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Abstract 

Given the extreme difficulty in finding analytical solutions to Einstein’s equations for universe models, such as 
the Bianchi type IX, different physical-mathematical techniques have been designed to attempt to find, at least 
approximate solutions that could have relevance in modern cosmology. Belinskii, Khalatnikov and Lifshitz 
(BKL) have developed a method to study a particular time evolution dynamic of the Bianchi type IX universe 
model. Herein, it is shown that this method contains pitfalls. These pitfalls, among other things, prevent the 
conclusion that this model provides chaotic behaviour. We show that the initial presumption made by BKL turns 
out to be inconsistent with the assumed initial conditions, since it cannot be kept along with the time-extended 
BKL process. That is, the Kasner stipulations corresponding to τ→∞, taken as initial conditions, are at odds with 
the initial assumption imposed on Einstein’s field equations. 

Keywords: Einstein’s equations, cosmology, general relativity, chaos in general relativity 

1. Introduction 

Derived from the extreme difficulty in finding analytical solutions for the Bianchi type IX universe model, 
fraught with an important inherent problem related to the singularities of the metric tensor components 
(Andriopoulos, 2008; Barrow  Tipler, 1979; Belinskii  Khalatnikov, 1970a, 1971; Belinskii, Khalatnikov,  
Lifshitz, 1970b, 1980; Bogoyavlenskii, 1973; E. M. Lifshitz, I. M. Lifshitz,  Khalatnikov, 1971; Hawking & 
Ellis, 1968), much research activity has been carried out with the aim of finding at least approximate solutions. 
Many attempts in this direction have been focused on ascertaining special techniques to confront the respective 
Einstein field equations (Barrow, 1988; Belinskii  Khalatnikov, 1969; Belinskii, Lifshitz,  Khalatnikov, 1970, 
1982; Berger, 1997; Ferraz & Francisco, 1992; Khalatnikov, Lifshitz, Khanin, Shchur,  Sinai, 1985; Lifshitz  
Khalatnikov, 1963; Ryan, 1971a, 1971b; Springael, Conte,  Musette, 1998; Wright  Moss, 1985). 

The well-known fact that some very simple dynamic systems with a minimal number of degrees of freedom, no 
stochastic force and regular initial data may show unpredictable or random behaviour has led to the search for 
the chaotic conduct of homogeneous cosmological models in the context of general relativity (Barrow, 1981, 
1982; Chernoff  Barrow, 1983; Cornish  Levin, 1997; Latifi, Musette,  Conte, 1994; Lin  Wald, 1990; 
Zardecki, 1983). Currently, the so called Mixmaster universe model—a particular Bianchi type universe (Barrow, 
1981, 1982; Chernoff  Barrow, 1983; Latifi, Musette,  Conte, 1994; Lin  Wald, 1990; Misner, 1969)—has 
brought into existence a great number of papers in the literature asserting its chaotic conduct (Barrow, 1981, 
1982; Chernoff  Barrow, 1983; Cornish  Levin, 1997; Latifi, Musette,  Conte, 1994; Lin  Wald, 1990; 
Misner, 1969; Zardecki, 1983). Accordingly, the verdict has been that this deterministic model is unpredictable 
with respect to the number of Kasner epochs that comprise each major cycle of its time evolution (Balinskii  
Khalatnikov, 1970a; Misner, 1969). Physical systems governed by non-linear equations of motion are candidates 
to exhibit chaos, and certainly many examples from all disciplines in physics are now known. In this paper, the 
main source, the technique to show that the Bianchi type IX universe model is chaotic, is critically reviewed 
(Belinskii  Khalatnikov, 1970a). As is well known, this Bianchi model has been taken as an example of the 
possibly outstanding solution to Einstein’s equations, with chaotic properties that have played the prime role in 
the study of chaos and quantum gravity (Barrow, 1981; Belinskii, Gibbons, Page,  Pope, 1978; Hartle  
Hawking, 1983; Misner, 1969a, 1969b) in the field of general relativity (Barrow, 1981, 1982; Belinskii, 1978; 
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Chernoff  Barrow, 1983; Cornish  Levin, 1997; Hartle  Hawking, 1983; Latifi, Musette,  Conte, 1994; 
Lin  Wald, 1990; Misner, 1969a, 1969b; Zardecki, 1983). 

The purpose of this study, which challenges directly the validity of the statement regarding the possible chaotic 
behaviour of the Bianchi IX universe model (Cornish  Levin, 1997), is also to clear up and, therefore, question 
the validity of the main hypothesis supporting the foundation of those papers that pretend to demonstrate the 
random behaviour of the model; again, based on the never questioned existence of Kasner epochs in the 
aforementioned universe model (Barrow, 1981, 1982; Cornish  Levin, 1997; Chernoff  Barrow, 1983; Latifi, 
Musette,  Conte, 1994; Lin  Wald, 1990; Zardecki, 1983). 

Belinskii, Khalatnikov and Lifshitz (BKL) were among the first to develop a discrete method to study the 
Mixmaster dynamics (defined to describe the evolution of a spatially homogeneous vacuum and diagonal 
Bianchi type IX cosmology) (Belinskii  Khalatnikov, 1969, 1970a, 1971; Belinskii, Khalatnikov,  Lifshitz, 
1970b; E. M. Lifshitz, I. M. Lifshitz,  Khalatnikov, 1971; Lifshitz  Khalatnikov, 1963). Since then, the 
Mixmaster universe model has been purported to represent Einstein’s theory, which exhibits the chaotic dynamic 
behaviour of a Hamiltonian system. Furthermore, this model is also considered to reflect the properties of 
solutions to more general Einstein equations. Other authors have criticized the BKL work from another point of 
view (Barrow  Tipler, 1979; Latifi, Musette,  Conte, 1994); here, it is shown that this method contains pitfalls 
which warn about the conclusion that Kasner epochs exist in an approximate solution to the Bianchi IX universe 
with its alternating scale factors and chaotic behaviour. 

2. The BKL Technique 

In essence, BKL method attempts to find an approximate solution to Einstein’s field equations in the Mixmaster 
universe model, a coupled system of differential equations written as: (Belinskii & Khalatnikov, 1970a; Belinskii, 
Khalatnikov,  Lifshitz, 1970b) 
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where a, b and c represent the universe scale factors. 

BKL method, with the aim of rewriting Einstein’s field equations in a more compact manner (in order to apply 
their above-mentioned method), defines the transformation: 

 expa ,  expb ,  expc , dabcdt                         (2) 

By substituting this transformation into Equation (1), one obtains that: 

       4exp2exp2exp2 2   

       4exp2exp2exp2 2                             (3) 

       4exp2exp2exp2 2   

     2/                            (4) 

Adding Equations (3) and substituting the result into Equation (4) the second order derivatives are eliminated to 
obtain the first integral of the system of Equations (3): 

       4exp4exp4[exp   

            4/]2exp2exp22exp2exp22exp2exp2                    (5) 

Before proceeding with this development, BKL method makes a deviation to treat a more elemental universe 
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model. A very simplified problem (Bianchi type I) results when the squared parentheses of Equation (1) are set 
equal to zero, then we obtain the Kasner solution: 

1ln~ Pt , 2ln~ Pt , 3ln~ Pt                               (6) 

That is 

1~ Pta , 2~ Ptb , 3~ Ptc                                 (7) 

with 

tabc  , constt  /ln  

whereΛis a constant. 

Here, P1, P2, P3 are three arbitrary numbers satisfying the relation 

12
3

2
2

2
1321  PPPPPP  

Therefore, only one of these numbers is independent. They are never equal and are equal in pairs only in the two 
following cases: (–1/3, 2/3, 2/3) and (0, 0, 1). In all other cases they are distinct, one of them being negative and 
two positive. We shall order them by 

321
PPP                                       (8) 

Then they lie in the intervals 

03/1 1  P , 3/20 2  P , 13/2 3  P                          (9) 

The numbers P1, P2, P3 can be represented in parametric form: 

   2
1 1/ uuuuP   

     2
2 1/1 uuuuP                                 (10) 

     2
3 1/1 uuuuuP   

As the u parameter varies in the range u ≥ 1, P1, P2 and P3 assume any of their possible values preserving the 
order defined in (8). The values u < 1 lead to the same range of values of P1, P2, P3 since 

   uPuP 11 /1  ,    uPuP 32 /1  ,    uPuP 23 /1   

After this, BKL method affirms that, at a certain moment of the Mixmaster time evolution, all terms on the right 
hand side of Equations (3) can be ignored and then we have a Kasner solution. However, such a situation cannot 
persist, since there are always such terms on the right hand side of Equations (3) which are increasing. So, when 
the right hand side of Equations (3) is ignored the solutions are Equations (7). 

In the next step, BKL method considers that the Kasner system is perturbed. Suppose that the perturbation is the 
term a4 which is then dominant; and b, c terms are ignored preserving only a4 on the right hand side of Equations 
(3). Then, the perturbed Kasner system is 

  2/4exp    

  2/4exp                                   (11) 

A Kasner epoch is defined as that part of the time evolution of the general solution to the problem of Kasner 
Bianchi type I, specified by the values of four parameters, in the solution of another universe model such as the 
Bianchi IX, where the product of the three scale factors is proportional to the cosmological time ( abc = t ). 

The solutions of Equations (11) describe the time evolution of the simplified Einstein equations, from their initial 
state (Kasner epoch). The initial conditions are as follows 

 , 1P , 2P , 
3P                        (12) 

With these initial conditions, BKL method considers the evolution of the model in the time direction t→0, 
therefore, the initial conditions correspond to a later rather than an earlier moment of time. 

Equations (11) are then integrated. The solution satisfying the conditions in Equation (12) has the form: 

 11
2 2sec2 PhPa   
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     11
2

0
2 2cosh2exp

2
PPPbb                            (13) 

     113
2

0
2 2cosh2exp PPPcc   

where b0, c0 are constants. 

It is easy to verify that in the limit τ→∞ the asymptotic form of the functions in Equation (13) is identical with 
the power laws in Equation (7). In the limit τ→ –∞, the asymptotic form of these functions, and that of the 
function t(τ), are given by 

 1exp~ Pa   

  12 2exp~ PPb                                   (14) 

  13 2exp~ PPc   

  121exp~ Pt   

Expressing a, b and c as a function of t, BKL method obtains 


1~ Pta , 


2~ Ptb , 


3~ Ptc                               (15) 

where 

 111 21/ PPP   

   1212 21/2 PPPP                                  (16) 

   1133 21/2 PPPP    

and 

abc ,   121 P                               (17) 

After this result, BKL method affirms that the effect of the perturbation is to replace one Kasner epoch by 
another, where the negative power of t is transferred from the scale factor a to b, that is, if originally P1 is 
negative, then in the new solution we find P1 < 0. 

In short, the whole BKL process begins at a Kasner epoch (τ→∞), and later arrives at an intermediate (perturbed) 
stage described by solution (13). Then, taking the limit τ→ –∞ (the asymptotic form for these functions) one 
arrives at another, different, Kasner epoch. In fact, in the next Kasner epoch, the u parameter assumes the value u’ 
= u–1 and the constant Λ is replaced by    uP121 . This result is equivalent to the process of changing 
the u parameter by u−1 in Equations (10), to obtain the new P’ values given in Equations (16). 

At the end of their third section, referring to the a and b scale factors BKL method states: if the absolute values 
of these terms are close to each other at the beginning of a long era—the moment when one Kasner epoch 
replaces another—they remain close during a long part of the duration of the whole era. In this case, which they 
call the case of small oscillations, it is insufficient to consider only one type of perturbation. It is then necessary 
to take into account, simultaneously, the effect of two perturbations. 

BKL method begins the fourth section analysing the case of small oscillations, where it is considered that a and b 
are small, and oscillate so that their absolute values remain close to each other while the third scale factor c 
decreases monotonically. Since the c function decreases quickly, they investigate the solution of Equations (3) in 
the region in which c can be ignored compared to a and b. 

Ignoring the function c, they write the first two Equations (3) in the form: 

0    

     4exp4exp                               (18) 

while the third is (see Equation (5)) 

       4/2exp2exp 2                          (19) 

In this fourth section, BKL method proceeds in a different manner from that the third where, beginning in a 
Kasner epoch, they later proceed to a perturbed stage, and then from Equations (13) take the limit as τ→ –∞ (the 
asymptotic form of these functions) arriving at another Kasner epoch. The transition from an initial Kasner 
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epoch to the next is carried out by substituting Equations (10) in the parametric expression for the P’s and 
substituting u parameter by u−1. Here the mathematical steps followed are different from those used before. 
BKL method proposes a change in the independent variable τ→ξ, where 

  00
2

00 /2exp   a                               (20) 

Now, with X = α – β, they obtain from (18) 

  02/2sinh/  XXX                               (21) 

and from (19) 

     8/12cosh234/1 2  XX                          (22) 

With the variable change (20) they obtain 

   /sin1/ 000  Aaa  

   /sin1/ 000  Aab                             (23) 

    0
2

0 exp Acc  

BKL method then discusses the region ξ << 1. The principal terms in the solution of Equation (21) are given by 

qkX   ln  

where k and q are constants, k satisfying –1 < k < 1. This condition guarantees that the last term in Equation (21) 
is small [sinh(2X) contains ξ2k and ξ–2k]. Expressing a, b, c and t from the above equations, we obtain 

  2/1~ ka  ,   2/1~ kb  ,   4/1 2
~ kc  ,   4/3 2

~ kt                     (24) 

This is again a Kasner solution, where the negative power of t corresponds to c(t). BKL method’s section 5 
begins with the phrase: “The eras of small oscillations discussed in section 4 violate the ‘regular’ evolution as 
defined in third section; this fact makes the investigation of the evolution more difficult over periods of time 
comprising many eras. However, it can be shown that in the asymptotic region of arbitrary small time periods t 
(sufficiently far from the initial moment of time when arbitrary initial conditions are imposed) such ‘anomalous’ 
behaviour in the evolution of the model towards a singular point does not occur. Even for long eras, at the 
moment when one Kasner epoch replaces another, the two oscillating functions are so different that the actual 
replacement of one epoch by another is caused only by one type of perturbation”. 

After that, BKL method state that: In every Kasner epoch we have 

tabc   

that is 

tlnln    

As a result of the transition from one Kasner epoch to another, the constant lnΛ changes by an amount of order 
of 1. In the asymptotic region when │lnt│ is arbitrarily large, we can ignore not only such changes but also the 
whole constant lnΛ. In other words, in this limit we ignore all quantities whose ratios to │lnt│ tend to zero as t
→0. 

Then we find 

                                      (25) 

where Ω denotes the logarithmic time 

tln                                        (26) 

In this approximation, the interchange of two epochs is instantaneous. We can also ignore the constant 

  2/2ln 1max  P  on the right hand side of the equation 1max 2 Pa  , which defines the moment when 

one epoch replaces another, that is, we can replace this equation by the condition α = 0 (or alternatively, by the 
conditions β = 0 or γ = 0 if the initial negative exponent corresponds either to the function b or c). Thus we 
assume that 

0maxmaxmax                                   (27) 

so that, quantities α, β, γ assume only negative values which are related to each other at every moment of time by 
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expression (25). 

Assuming the instantaneous interchange of two epochs, we neglect the “widths” of the transition regions 
compared to the duration of the epochs themselves; in fact, this is justified as will be shown later. The conditions 

1max 2 Pa   can be replaced by condition (27) provided the quantity  1ln P  is small in comparison with 

the amplitudes of oscillations of the corresponding functions α, β, γ. However, as already noted in the third 
section, during the transition from one era to another, very small values of │P1│can occur. Their magnitude and 
the probability that they occur are not related to the amplitude of the oscillations attained at that moment. 
Therefore, in principle │P1│ can become so small that the above condition is not satisfied. Such a large decrease 
in αmax can result in special situations when the matching of two Kasner epochs, defined by Equations (10), 
becomes incorrect (this includes the situation discussed in the fourth section). Such a dangerous situation would 
invalidate the arguments used in our statistical analysis given in the sixth section. However, as already noted, the 
probability of such cases tends asymptotically to zero. 

Let us consider an era containing k Kasner epochs, which correspond to the following values of 

nXkun  1 , 1,....1,0  kn  

Furthermore, let α and β be the oscillating functions in this era. 

Let us denote the beginning of an epoch characterized by the parameter un by Ωn. At each moment Ωn, one of the 
quantities α and β vanishes and the other reaches a minimum. We shall denote these minimum values of α or β 
by 

nnn    

From the above considerations they obtain the approximate solution depicted in Figure 1, where the vertical 
strips represent the Kasner epochs, each having different temporal durations, and the small arrows in each one of 
the three functions (α, β and γ) mark the time direction. 

Up to now the main idea of the BKL technique, that describes the a, b and c asymptotic approach to the 
singularity (t = 0), has been presented. 

The steps constituting the BKL method can be summarized as follows: 

 Introducing the assumption that one of the three scale factors is much higher than the other two, on the 
model of universe Bianchi IX, a reduced equation system is obtained which preserves only the largest scale 
factor, in the curvature terms which is considered as a perturbation . 

 This reduced system is solved. A Kasner type solution is imposed, as initial condition, to the reduced 
system solution obtained. 

 In the limit of the logarithmic time τ→ –∞ the asymptotic form is obtained from this solution. In this 
asymptotic form the logarithmic time is replaced from tabc   and constt  /ln , instead of 

dabcdt  . From here you get another Kasner.epoch. We conclude that the effect of the perturbation is replace 
a Kasner epoch for another with different p parameters. 

 Once the Kasner epochs are defined, the general problem is solved now with two perturbations during a 
long era with two scale factors oscillate so that their absolute values remain close to each other, say a and b and 
the third scale factor c decreases monotonically. 

 As the final part, the approximate solution to the Bianchi type IX is obtained by this method containing 
k Kasner epochs, two scale factor oscillate and the third decreases monotonically. 
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subsequently to obtain Equations (11), after making a variable change given by Equations (2). However, as such, 
the system Equations (11) do not hold any indication that they come from a more complex system, Einstein’s 
field equations (Equations (1)), where b and c are present. The solutions, Equations (13) to the system of 
Equations (11) when Equations (12) are taken as initial conditions, are depicted in Figure 2. From it, we see that 
the condition a >> b, c is rather untenable because actually a << b, c is an extended part of the τ interval. 

2) The contradiction mentioned in Point 1 comes in part from imposing incongruous initial conditions as given 
by Equations (12), to reduced Einstein’s field Equations (11). As τ→∞, the negative P1 parameter, which is 
smaller than the P2, P3 Kasner parameters (see Equation (9)) was assigned to a, and makes it smaller than the b 
or c scale factors, as given by Equation (6) over an extended part of the τ interval (Equation (2)) contradicting 
the initial assumption that a >> b, c. To circumvent this contradiction, one can attempt to formulate the initial 
conditions in a different manner but still one cannot obtain the initial assumption (a >> b, c). If, in order to have 
a >> b, c, one assigns P3 to a, because P3 > P2 > P1, as given by Equation (9), that is: 

 , 3P , 2P , 1P                         (28) 

then, the function a, whose expression is given in Equations (13), would now be written 

00
2 sec ahaa                                     (29) 

with a0 > 0. From Equation (2) 

  00 secln aha /2                                 (30) 

  2/tanh 00  aa  

then as τ→∞ 

30 2/ Pa  , 

Note that a0 < 0 

So, an imaginary function is obtained since, from Equation (29) 

  33
2 2sec2 PhPa                                (31) 

By the following considerations, it is possible to avoid the negative sign in Equation (31). Like in the two last 
Equations (13), Equation (29) can be written as  

0
2

1
2 sec ahaa                                     (32) 

With 2
1a  instead of 0a , in these terms from Equation (2), with  4exp4 a  we have 

   4
1

2
0 2/4exp aa   

Then, by choosing the negative sign, Equation (32) can be written as 

  33
2 2sec2 PhPa                                (33) 

But from (33) in the limit as τ→∞ one obtains 

3P                                      (34) 

Then, Equation (34) contradicts the initial condition given by Equations (12). 

Accepting the assumption that, for the solution of the reduced system (equations (11)) a >> b, c is contrary to 
imposing the initial conditions given by Equations (28) or (12) it can be concluded that, initial conditions in 
agreement with the initial assumption a >> b, c are impossible to find, since clearly from Equations (13) and 
Figure 2 b, c > a in most parts of the τ or t interval. 

3) In order to find the solution to the group of Equations (1), in the technique of BKL, described in their third 
section, the singularity consists of the steps beginning with a Kasner solution as τ→∞ and continues with an 
intermediate perturbed stage represented by Equations (11) – the reduced system. Next, these solutions taken to 
the limit, as τ→ –∞, are asymptotic functions that represent a Kasner type solution with different values for the 
former P1, P2 and P3 in the form of new parameters P1’, P2’, and P3’. They argue that these new values, for 
example P1’ are generated because equation   2/4exp    represents well the movement of a particle in 

the field of an exponential potential in one dimension with coordinate α. When the particle is reflected from the 
wall of the well after colliding with it, this reflection produces a new value for P1. Nevertheless, the change in 
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value for these parameters can have another explanation. The BKL process, interpreted as a reflection, is 
achieved upon taking the limit as τ→∞ on the one hand and then as τ→ –∞ on the other. From Figure 2, it can be 
seen that the slope of the function a as τ→∞ has a negative sign, while as τ→ –∞ it has a positive sign (a 
well-known property of the function sec h). Then, upon taking the asymptotic forms of this function as τ→∞ and 
τ→ –∞, an evident change of sign is due in the parameter P1 in each extreme point. One can say the same thing 
for the scale factor b, as is easily seen in the same Figure 2 where its slopes at the afore mentioned ends have 
different signs. In other words, P1 and P2 must interchange their signs in the extremes of the τ interval. The 
function c is monotonic and at the ends τ→∞ and τ→ –∞ maintain its positive sign. Herein, the commentary is 
that, the statement of BKL that this pattern follows as a consequence of the exchange of Kasner epochs is very 
arbitrary without connection to the original Einstein’s field equations. 

4) BKL method begins the fourth section considering a long era during which they assume a – b>> c, calling it 
the case of small oscillations. With this assumption (a, b>> c), from the Bianchi type IX Equations (3), BKL first 
obtain Equations (18) and (19) and its solutions (23) in terms of ξ (see Equation (20)), for ξ is relatively large, 
since these equations are obtained to first order in 1/ξ. However, when the values of the ξ variable (as t→0) are 
such that ξ << 1 one finds that the solutions given in Equations (24), which themselves include the function c, 
have c >> a, b contradicting the initial assumption that a, b>> c. 

5) The aforementioned Kasner epochs in each one of the above cases, are joined through unknown but invented 
continuous functions among themselves connecting similar expressions. The result of this process is a succession 
of Kasner epochs that constitute the base to obtain the final approximate solution that has the oscillatory conduct 
represented in Figure 1. We remark that, due to the primary assumption a >> b, c not being satisfied by the 
solutions obtained to Equations (11); the initial conditions, Equations (12) and (28), strongly oppose it, as 
already mentioned in point 1. Therefore, the conclusion that the curves depicted in Figure 1 represent a possible 
approximate solution to the Bianchi IX model Equations (3) is unwarranted. 

6) Explicitly according to the BKL technique, the change in the Kasner parameters P1, P2 and P3 to new 
parameters P1’, P2’ and P3’, signifies the existence of two contiguous Kasner epochs separated by an infinite τ 
interval, since P1, P2 and P3 correspond to the limit τ→∞ and P1’, P2’, P3’ to the limit τ→ –∞. Yet, the Kasner 
epoch corresponding to τ→∞ taken as an initial condition is at odds, as discussed in point 2 with the primary 
assumption a >> b, c imposed on the Bianchi IX Equations (3). So, the oscillatory behaviour of the solutions in 
Figure 1 is again unjustified. 

4. Concluding Remarks 

The BKL method approximate solution to Einstein’s equations in the Bianchi type IX universe model, 
represented partially by Equations (13), does not satisfy the initial assumption a >> b, c imposed on Equations (1) 
because of the Kasner type solutions assigned as initial conditions for the solutions of the reduced system 
Equations (11). They obtain a << b, c for an extended part of the τ interval. In other words, this initial condition 
is inconsistent with the initial assumption a >> b, c, leading to a contradiction (a < b, c). 

Moreover, BKL method states that they also mix two perturbations to construct the approximate solution of 
Equations (1) near the singularity. Both perturbations, that corresponding to the Kasner problem and that to the 
small oscillations case, do not satisfy their respective initial assumptions, that is, a >> b, c in the Kasner case, 
and a, b > c in the small oscillations case. This procedure leads to the now doubtful oscillatory solution depicted 
in Figure 1. 

Explicitly, the asymptotic form of the solutions given by Equations (13) as τ→∞ and τ→ –∞ is the mechanism 
through which the transformation of the parameter u into u–1 is achieved. One can assert that the Kasner 
stipulations corresponding to τ→∞ taken as the initial condition are at odds with the initial assumption a >> b, c 
imposed on Bianchi type IX equations. Therefore, the course taken by BKL method to generate the oscillations 
that produce the different Kasner epochs of Figure 1 is unsound. 

Finally, when a reduced system of differential equations was obtained, we lost all connection with the original 
system. In these conditions, it is likely that the solution found could be ingenious but rather far-fetched. The 
approximate solution in Figure 1 is interesting but lacking in links with the real Einstein’s field equations. 
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