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Abstract

We present a new formula which models the rate of decline of supernovae (SN) as given by the light curve in
various bands. The physical basis is the conversion of the flux of kinetic energy into radiation. The two main
components of the model are a power law dependence for the radius–time relation and a decreasing density with
increasing distance from the central point. The new formula is applied to SN 1993J, SN 2005cf, SN 1999ac, and
SN 2001el in different bands.
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1. Introduction

The light curve (LC) of supernovae (SN) at a given wavelength λ denotes the luminosity–time relation. The
astronomers work in terms of apparent/absolute magnitude and therefore the LC in SN is usually presented as a
magnitude versus time relation. We have two great astronomical classifications for the LC: type I SN and type II
SN. The type I has a fast decrease in magnitude followed by a nearly linear increase. In luminosity terms, the SN
has a fast increase followed by a nearly exponential decay. The type II has a fast decrease in magnitude followed
by oscillations, type IIb, or a plateau, type IIp; a decay follows the plateau. In this complex morphology, we will
always specify the type of SN under consideration. The luminosity is usually modeled by the formula

L = Lλ,0 exp(− t
τ

), (1)

where L and Lλ,0 are the luminosity at time t and at t = 0 respectively, and τ is the typical lifetime, see Bowers
and Deeming (1984). As an example, the radioactive isotope 56Ni has τ = 8.767 days. On introducing the apparent
magnitude mλ, the previous formula becomes

mλ = k′λ + 1.0857(
t
τ

), (2)

where k′λ is a constant. The absolute magnitude Mλ scales in the same way:

Mλ = k′′λ + 1.0857(
t
τ

), (3)

where k′′λ is another constant. The observational fact that, as an example, in IC 4182 the LC has a half-life
of 56 days, requires the production of 56Co, see van Hise (1974). The previous formula is an empirical relation
which is based solely on observations rather than theory. The theory for SNII LCs was first developed by Grasberg,
Imshenik, and Nadyozhin (1971) and later analytically and numerically explored by Falk and Arnett (1973), Arnett
(1980), Arnett and Fu (1989). A model for the luminosity in Hα of supernovae as a function of time can be found
in Figure 7 of Chevalier and Fransson (1994). The LCs of type Ia SN have been explained (including the secondary
maximum) by a time-dependent multigroup radiative transfer calculation, see Kasen (2006). A model for type II
supernovae explosions has been built including progenitor mass, explosion energy, and radioactive nucleosynthesis,
see Kasen and Woosley (2009). The model atmosphere code PHOENIX was used to calculate type Ia supernovae,
see Jack, Hauschildt, and Baron (2011). The previous works leave a series of questions unanswered or merely
partially answered.
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• Given the observational fact that the radius–time relation in young SNRs follows a power law, is it possible
to find a theoretical law of motion which fits the observations?

• Can a model of an expansion in the framework of the thin layer approximation produce the observed radius–
time relation?

• Can we express the flux of kinetic energy in the framework of an approximate law of motion and a medium
characterized by a decreasing density?

• Can we parametrize the conversion of the flux of kinetic energy into total observed luminosity?

• Can we parametrize the fraction of conversion of the total luminosity into the optical bands?

In order to answer these questions, in Section 2.2 we analyze the existing equations of motion for SN 1993J as
well a new adjustable equation. Section 3 reviews the basic formulas of synchrotron emission and reports the
conversion of flux of kinetic energy into an observed band. Section 4 reports the application of the new formulas
to different SNs in various bands.

2. The Equation of Motion

This section reviews three existing parameters for SNRs, the power law model and a new solution in the framework
of the thin layer approximation.

2.1 Some Existing Solutions

The Sedov–Taylor solution is

R(t) =
(

25
4

E t2

π ρ

)1/5

, (4)

where E is the energy injected into the process and t is time, see Sedov (1944, 1959), Taylor (1950a, 1950b),
McCray (1987). Our astrophysical units are: time, (t1), which is expressed in years; E51, the energy in 1051 erg;
n0, the number density expressed in particles cm−3 (density ρ = n0m, where m = 1.4mH). In these units, Equation
(4) becomes

R(t) ≈ 0.313 5

√
E51 t12

n0
pc. (5)

The Sedov–Taylor solution scales as R(t) ≈ t2/5 = t0.4.

A second solution is connected with momentum conservation in the presence of a constant density medium, see
Dyson and Williams (1997), Padmanabhan (2001), and Zaninetti (2009). The astrophysical radius in pc as a
function of time is

R(t) =
4
√

R0
3 (

4.08 × 10−6 v1 (t1 − t0) + R0
)

pc, (6)

where t1 and t0 are the time in years, R0 is the radius in pc when t1 = t0, and v1 is the velocity in km s−1 when
t1 = t0. The thin layer solution in the presence of a constant density medium scales as t0.25. A relativistic solution
of the thin layer approximation can be found in Zaninetti (2010).

A sophisticated approach as given by Chevalier (1982a, 1982b) analyzes self-similar solutions with varying inverse
power law exponents for the density profile of the advancing matter, R−n, and ambient medium, R−s. The previous
assumptions give a law of motion R ∝ t

n−3
n−s when n > 5.

2.2 The Equation of Motion as a Power Law

The equation of the expansion of an SNR can be modeled by a power law of the type

R(t) = R0(
t
t0

)α, (7)

where R is the radius of the expansion, t is the time, R0 is the radius at t = t0, and α is an exponent which can
be found from a numerical analysis. In order to find the unknown parameters, we analyzed the data of supernova
SN 1993J, classified as type IIb, which began to be visible in M81 in 1993, see Ripero et al. (1993), and presented
a circular symmetry for 4000 days, see Marcaide, Martı́-Vidal, Alberdi, and Pérez-Torres (2009). Its distance is
3.63 Mpc (the same as M81), see Freedman, Hughes, Madore, Mould, and Lee (1994).
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The velocity is

V(t) = αR0(
1
t0

)αt(α−1). (8)

As an example, Figure 1 reports the fit of SN 1993J. We have chosen this SN because:

• it presents a nearly spherical expansion,

• the temporary radius of expansion has been measured for ≈ 10 yr in the radio band, see Marcaide, Martı́-
Vidal, Alberdi, and Pérez-Torres (2009).

The observed radius–time relation of SN 1993J allows us to calibrate our model and the application of the least
squares method through the FORTRAN subroutine LFIT from Press, Teukolsky, Vetterling, and Flannery (1992)
allows finding α = 0.828. Therefore the radius is growing more slowly than a free expansion with constant velocity,
R ∝ t, but more quickly than the Sedov–Taylor solution, R ∝ t0.4, see Equation (4).

Figure 1. The theoretical radius as given by the power law fit represented by Equation (7) with α = 0.828, R0 =

0.0087 pc and t0 = 0.498 yr. The astronomical data of SN 1993J are represented by vertical error bars and are
extracted from Table 1 in Marcaide et al. (2009)

2.3 An Adjustable Equation of Motion

We assume that around the SNR the density of the interstellar medium (ISM) has the following two piecewise
dependencies

ρ(R) =
{
ρ0 if R ≤ R0

ρ0( R0
R )d if R > R0 .

(9)

This assumption allows us to set up the initial conditions, otherwise the dependence ρ(R) ∝ ( R0
R )d will have a pole

at R = 0. At the moment of writing there is not a clear determination of the gradients around the SN and therefore
d can be considered a free parameter.

In this framework the SN is moving and the density, which is at rest, decreases as an inverse power law with an
exponent d which can be fixed from the observed temporal evolution of the radius. The mass swept, M0, in the
interval 0 ≤ r ≤ R0 is

M0 =
4
3
ρ0πR0

3. (10)

The mass swept, M, in the interval 0 ≤ r ≤ R with r ≥ R0 is

M = −4 r3ρ0π
(R0

r

)d

(d − 3)−1 + 4
ρ0πR0

3

d − 3
+

4
3
ρ0πR0

3. (11)

Momentum conservation in the thin layer approximation requires that

Mv = M0v0, (12)

where v is the velocity at t and v0 is the velocity at t = t0. The previous expression as a function of the radius is

v =
r0

3v0 (3 − d)
3 r0

dR3−d − r0
3d
. (13)
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In this differential equation of first order in R, the variables can be separated and an integration term-by-term gives
the following nonlinear equation FNL

FNL =
(
4R0

3d − R0
3d2

)
R − 3R0

dR4−d + R0
4d2 + 12R0

3v0t + 3R0
4 − 4R0

4d

+7R0
3v0dt0 + R0

3v0d2t − 7R0
3v0dt − 12R0

3v0t0 − R0
3v0d2t0 = 0. (14)

An approximate solution of FNL(r) can be obtained assuming that 3Rd
0R4−d ≫ −(4R3

0d − R3
0d2)R

R(t) = (R0
4−d − 1

3
dR0

4−d(4 − d) +
1
3

(4 − d)v0R0
3−d(3 − d)(t − t0))

1
4−d . (15)

Up to now, the physical units have not been specified, pc for length and yr for time are perhaps acceptable choices.
With these units, the initial velocity v0 is expressed in pc yr−1 and should be converted into km s−1; this means that
v0 = 1.02 × 10−6v1 where v1 is the initial velocity expressed in km s−1.

The astrophysical version of the above equation in pc is

R(t) = (R0
4−d − 1

3
dR0

4−d(4 − d) + 3.402 10−7(4 − d)v1R0
3−d(3 − d)(t1 − t0))

1
4−d pc, (16)

where t1 and t0 are times in years, R0 is the radius in pc at t1 = t0 and v1 is the velocity at t1 = t0 in km s−1. The
approximate solution (15) has the following limit as t → ∞

R(t) = Ctht
1

4−d , (17)

where

Cth =

(
1
3

R0
3v0 (−3 + d) (−4 + d)

R0
d

) 1
(4−d)

. (18)

On imposing

α =
1

(4 − d)
, (19)

we obtain
d =

4α − 1
α
. (20)

where α is an observable parameter defined in Section 2.2. This means that the unknown parameter d can be
deduced from the observed parameter α. More details on this model, as well as a relativistic version, can be found
in Zaninetti (2011), where conversely the LC is not treated.

3. The Energy Cascade

This section contains the basic formula for the synchrotron emission, the transformation of the mechanical flux of
energy into the observed luminosity, and the conversion of the predicted flux at a given wavelength to the apparent
magnitude.

3.1 Synchrotron Emission

In SNR we detect non-thermal emission with intensity

I(ν) ∝ ν+β ∝ λ−β, (21)

(where ν is the frequency, λ the wavelength and β the power law index). As an example in the case of SN 1993J
after the transition from optically thick to optically medium, β becomes ≈ −0.6 after 2500 days, see Figure 8 in
Martı́-Vidal (2011). The conversion of the flux of kinetic energy into synchrotron luminosity can be obtained by
the following physical processes

• Turbulent evolution in the advancing shock in the framework of both the Kolmogorov and Kraichnan spec-
trum, see Fan, Liu, and Fryer (2010).

• Particle acceleration in a turbulent environment using a Monte Carlo approach for the diffusion and accel-
eration of the particles, coupled to a magnetohydrodynamics code in the SNR environment, see Schure,
Achterberg, Keppens, and Vink (2010).
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• A model for the evolution of the magnetic field in the advancing layer, see Reynolds (2011).

• Diffusion of the relativistic electrons from the position of the advancing layer, see Section 6 in Zaninetti
(2011).

The lifetime, τsyn, for synchrotron losses is

τsyn = 39660
1

H
√

Hν
yr, (22)

where H is the magnetic field in Gauss and ν is the frequency of observation in Hertz, see Lang (1999). The
outlined cascade of physical processes can work if the following inequalities are verified

tcas < ta < τsyn, (23)

where tcas is the time scale of turbulence formation and ta is the time scale of electron acceleration. In the following
we will assume that the synchrotron emission is the main source of luminosity. Two radioactive decays will be
considered in Section 4.

3.2 Non-Thermal and Thermal Emission

The synchrotron emission in SNRs is detected from 108 Hz of radio-astronomy to 1019 Hz of gamma astronomy
which means 11 decades in frequency. At the same time, some particular effects, such as absorption, transition from
optically thick to optically thin medium, line emission, and the energy decay of radioactive isotopes (56Ni, 56Co)
can produce a change in the concavity of the flux versus frequency relation, see the discussion about Cassiopea A
in Section 3.3 of Eriksen, Arnett, McCarthy, and Young (2009). A comparison between non-thermal and thermal
emission (luminosity and surface brightness distribution) can be found in Petruk and Beshlei (2007), where it is
possible to find some observational tests which allow the estimation of the parameters characterizing the cosmic
ray injection on supernova remnant shocks. At the same time, a technique to isolate the synchrotron emission from
the thermal emission is widely used, as an example see X-limb of SN1006 Katsuda et al. (2010).

3.3 The Temporal Evolution

The density of kinetic energy, K, is

K =
1
2
ρV2, (24)

where ρ is the density and V the velocity. In presence of an area A and when the velocity is perpendicular to that
area, the flux of kinetic energy Lm is

Lm =
1
2
ρAV3, (25)

which in SI is measured in J s−1 and in CGS in erg s−1 see formula (A28) in De Young (2012). In our case,
A = 4πR2, which means

Lm =
1
2
ρ4πR2V3, (26)

where R is the instantaneous radius of the SNR and ρ is the density in the advancing layer. The source of syn-
chrotron luminosity is assumed here to be proportional to the flux of kinetic energy. The density in the advancing
layer is assumed to scale as R−d, which means that

Lm ∝ R2−dV3. (27)

This last assumption is connected with the adjustable equation of motion which is derived in a decreasing density
environment, see Section 2.3. On adopting this point of view, d is an unknown parameter which allows matching
theory and observation. The temporal and velocity evolution are given by the power law dependencies of Equations
(7) and (8) and therefore

Lm ∝ t−αd+5α−3. (28)

The synchrotron luminosity Lλ and the observed flux S λ at a given wavelength λ are assumed to be proportional to
the mechanical luminosity and therefore

S λ = S 0 (
λ

λobs
)−β(

t
t0

)−αd+5α−3, (29)
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where S 0 is the flux when t = t0 at a given wavelength λobs. The apparent magnitude at a given color c, where c
can be U, B,V,R or I, is

mc = kc − 2.5 log10

∫
S eλIλdλ, (30)

where S eλ is the sensitivity function in the region specified by the wavelength λ, kc is a constant, and Iλ is the
energy flux reaching the earth. We now define a sensitivity function for a pseudo-monochromatic color system

S eλ = δ(λ − λi) i = U, B,V,R, I, (31)

where δ denotes the Dirac delta function, see Bowers and Deeming (1984). In this system the apparent magnitude
is

mc = kc − 2.5 log10 Iλ. (32)

On assuming that the intensity of emission and the flux of kinetic energy as given by (29) are directly proportional,
we obtain

mc = −2.5
(−α d + 5α − 3) ln (t)

ln (2) + ln (5)
+ kc, (33)

where kc is a constant:

kc = −2.5 log10
(
S 0 (

λ

λobs
)−β

)
+ kb, (34)

and kb is a constant.

In the previous equations we have three unknowns: α, kc and d. In the case of SN 1993J the value of α is deduced
from the data of the expansion. On fixing two times in the observed LC, t = t0 and t = t1, we have two corre-
sponding magnitudes m0 and m1. The resulting nonlinear system of two equations in two unknowns can therefore
be solved.

The (C1 −C2) color can be expressed as

(C1 −C2) = m1 − m2 = k12 − 2.5 log10

∫
S e2Iλdλ∫
S e1Iλdλ

, (35)

where k12 is a constant and Iλ is the energy flux reaching the earth. In a pseudo-monochromatic color system

C1 −C2 = k12 − 2.5β log10(
λ2

λ1
). (36)

According to the previous equation, the color of a SN should be constant with time. As an example in the case
of SN 2005cf (type Ia) (B–V) became stable after the first 120 days Pastorello et al. (2007). The constancy of the
color has been obtained with the assumption that the spectral index is constant with time. The spectral index in the
radio varies considerably but becomes constant, β ≈ −0.7, after ≈ 700 days, see Figure 8 in Martı́-Vidal (2011).
Late time photometric observations of SN 1993J show that (i − R) = −0.1 in the interval 692 days < t < 3260
days, further on (e − i) = −0.26 at 3245 days and (e − i) = −0.29 at 3504 days which means a small variation,
|∆(e − i)| = 0.03 in 259 days, see Table 3 in Zhang et al. (2004). In other words, the constancy of the color can be
applied after ≈ 700 days.

More precisely, the observed luminosity at time t can be expressed introducing the initial mechanical luminosity,
Lm0, defined as

Lm0 =
1
2
ρ04πR2

0V3
0 , (37)

where the index 0 stands for the first measurement. The astrophysical version of the above equation is

Lm0 = 1.39 × 1041 n1 R1
2v10000

3ergs s−1, (38)

where n1 is the initial number density expressed in units of particles cm−3, R1 is the initial radius expressed in units
of pc, and v10000 is the initial velocity expressed in units of 10,000 km s−1. The spectral luminosity, Lν, at a given
frequency ν is

Lν = 4πD2S ν, (39)
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with
S ν = S 0(

ν

ν0
)β, (40)

where S 0 is the flux observed at the frequency ν0 and D is the distance. The total observed luminosity, Ltot, is

Ltot =

∫ νmax

νmin

Lνdν, (41)

where νmin and νmax are the minimum and maximum frequencies observed. The total observed luminosity can be
expressed as

Ltot = ϵLm0, (42)

where ϵ is a constant of conversion from the mechanical luminosity to the total observed luminosity in the syn-
chrotron emission. The fraction of the total luminosity deposited in a color fc is

fc =
νc,min

β+1 − νc,max
β+1

νmin
β+1 − νmax

β+1 , (43)

where νc,min and νc,max are the minimum and maximum frequency of a color. Table presents some values of fc for
the most important optical bands.

Table 1. Table of the values of fc when νmin = 107 Hz, νmax = 1018 Hz and β = −0.7

colour λ (Å) FWHM (Å) fc
U 3650 700 6.86 ×10−3

B 4400 1000 7.70 ×10−3

V 5500 900 5.17 ×10−3

Hα 6563 100 0.56 ×10−3

R 7000 2200 9.32 ×10−3

I 8800 2400 7.5 ×10−3

At the time of writing, the number density in the advancing layer is unknown and we can therefore define ϵn1 as the
constant which allows adjusting theory and observations. About ϵ it should be said that by definition ϵ < 1. The
rapid rise in intensity in a SN can be modeled by Equation (47) for the radiative transfer when a time dependent
transition from optically thick to optically thin medium is considered. The solution of the radiative transfer equation
for the specific intensity per unit frequency, Iν, at the end of an astrophysical object, is

Iν(τν) = Iν(0) exp (−τν) +Gν(1 − exp (−τν)), (44)

where τν is the optical depth, Gν is the source function, and Iν(0) the intensity beyond the astrophysical object, see
Equation (1.30) in Rybicki and Lightman (1991). On considering only the intensity of the object (Iν(0) = 0) the
previous formula becomes

Iν(τν) = Gν(1 − exp (−τν)), (45)

where τν=1 represents the value at which the intensity is 63% of the source function. The temporal transition from
optically thick to optically thin medium before the maximum can be modeled by imposing τν = t

ta
where ta is a

typical time. This is an ‘ad hoc’ function that allows of modeling the transition before and after the maximum and
the consequent change of concavity of the LC as function of time. The time ta can vary from the few seconds of a
Gamma Ray Burst (GRB) to the few days of the optical bands.

A logarithmic form of Equation (45) introduces the apparent magnitude mν

mν = −1.085 ln
(
1 − e−

t
ta

)
+ kν, (46)

where kν is a constant.

We are now ready to introduce the two phase model which can be characterized by the following two piecewise
dependencies

mν =

 −1.085 ln
(
1 − e−

t
ta

)
+ kν if t ≤ t0

−2.5 (−α d+5α−3) ln(t)
ln(2)+ln(5) + kc if t > t0 .

(47)
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4. Applications

Figure 2 reports the decay of the R magnitude of SN 1993J, which is type IIb, as well our theoretical curve.

Figure 2. The R LC of SN 1993J over 10 yr (empty stars) and theoretical curve as given by (33) (full line). In this
case t0 = 5 days, d = 3.075, kc = 7.543 and α = 0.828. The data are extracted by the author from Figure 5 in

Zhang et al. (2004)

The theoretical temporal evolution of the Hα luminosity of SN 1993J as well the data are reported in Figure 3.

Figure 3. The Log-Log i-band (Hα luminosity) LC of SN 1993J over 10 yr (empty stars) and theoretical curve as
given by (42) (full line). In this case t0 = 5 days, d = 3.075, ϵn1 = 0.1 and α = 0.828. The data are extracted by

the author from Figure 7 in Zhang et al. (2004)

The Hα luminosity which is derived from the i−band is also fitted by the model of Chevalier and Fransson (1994).

A second example is SN 1993J cinque (type Ia) which has been analyzed in Pastorello (2007); Figure 5 and Figure
4 report the decay of the V and B magnitude of SN 1993J cinque as well our theoretical curve.

Figure 4. The V LC of SN 1993J cinque (empty stars) and theoretical curve as given by the two phase model (47)
(full line). The first phase is modeled by ta = 5 days and kν = 13.5 and the second phase by t0 = 20.5 days, d =

3.547, kc = 7.810 and α = 0.828. The data are the final S-corrected V magnitudes reported in Table 6 of Pastorello
et al. (2007)
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Figure 5. The B LC of SN 1993J cinque (empty stars) and theoretical curve as given by (33) (full line). In this
case t0 = 20.5 days, d = 3.83, kc = 7.286 and α = 0.828. The data are the final S-corrected V magnitudes as

reported in Table 6 of Pastorello et al. (2007)

The (B–V) color evolution of SN 1993J cinque is reported in Figure 6. Only the second phase is reported.

Figure 6. The (B–V) color evolution of SN 1993J cinque (empty stars) and the relative fitting straight line (full
line). The time ranges from 40 days to 100 days

A third example is the sample of 44 type Ia supernovae which have been observed in the UBVRI bands, see Jha et
al. (2006). We selected SN 1993J nove in the U band and Figure 7 reports the LC as well our fit.

Figure 7. The U LC of SN 1993J nove (empty stars) and theoretical curve as given by (33) (full line). In this case
t0 = 5 days, d = 3.17, kc = 11.44 and α = 0.828. The data are those reported at CDS

A fourth example is SN 1993J el (type Ia), which has been analyzed in Krisciunas et al. (2003). Figure 8 reports
the decay of the V magnitude of SN 1993J el. A comparison should be made with Figure 4 of Kasen (2006) which
uses the decay of 56Ni.
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Figure 8. The V LC of SN 1993J el (empty stars) in absolute magnitude and theoretical curve as given by the two
phase model (47) (full line). The first phase is modeled by ta = 4 days and kν = −18.64, and the second phase by

t0 = 21 days, d = 3.702, kc = −24.84 and α = 0.828. The data are extracted from Table 3 of Krisciunas et al.
(2003) and the adopted distance modulus is µ = 31.4 according to Kasen et al. (2006)

It is also interesting to plot the decay of the LC of SN 1993J el, see Krisciunas et al. (2003), as given by two
nuclear decay which, according to Equation (3), are straight lines, see Figure 9.

Figure 9. The V LC of SN 1993J el (empty stars) in absolute magnitude, theoretical curve as given by Equation
(3) when the radioactive decay of the isotope 56Ni (τ = 8.757 d or T1/2 = 6.07 d) was considered (full line), and
theoretical curve of the radioactive decay of the isotope 56Co (τ = 111.47 d or T1/2 = 77.27 d) was considered

(dashed line)

5. Conclusions

The SN’s are classified as spherical SN, as an example SN 1993J, and as aspherical SN, see as an example Racusin
et al. (2009) for SN 1987A . The theory here developed treats the spherical SN using classical dimensional ar-
guments. The conversion of the flux of kinetic energy into luminosity after the maximum in the LC explains the
curve of SNs in a direct form, see Equations (28) and (38) as well as in a logarithmic version, see Equation (33).
The overall LC before and after the maximum can be built by introducing two different physical regimes, see
Equation (47). The initial rise in intensity in the V-band is characterized by a typical time scale of ta ≈ 5 days and
the decrease can be theoretically fitted for t ≈ 3500 days. This large range in time is also the great advantage of
our model: the existing nuclear models cover ≈ 100 days, see Figure 2 in Leibundgut and Suntzeff (2003). The
standard approach of formula (2), which predicts a linear increase in the apparent magnitude with time, does not
correspond to the observations because the observed and theoretical magnitudes scale as m = a + b ln(t) where a
and b are two constants. As an example, Figure 9 reports two commonly accepted sources which are the radioac-
tive isotopes 56Co, see Georgii et al. (2000, 2002), Pluschke et al. (2001) and 56Ni, see Truran, Glasner, and Kim
(2012), Dessart et al. (2012): the radioactive fit is acceptable only for the first few days. The application of the
new formulas to three SNs in different bands gives acceptable results. As an example, Figure 2 reports the LC in
the R-band for SN 1993J and Figure 3 reports the LC for the Hα of SN 1993J. An example of the two phase model
as given by Equation (47) is reported in Figure 5 for SN 1993J cinque in the V-band. A careful analysis of the
previous figures shows that the theoretical and observed curves present different concavities in the transition from
small to large times. Similar results can be obtained assuming that all γ-rays produced by the decay of 56Ni and
56Co are converted into optical emission, see Figure 2 in Leibundgut and Suntzeff (2003). The observational fact
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that the initial velocity can be ≈ 30000 km s−1 requires a relativistic treatment that is necessary for future progress.
The analysis here performed treats the SN as a single object and therefore is not connected with various types of
recent cosmologies, see Astier and Pain (2012), Chavanis (2013), ElNabulsi (2013).

We conclude with a list of not yet solved problems:

• The observational fact that the initial velocity can be ≈ 30000 km s−1 requires a relativistic treatment of the
flux of kinetic energy that is left for future research;

• The connection between the cosmic ray production and the γ-rays in SNR, see Dermer and Powale (2013),
requires an analysis of the temporal behavior of the magnetic field.
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Marcaide, J. M., Martı́-Vidal, I., Alberdi, A., & Pérez-Torres, M. A. (2009). A decade of SN 1993J: Discovery of
radio wavelength effects in the expansion rate. Astronomy and Astrophysics, 505, 927-945.

Martı́-Vidal, I., Marcaide, J. M., Alberdi, A., Guirado, J. C., Pérez-Torres, M. A., & Ros, E. (2011). Radio emission
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