method of quantization due to Vilenkin (1985) 
was also employed. In this method the equation expressing  in terms of , Equation (10), is regarded as a 
constraint and is introduced into the expression for the action using a Lagrange multiplier. The Hamiltonian 
obtained in this way is different from that arrived at by the first method and we are led to conclude that the two 
methods of quantization are not equivalent. Moreover the resulting Wheeler-DeWitt equation in the second 
method does not possess factorizable solutions even for the case of flat space-like sections. We managed to 
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obtain solutions only for asymptotic values of the variables 	and . 

The exact wave functions obtained by first method, however, did not possess the requisite behavior as → ∞ 
and hence it was necessary to superpose them in order to obtain wave functions that describe physical states. We 
managed to construct a wave function that has finite norm and used it to calculate the expectation value of the 
scale factor  at 0. It proved however to be difficult to compute expectation values for finite 
non-zero  but we were able to calculate 	and  for large . It is interesting to note that for → ∞,  assumes same value it did for 0. This seems to suggest a contraction scenario in which the 
universe returns to its initial size when → ∞. 

It is important to clarify the issue of presence or absence of singularities. Since we could not calculate  
for arbitrary values of ,	 we cannot deduce that it never vanishes. However the existence or non-existence of 
singularities may be addressed from another view point (Christodoulakis & Papadopoulos, 1988). Recalling our 
definition of the inner product given by Equation (38) we can obtain the probability density 																																																																 |Ψ| 																																																																										    (85) 

for the stationary solutions given by Equation(51). It is clear that → 0 as → 0 and thus according to this 
criterion the singularity is avoided for the model at hand. 
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