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Abstract 

The gist of this contribution is the search for a possible decomposition loophole in relativistic formulae. An 
attempt is presented where trigonometric mathematical instruments have been used in order to decompose the 
quantity “c—the light speed constant” into two components—the first one describing the longitudinal speed of 
the source and the second one describing the transverse vibrational speed of a quantum particle. The 
Matzka-Voigt complex number describing mathematically longitudinal speed of the source and transverse 
vibrational speed of quantum particles was postulated. The modulus of the Matzka-Voigt complex number equals 
to │c│= │λν│ = 299,792,458 ms-1 and can be inserted into the Maxwell´s equations. The known trigonometric 
functions were used to interpret graphically the “relativistic formulae” and to decompose these formulae into 
their components. This trigonometric approach opens a new way to interpret the quantitative data in the 
Euclidean space: “vis activa”, “vis viva”, “vis mortua”, kinetic energy, Doppler effect, quantum of formal action, 
etc. This trigonometric interpretation of “relativistic formulae” can be tested experimentally in the proposed 
experiments.  

Keywords: trigonometric functions, complex speed, modulus and norm of complex numbers, “vis activa”, “vis 
viva”, “vis mortua”, kinetic energy, quantum of formal action 

1. Introduction 

The relativistic formulae have been tested with the admirable experimental accuracy during the 20th century: e.g., 
Albert Einstein in 1905, Rindler in 1991, Taylor and Wheeler in 1992, Tipler and Llewellyn in 2002, Feynman, 
Leighton and Sands in 2005. However, this approach forces us to postulate the spacetime elasticity. The 
scientific literature is full of many attempts to find an “interpretation loophole” in this concept. There is one 
permanent dilemma: did we achieve the final possible mathematical description of Nature or are there any 
possible “hidden loopholes” that wait for their discovery? 

The history of the search of “hidden loopholes” in the special relativity formulae is very rich and can be now 
easily traceable using the Wikipedia. One interesting approach is the expression of relativistic formulae with 
hyperbolic functions in the 3D space promoted by Whittaker in 1910, Varićak in 1910, Robb in 1911, and 
recently refreshed by Dray in 2003 and Barett in 2011. There are some other geometrical descriptions of the 
special relativity formulae: e.g., Carroll in 2004, Crabbe in 2004, Bros in 2005, Delphenich in 2005, Ungar in 
2009, Dragon in 2012, and Naber in 2012. 

We will use the analogy with the prime factorization which is known to be a very difficult problem and many 
sophisticated prime factorization algorithms have been devised for special types of numbers. Can we find a 
trigonometric decomposition algorithm for the decomposition of the relativistic formulae into components that 
could describe the events in the 3D space? 

In this contribution we propose to use trigonometrical mathematical instruments and to decompose the quantity 
“c—the light speed constant” into two components—the first one describing the longitudinal speed of the source 
and the second one describing the transverse vibrational speed of a quantum particle. The known trigonometric 
functions will be used to interpret graphically the “relativistic formulae” and to decompose these formulae into 
their components. The decomposition of the quantity “c—the light speed constant” was nearly achieved by 
Woldemar Voigt in 1887. We will combine the mathematical instruments of Wilhelm Matzka from 1850 with 
Woldemar Voigt from 1887 in order to present a possible “decomposition loophole” for the quantity “c—the 
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light speed constant”. Three experimental tests will be proposed to verify this “decomposition loophole” and to 
estimate if this trigonometric concepts brings something new for this field of the research. 

2. Wilhelm Matzka and His Interpretation of Complex Numbers 

There are very well-known contributions of mathematicians to the topic of the geometrical interpretation of 
complex numbers: Caspar Wessel in 1799, Jean Robert Argand in 1806, Augustin-Louis Cauchy in 1821, and 
Carl Friedrich Gauss in 1831. 

In 1850 Wilhelm Matzka published his book “Versuch einer richtigen Lehre von der Realität der vorgeblich 
imaginären Grössen der Algebra, oder einer Grundlehre von der Ablenkung algebraischer Grössenbeziehungen”. 
(“An Attempt at a Correct Theory of the Reality of Supposed Imaginary Numbers in Algebra, or a Basic 
Knowledge of the Deflection of Algebraic Quantitative Relations”). In this book Matzka proposed the original 
description of complex numbers as agglomerates of the longitudinal and transverse motions and added arrows to 
those numbers in order to describe their motion in the space. 

We can use the Matzka’s way of writing of complex numbers as a stimulating aid for the description of photon 
properties: Euler-Matzka bits. See the page 158 of the Matzka’s book “Versuch…”. 

 

Table 1. Matzka’s writing of complex numbers: Euler-Matzka bits  

z1 = →a + ↑b = │z│(→cosθ + ↑sinθ) = →e↑θ │z│ 

z2 = ←a + ↑b = │z│(←cosθ + ↑sinθ) = ←e↑θ │z│ 

z3 = ←a + ↓b = │z│(←cosθ + ↓sinθ) = ←e↓θ │z│ 

z4 = →a + ↓b = │z│(→cosθ + ↓sinθ) = →e↓θ │z│ 

 

The details about the life and other mathematical works of Wilhelm Matzka can be found in the excellent 
biography written by Michaela Chocholová and Ivan Štoll. 

3. Matzka-Voigt Complex Number with its Modulus │zMV│ = │c│ = │λ ν│ = 299,792,458 ms-1 

We will take the inspiration from the Wilhelm Matzka´s description of the complex numbers and combine it with 
mathematical approach of Woldemar Voigt who formulated the Voigt transformation for the transverse photon 
waves in 1887 (See Ernst and Hsu in 2001). 

We will get the Matzka-Voigt complex number as the aggregate of the longitudinal speed of the source and the 
transverse particle vibrational speed. In this agglomerate →(v) is the longitudinal speed of the source and 
↓[c√(1-v2/c2)] is the periodical transverse particle speed:  
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The modulus of this Matzka-Voigt complex number is │zMV│=│c│=│λν│. We propose to use this modulus 

│c│in the Maxwell equations. In the Maxwell´s equations, the relation between electricity, magnetism, and the 

modulus of the light speed can be summarized by the equation: 
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where │c│is the modulus of the light speed, λ is the wavelength of the transverse particle vibration, ν is the 
frequency of the transverse particle vibration, μ0 is the permeability of free space, ε0 is the permittivity of free 
space, the term →(v) is the longitudinal speed of the source, and ↓[c√(1-v2/c2)] is the transverse vibrational 
speed of the photon particle. 

Now we can modify the Principle of Invariant Light Speed of Albert Einstein from the year 1905: “…light is 
always propagated in empty space with a definitive velocity c which is independent of the state of motion of the 
emitting body” as the Principle of Invariant Modulus of the Light Speed: “Light is always propagated in space 
with a definitive modulus of the light speed │c│which is independent of the state of motion of the emitting body”. 



www.ccsenet.org/apr Applied Physics Research Vol. 5, No. 6; 2013 

133 
 

For the case of addition of velocities v1 + v2 we can modify the Matzka-Voigt complex number as: 

 

 (3) 

 

The source keeps its longitudinal speed →v, while the photon simultaneously periodically vibrates in the 
transverse direction with the speed ↓[c√(1-v2/c2)] and the period ↓T in the transverse direction: 

 

(4) 

where ↓T0 represents the period of the vibration in the transverse direction for the longitudinally motionless 
source of that particle. The instruments that measure time based on the transverse vibrational principle of 
particles are therefore influenced by the longitudinal motion of those instruments. 

4. Doppler-Matzka Effect 

Christian Doppler derived his famous formula to describe the dependence of the observed wavelength and 
frequency on the relative motion of the source and the observer in 1842. For the rapidly moving quantum 
particles we have to insert into this formula the correction for the period (↓T/↓T0) for the periodical transverse 
vibration of these particles: 
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It is a historically interesting fact that Christian Doppler and Wilhelm Matzka took the same position of the 
professor of mathematics on the Prague Polytechnic (now Czech Technical University). Doppler took this 
position in the years 1841–1847 and Matzka in the years 1849–1850 (later Matzka was the professor of 
mathematics on the Prague University in the years 1850–1871). (For further details see the biography written by 
Chocholová and Štoll). 

5. Trigonometric Interpretation of Relativistic Formulae 

Figure 1 surveys the known trigonometric functions in the circle with radius R = 1 and the defined value cos(θ) = 
v/c (v/c ≤ 1). 
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Figure 2 depicts graphically these trigonometric functions with relativistic formulae. The lengths of lines 
depicted in that Figure 2 were checked by mathematical instruments of René Descartes. We followed the advice 
of René Descartes: “Many problems can be solved geometrically if we can graphically depict the lengths of 
those relations”. 
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The kinetic energy and “alive energy” can be fused into one term “vis viva” and we will get the Leibniz´s 
formula for “vis viva” and “vis mortua” for fermions: 

 

 

(10) 
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When the external forces increase the speed of the fermion particle then the external photon mass will be 
deposited and is visible as a part of the “vis viva” while a part of the internal mass of the gross body transforms 
from the “dead mass” to the “alive mass”: 



























































 c
vmm

c
vm

c
v

c
v

m
2

2

002

2

0

2

2

2

2

0 1111

1

1

1

                  (11)
 

The total mass of the moving fermion particle m is composed from three components: 1) the deposited photon 
mass, 2) the “alive mass”, and 3) the “dead mass”. The deposited photon mass on the moving fermion can create 
some new particles in instruments such as the LHC apparatus. 

In the period 1881–1905 several researchers derived their formulae for the longitudinal mass and transverse mass. 
E.g., Thomson in 1881, Searle in 1897 , Poincaré in 1900, Abraham in 1903, Kaufmann in1902, Lorentz in 1904, 
Einstein in 1905. In March 1906 Max Planck derived the expression for the “vis activa” but he was working with 
that expression as with “vis viva” (die lebendige Kraft). The evolution of the interpretation of the equation E = 
mc2 was many times surveyed, e.g. Leong and Chin in 2005. 

The concept of the longitudinal mass and the transverse mass was discussed till the year 1912. Tolman in 1912 
introduced the concept of relativistic mass and the concept of the longitudinal mass and transverse mass was not 
used later in the relativity theories. 

There are many discussions on the topics of the “rest mass” and the “relativistic mass”, e.g. Okun in 1989, Hecht 
in 2009.  

See also many contributions on the “vis viva” controversy, e.g. Newton in 1687, Leibniz in 1695, Mach in his 
“Die Mechanik in Ihrer Entwicklung” in 1900, Hankins in 1965, Iltis in 1971, Smith in 2006. 

Table 3 summarizes the series expansions for relativistic formulae that can be used for lower speed 
aproximations of the relativistic formulae. The aproximations for lower speeds were derived by Descartes, 
Huygens, Newton, Leibniz, Doppler, etc. The relativistic formulae for the case of the elastic spacetime were 
derived by Albert Einstein. 
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Table 3. Series expansions for used relativistic formulae 
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7. Leibniz and Maupertuis—Two Interpretations of the Quantum of Action 

In 1744 Pierre Louis Maupertuis suggested that the quantity to be minimized was the product of the duration of 
movement within a system and the “vis viva”. This leads to the Planck quantum of action h for photons: 

     cmh 00
  (12) 

where m0 is the photon mass, λ0 is the photon wavelength and c is the longitudinal light speed. 

In 1689 Gottfried Wilhelm Leibniz proposed that the quantity to be minimized was the product of time and the 
“vis activa” (See Antognazza, p. 304). This leads to the Leibniz-Planck quantum of formal action │h│ for 
photons: 

cmh 00
                                     (13) 

where m0 is the photon mass, λ0 is the photon wavelength and │c│ is the modulus of the light speed. 

Both interpretations of the quantum of action have the same numerical value [6.626 069 57(29)×10-34 J s], 
however the physical meaning of those concepts is different.  
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Table 4. Properties of photons described by the modulus of the Matzka-Voigt complex number and the 
Leibniz-Planck quantum of formal action  

Modulus of the Matzka-Voigt complex number │c│ 

 1100
c  

Leibniz-Planck quantum of formal action │h│ 

cmcmh  1100
  

Quantum of formal effect │h│/ │c│ 

 1100 mm
c
h


 

Quantum of formal consequence │h│/ │c│2 

 1

1

0

0
2

m
v
m

c
h


 

Quantum of transmission of information │h││c│ 

cmcmch
2

11

2

00    

Transmis 
In Table 4 the photon mass m0, wavelength λ0 and frequency ν0 describe the photon properties at the source while 
m1, λ1, ν1 describe those properties at the receiver, │c│ is the modulus of the light speed, │h│ is the 
Leibniz-Planck quantum of formal action. These photons transmit to the observer information about the relative 
velocity, distance, etc. We should find experimentally not only the dependence of the wavelength of the observed 
photon on the relative motion of the source and the observer but also the dependence of the photon mass on the 
relative motion of the source and the observer. 

 

Table 5. Two versions of the interpretation of photon properties: Version A and Version B 

Parameter of the photon Version A Version B 

Longitudinal photon speed in the 

medium 

→(v) c (light speed) corrected for that 

medium 

Transverse vibrational 

photon speed 














c
vc 2

2

1
 

c (light speed) 

Modulus of the light speed │c│ not defined 

“Vis activa” of photon │h│ν = m0 │c│2 h ν = m0 c
2 

“Vis viva” of photon 

c
c
vm

2

2

2

0
11
















 
m0 c

2 

“Vis mortua” of photon 

c
c
vm

2

2

2

0
1
















 
not defined 

Rest mass of photon m0 0 

Elasticity of transverse vibrational 

particle speed 

space-time 

 

Table 5 brings information that the photon mass of the given photon is both m0 at the maximum speed c or at the 
speed v = 0. We can manipulate with the longitudinal speed v in different media and thus modify the ratio of the 
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“vis viva” and “vis mortua” of that photon. The quantity of “vis viva” of that photon can be experimentally 
tested in photoelectric experiments.  

8. Photoelectric Effect—The Test of This Concept 

Philipp Lenard in 1902 and R.A. Millikan in 1916 experimentally and Albert Einstein in 1905 theoretically 
described the photoelectric effect as: 

WhK  max  (14) 

where Kmax is the maximum kinetic energy of an ejected electron, h is the Planck constant and ν the frequency of 
the incident photon, the term W is the work function which describes the minimum energy in order to remove a 
delocalized electron from the surface of the metal. 

We propose to test this formula: 
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

                (15) 

where me is mass of the electron, ve its speed after the ejection, mph is the mass of the photon and vph the photon 
longitudinal speed in that medium (air, water, metal, etc.), │c│is the modulus of the light speed, h is the Planck 
constant and ν the frequency of the incident photon. In this concept “vis viva” of photon determines the kinetic 
energy of the ejected electron. By the modification of the photon longitudinal speed vph we can manipulate with 
the kinetic energy of the ejected electron. 

9. “Vis viva” of Fermions—The Test of This Concept 

We propose to repeat Poleni’s experiment (1721) and ´s Gravesande’s experiment (1729) where we expect the 
dependence on the “vis viva” of the moving body and not on the kinetic energy of the moving body: 

 

(16) 

where v is the speed of the moving fermion with the rest mass m0. There is a well documented long discussion 
(“vis viva” controversy) on the difference of the energy acting in time and the energy acting in space: PhD 
Thesis from Carolyn Merchant Iltis: “The Controversy over Living Force: From Leibniz to D´Alembert” written 
in 1967. 

10. “Quantity of Motion”—Momentum of Fermions—The Test of This Concept 

Suppose there are two fermion particles of equal mass m0, one is stationary (particle 2) and one is approaching 
(particle 1) the particle 2 at a speed v. Their center of mass is moving at speed v/2. During the collision the 
photon mass adsorbed on the moving particle 1 will be transported and deposited on the stationary particle 2. 
The “quantity of motion”—momentum of this system M can be described as: 

 

(17) 

Because of the symmetry, after the collision both particles must be moving from the center of mass at partner 
speed. The particle 1 is now stopped and the particle 2 is moving at speed v. The particles exchanged their speed 
and the photon mass mphoton brought into the system by the moving particle 1: 
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We should focus our attention on the photon mass transfer mphoton from the moving particle 1 onto the stationary 
particle 2 to determine experimentally this quantity. This approach leads us to the old concept introduced into the 
science by Antoine Lavoisier. 

11. Caloric as the Substance of Heat 

There is one version of the caloric theory that was introduced into the science by Antoine Lavoisier in 1783 who 
proposed a “subtle fluid” called caloric as the substance of heat causing the vibration of individual particles. 
Since that time there is a permanent discussion if heat can be explained by the caloric absorption causing the 
vibration of particles or by the vibration of individual particles without any exchange of (fictious) caloric with 
the surroundings. 

It is valuable to re-read contributions of researchers who were revisiting and developing the caloric concept 
during the 20th and begin of the 21th centuries: e.g., Callendar in 1910, Brown in 1949 and in 1950, Kuhn in 1958, 
Fox in 1971, Morris in 1972, Psillos in 1994, Chang in 2003, Mareš et al. in 2008. 

The gist of this contribution is to identify the caloric exchange with the photon mass echange from the 
surroundings. The quantitative predictions of this concept can be verified using the instrumental technique 
available at the beginning of the 21st century. 

12. Conclusions 

The Matzka-Voigt complex number zMV with its modulus │c│= 299,792,458 ms-1 was postulated as the 
decomposition algorithm for the quantity “c- the light speed constant”. Trigonometric functions were used to 
graphically visualize the relativistic formulae and to decompose the relativistic formulae into their components. 
The expression │E│= m0│c│2 describes the “vis activa” of photons, one its part “vis viva” of photons can be 
tested in the photoelectric experiments. The expression │E│= m│c│2 describes the “vis activa” of fermion 
particles, one its part “vis viva” of fermions can be tested in the Poleni´s and `sGravesande´s experiment, one its 
part the kinetic energy can be tested in the photoelectric experiments. The difference between the Planck 
quantum of action h = m λ c based on the “vis viva” of photons and the Leibniz–Planck quantum of formal action 
│h│= m λ│c│ based on the “vis activa” of photons was stated. Two versions of the interpretation of the photon 
properties were compared. Three experiments were proposed for testing of this concept. 

Acknowledgements  

This work was supported by the GMS Agency (Contract Number 69110/1992). We have found the valuable 
support on the web site www.wolframalpha.com with the corrections of used formulae. The Wikipedia 
encyclopedia was frequently used to survey topics discussed in this contribution. 

References 

Abraham, M. (1903). Prinzipien der Dynamik des Elektrons. Ann. Phys., 315, 105-179. 
http://dx.doi.org/10.1002/andp.19023150105 

Antagnozza, M. R. (2011). Leibniz. An Intellectual Biography (p. 304). Cambridge: Cambridge University Press. 

Argand, J. R. (1806). Essai sur une manière de represésenter des quantités imaginaires dans les constructions 
géometriques. Retrieved from http://archive.org/details/essaisurunemani00argauoft; ark:/13960/t69314066 

Barett, J. F. (2011). The hyperbolic theory of special relativity. Retrieved from 
http://arxiv.org/ftp/arxiv/papers/1102/1102.0462.pdf 

Bros, J. (2005). The Geometry of Relativistic Spacetime: from Euclid´s Geometry to Minkowski´s Spacetime. 
Séminaire Poincaré, 1, 1-45. Retrieved from http://www.bourbaphy.fr/bros.pdf 

Brown, S. C. (1949). Count Rumford and the Caloric Theory of Heat. Proceedings of the American 
Philosophical Society, 93, 316-325. http://dx.doi.org/10.2307/3143157 

Brown, S. C. (1950). The Caloric Theory of Heat. Am. J. Phys., 18, 367-373. 
http://dx.doi.org/10.1119/1.1932596 

Callendar, H. L. (1910). The Caloric Theory of Heat and Carnot´s Principle. Proc. Phys. Soc. London, 23, 153. 
http://dx.doi.org/10.1088/1478-7814/23/1/315 

Carroll, S. M. (2004). Spacetime and geometry. An introduction to general relativity. San Francisco: Addison 
Wesley. 

Cauchy, A. L. (1821). Cours d`analyse de l`École royale polytechnique. Retrieved from 
http://books.google.cz/books/about/Cours_d_analyse_de_l_%C3%89cole_royale_polyt.html?id=n60AAAA



www.ccsenet.org/apr Applied Physics Research Vol. 5, No. 6; 2013 

142 
 

AMAAJ&redir_esc=y 

Chang, H. S. (2003). Preservative realism and its discontents: Revisiting caloric. Philosophy of Science, 70, 
902-912. http://dx.doi.org/10.1086/377376 

Chocholová, M. (2008). Wilhelm Matzka and the Historical Development of Complex Numbers. WDS´08 
Proceedings of Contributed Papers, Part I, 38-42. Retrieved from 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.186.7663&rep=rep1&type=pdf 

Chocholová, M., & Štoll, I. (2011). Wilhelm Matzka (1798-1891). Prague: Matfyzpress. 

Crabbe, A. (2004). Alternative conventions and geometry for Special Relativity. Annales de la Foundation Louis 
de Broglie, 29, 589-608. Retrieved from http://aflb.ensmp.fr/AFLB-294/aflb294m097.pdf 

Delphenich, D. H. (2005). Projective Geometry and Special Relativity. Retrieved from 
http://arxiv.org/ftp/gr-qc/papers/0512/0512125.pdf 

Descartes, R. (1637). La Géométrie. 

Doppler, C. (1842). Über das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels. 
Abhandlungen der Königlichen Böhmischen Gesellschaft der Wissenschaften. V. Folge, Bd.2, 465-482. 

Dragon, N. (2012). Geometry of Special Relativity. Retrieved from 
http://www.itp.uni-hannover.de/~dragon/rel_e.pdf 

Dray, T. (2003). The Geometry of Special Relativity. Retrieved from 
http://lhs.loswego.k12.or.us/z-pricem/AP%20Physics/11%20Relativity/01%20Special%20Relativity/geome
try.pdf 

Einstein, A. (1905). Ueber einer die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen 
Gesichtspunkt. Annalen der Physik, 17(6) 132-148. http://dx.doi.org/10.1002/andp.19053220607 

Einstein, A. (1905). Zur Elektrodynamik bewegter Körper. Ann. Phys., 17, 891-921. 
http://dx.doi.org/10.1002/andp.19053221004 

Einstein, A. (1906). Über eine Methode zur Bestimmung des Verhältnisses der transversalen und longitudinalen 
Masse des Electrons. Ann. Phys., 21, 583-586. 

Ernst, A., & Hsu, J. P. (2001). First Proposal of the Universal Speed of Light by Voigt in 1887. Chinese Journal 
of Physics, 39, 211-230. Retrieved from http://psroc.phys.ntu.edu.tw/cjp/v39/211.pdf 

Feynman, R. P., Leighton, R. B., & Sands, M. (2005). The Feynman Lectures on Physics (Definitive ed.). San 
Francisco, California: Pearson Addison-Wesley. 

Fox, R. (1971). The Caloric Theory of Gases from Lavoisier to Regnault. Oxford: Clarendon Press. 

Gauss, C. F. (1831). Theoria residuorum biquadraticorum. Commentatio secunda. 

Hankins, T. L. (1965). Eighteenth-Century Attempts to Resolve the Vis viva Controversy. Isis, 56, 281-297. 
Retrieved from http://www.jstor.org/stable/228103 . 

Hecht, E. (2009). Einstein on mass and energy, Am. J. Phys., 77, 799-806. http://dx.doi.org/10.1119/1.3160671 

Iltis, C. M. (1967). The Controversy over Living Force: Leibniz to D´Alembert. (Doctoral dissertation, Graduate 
School of the University of Wisconsin). 

Iltis, C. M. (1971). Leibniz and the Vis Viva Controversy. Isis, 62, 21-35. Retrieved from 
http://www.jstor.org/stable/228997 

Kaufmann, W. (1902). The Electromagnetic Mass of the Electron. Physikalische Zeitschrift, 4, 54-56. Retrieved 
from http://wikilivres.ca/wiki/Die_elektromagnetische_Masse_des_Elektrons 

Kuhn, T. S. (1958). The Caloric Theory of Adiabatic Compression. Isis, 49, 132-140. 
http://dx.doi.org/10.2307/226926 

Lavoisier, A.-L. de. (1783). Mémoire sur la chaleur. Paris: Académie royale des sciences. 

Leibniz, G. W. (1689–1690). Dynamica de Potentia et Legibus Naturae Corporeae. 

Leibniz, G. W. (1695). Specimen dynamicum. Philosophical Papers and Letters, Reidel, Dordrecht. 

Lenard, P. (1902). Ueber die lichtelektrische Wirkung. Annalen der Physik, 313(5), 149-198. 
http://dx.doi.org/10.1002/andp.19023130510 



www.ccsenet.org/apr Applied Physics Research Vol. 5, No. 6; 2013 

143 
 

Leong, W. C., & Chin, Y. K. (2005). Conceptual Development of Einstein´s Mass-energy Relationship. New 
Horizons in Education, 51, 56-66. 

Lorentz, H. A. (1904). Electromagnetic phenomena in a system moving with any velocity smaller than that of 
light. Proceedings of the Royal Netherlands Academy of Arts and Sciences, 6, 809-831. Retrieved from 
http://en.wikisource.org/wiki/Electromagnetic_phenomena 

Mach, E. (1933). Die Mechanik in Ihrer Entwicklung. Reprographischer Nachdruck 1991 der 9. Auflage, Leipzig 
1933. Retrieved from http://echo.mpiwg-berlin.mpg.de/content/pre-physics/physics/mach_mechanik_1883 

Mareš, J. J., Hubík, P., Šesták, J., Špička, V., Krištofik, J., & Stávek, J. (2008). Phenomenological approach to 
the caloric theory of heat. Thermochimica Acta, 474(1-2), 16-24. 
http://dx.doi.org/10.1016/j.tca.2008.05.001 

Matzka, W. (1850). Versuch einer richtigen Lehre von der Realität der vorgeblich imaginären Grössen der 
Algebra, oder einer Grundlehre von der Ablenkung algebraischer Grössenbeziehungen. Prague: J. G. 
Calve. 

Maupertuis, P. L. M. (1744). Accord de différentes lois de la nature qui avaient jusqu´ici paru incompatibles, 
Mém. Ac., Berlin, p. 267. Retrieved from 
http://fr.wikisource.org/wiki/Accord_de_diff%C3%A9rentes_loix_de_la_nature_qui_avoient_jusqu%E2%8
0%99ici_paru_incompatibles 

Maxwell, J. C. (1865). A Dynamical Theory of the Electromagnetic Field, Phil. Trans. Royal Soc., 155, 459-512. 
http://dx.doi.org/10.1098/rstl.1865.0008 

Millikan, R. A. (1916). A Direct Photoelectric Determination of Planck´s “h”. Physical Review, 7(3), 355-388. 
http://dx.doi.org/10.1103/Phys.Rev.7.355 

Morris, R. J. (1972). Lavoisier and the Caloric Theory. British Society for the History of Science, 6, 1-38. 
http://dx.doi.org/10.1017/S000708740001195X 

Naber, G. L. (2012). The Geometry of Minkowski Spacetime. An Introduction to the Mathematics of the Special 
Theory of Relativity. New York: Springer. 

Newton, I. (1687). Philosophiae Naturalis Principia Mathematica. Retrieved from 
http://www.newtonproject.sussex.ac.uk/catalogue/record/NATP00072 

Newton, I. (1717). Optics, or a Treatise of the Reflections, Refractions, Inflections and Colours of Light (2nd ed.). 
Retrieved from 
http://s253639974.onlinehome.fr/branestorming2/wp-content/uploads/2012/09/Opticks_Newton.pdf 

Okun, B. L. (1989). The Concept of Mass. Physics Today, 42, 31-36. http://dx.doi.org/10.1063/1.881171 

Planck, M. (1901). On the Energy Distribution in the Blackbody Spectrum. Ann. Phys., 4, 553-563. 

Planck, M. (1906). Das Prinzip der Relativität und die Grundgleichungen der Mechanik, Verhandlungen 
Deutsche Physikalische Gesellschaft, 8, 136-141. Retrieved from 
http://wikilivres.ca/wiki/Das_Prinzip_der_Relativit%C3%A4t_und_die_Grundgleichungen_der_Mechanik 

Poincaré, H. (1900). La Théorie de Lorentz et le principe de reaction, Archives néderlandaises des sciences 
exactes et naturelles, 5, 252-278. Retrieved from 
http://www.youscribe.com/catalogue/livres/savoirs/sciences-formelles/la-theorie-de-lorentz-et-le-principe-d
e-reaction-248275 

Poleni, J. M. (1721). Sur la force des corps en movement. Paris, Mem. Acad. Sci., 81-85. 

Psillos, S. (1994). A philosophical study of the transition from the caloric theory of heat to thermodynamics: 
resisting the pessimistic meta-induction. Stud. Hist. Phil. Sci., 25, 159-190. 
http://dx.doi.org/10.1016/0039-3681(94)90026-4 

Rindler, W. (1991). Introduction to special relativity (2nd ed.). Oxford University Press. 

Robb, A. A. (1911). Optical geometry of motion: A new view of the theory of relativity. Cambridge: W. Heffer. 

Searle, G. F. C. (1897). On the steady motion of an electrified ellipsoid, Philosophical Magazine, 44, 329-341. 
http://dx.doi.org/10.1080/14786449708621072 

`s Gravesande, W. J. (1729). Remarques sur la force des corps en movement et sur le choc. Journal littéraire de 
la Haye, 13, Pt.I, 189-197, Pt. II, 407-432. 



www.ccsenet.org/apr Applied Physics Research Vol. 5, No. 6; 2013 

144 
 

Smith, G. E. (2006). The vis viva dispute: A controversy at the dawn of dynamics. Physics Today (October), 
31-36. Retrieved from 
http://philoscience.unibe.ch/documents/MaterialFS11/PS-Leibniz11/SmithG2006Vis.pdf 

Taylor, E., & Wheeler, J. A. (1992). Spacetime physics (2nd ed.). W. H. Freeman & Co. 

Thomson, J. J. (1881). On the electric and magnetic effects produced by the motion of electrified bodies. 
Philosophical Magazine, 11, 229-249. http://dx.doi.org/10.1080/14786448108627008 

Tipler, P., & Llewellyn, R. (2002). Modern physics (4th ed.). W. H. Freeman & Co. 

Tolman, R. C. (1912). Non-Newtonian Mechanics. The mass of a Moving Body. Philosophical Magazine, 23, 
375-380. http://dx.doi.org/10.1080/14786440308637231 

Ungar, A. A. (2009). Einstein´s special relativity: The hyperbolic geometric viewpoint. Retrieved from 
http://www.phil-inst.hu/~szekely/pirt_bp_2/papers/ungar_09_ft.pdf 

Varićak, V. (1911). Anwendung der Lobatschefkijschen Geometrie in der Relativtheorie. Phys. Zeit., 11, 93-96. 

Voigt, W. (1887). Über das Doppler´sche Prinzip. Göttinger Nachrichten, 1887(2), 41-51. 
http://en.wikisource.org/wiki/Translation:On_the_Principle_of_Doppler 

Wessel, C. (1799). Om Directionens analytiske Betegning, et Forsøg anvendt fornemmeling til plane og 
sphaeriske Polygoners Opløsning. (On the analytical representation of direction: an attempt applied chiefly 
to solving plane and spherical polygons) 

Whittaker, E. T. (1910). A history of the theories of aether and electricity. Dublin: Longman Green Co. 

 

Copyrights 

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 
license (http://creativecommons.org/licenses/by/3.0/). 

 


