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Abstract 

Experimental results recently published by C. Poher provide independent evidence for the anomalous radiation 
emitted from YBCO electrodes under short, intense current pulses previously reported by E. Podkletnov. The 
generation conditions are somewhat different: lower applied voltage, longer duration of the pulses, absence of a 
discharge chamber. The microstructure of the emitter is also different in the two cases. While Podkletnov's 
radiation beam is collimated, Poher's beam is more or less diverging, depending on the emitter type. In 
coincidence with the radiation emission Poher measures a strong recoil of the emitter, with maximum 
momentum of the order of 1 kgm/s. We compare and discuss several details of the experiments and give a brief 
outline of the proposed theoretical explanations. We also report numerical simulations of the maximum 
electromagnetic recoil force on a Josephson junction, as a benchmark for a possible alternative explanation of the 
recoil. 

Keywords: cuprate superconductors, YBCO, high-voltage discharges, high-momentum radiation, Quantum 
Gravity, Universons model 

1. Introduction 

The experimental work by C. Poher, summarized in (C. Poher & D. Poher, 2011) and updated in (Poher, 2013a), 
consists of a long series of trials (more than 6000 discharges through YBCO emitters), made over a period of 
about six years. Numerous different emitter configurations were tested, in different conditions of voltage, pulse 
energy and pulse duration. The descriptions and pictures available are quite detailed, and several cross-checks 
were performed. Some of the fabrication methods are patented (Poher, 2006). These experiments cannot be 
strictly regarded as a replication of the work by Podkletnov published in 2003 (Podkletnov & Modanese, 2003), 
also because they have a different purpose and start from a definite theoretical premise, which was not present in 
the case of Podkletnov. Nevertheless, the effects observed are partly the same as reported by Podkletnov, and 
Poher cites him. We thus believe that Poher's work can be regarded as an independent confirmation. In this 
section we give a brief outline of the two experiments; a more detailed comparison will follow in later sections. 
Throughout the paper we shall use the acronyms EP for E. Podkletnov and CP for C. Poher, also meaning for 
brevity their respective devices. We will not repeat the content of the original articles, which are clearly written 
and freely accessible. For CP, we shall make reference mainly to the article published in 2011, and occasionally 
to the other cited updates. 

In both experiments a strong current pulse, of the order of 10 kA, is sent through a disc of YBCO high-Tc 
superconductor with diameter ranging from approximately 1 to 10 cm. The pulse is generated by the discharge of 
a capacitors bank. In EP, the total capacitance is of the order of 1 nF (Marx generator), and the capacitors are 
charged to several hundreds of kilovolts; in CP the capacitance is much larger (of the order of 100 µF) and the 
maximum voltage is of the order of some kilovolts. EP discharge circuit comprises a large vacuum chamber at 
very low pressure. The firing of the Marx generator triggers in this chamber a spark discharge, which works as a 
switch but probably also has some other, still unclear role in the process. In CP the pulse is switched by a 
solid-state thyristor. In both cases the anomalous effects are observed at a temperature well below the critical 
temperature of the superconducting emitters (90–92 K). CP has his emitters submerged in liquid nitrogen, while 
EP uses a liquid helium reservoir in contact with the emitter (which is usually larger and thicker, and faces the 
vacuum chamber on one side). The duration of the discharge is of the order of 1 µs for EP, with short risetime, 
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proportional to their mass, imparting them a velocity of the order of 1 m/s, thus with a large instantaneous 
acceleration. CP also observes a similar acceleration beam, but only up to a distance of ca. 1 m and not so 
focused. The acceleration, estimated from the effect on small masses connected to a piezoelectric sensor, was of 
the order of 0.1 m/s2 at low voltage (C. Poher & D. Poher, 2011) and much higher for higher voltage discharges, 
for instance 355 m/s2 for a 1604 V discharge (Poher, 2013b). The presence of the beam was also detected with 
other sensors. The most relevant effect for CP, however, is a strong recoil of the emitter in the direction opposite 
to the electron flow and to the emission of the acceleration beam. The recoil momentum varies in a range from a 
few gm/s to a few kgm/s, depending on the features and energetic efficiency of the emitters, on their surface 
and on the electric energy of the discharge. The recoil momentum can be measured because the emitter is 
mounted on a movable support and coupled to a mechanical or electromagnetic sensor. The recoil is only present 
when a superconducting emitter is used. In the EP device, no recoil was noticed, possibly because the emitter 
was rigidly connected to a heavy structure composed of the discharge chamber, massive solenoids, liquid helium 
reservoirs etc. 

The energy efficiency of the CP emitter can be estimated from the recoil energy (which is measured directly, 
except for possible mechanical losses) and from the electric energy Ue=IVecost delivered to the emitter, where 
Ve is the voltage drop on the emitter, t is the pulse duration,  is the voltage/current phase. Note that Ve is much 
smaller than the total voltage, because large voltage drops occur in the rest of the circuit. In general the 
measurement of the emitter voltage Ve is not simple, due to parasitic inductances. CP reports energy efficiency 
ratios from a few percent to 30% and higher. See details of the energy balance in Section 2.1.  

The computation of the energy efficiency of the EP emitter requires the knowledge of the energy of the radiation 
beam. It is not clear, however, which fraction of the beam energy is actually captured by the targets. Furthermore, 
the emitter voltage has not been measured by EP. For some indirect estimates, see Section 2.2. 

 

Table 1. Magnitude order of some experimental parameters 

 Pulse 
duration  

t (s) 

Average 
current 

I (A) 

Maximum 
total voltage 

V (kV) 

Emitter 
voltage 

Ve (V) 

Emitter 
energy  

Ue (J) 

Target energy

UT (J) 

EP 10-6 103 2000 1–10 

(estim.) 

10-2

(estim.) 

10-2 

(beam*) 

CP 10-5–10-4 103–104 4.5 150 (max) 1–20 0.1–10 

(recoil) 

 

For CP the data are mainly referred to the emitters described in (C. Poher & D. Poher, 2011); more recent 
emitters have better performances. (*) Note that for EP the target energy of a single ballistic pendulum is of the 
order of 10-3 J; the total beam energy can only be guessed. 

For both EP and CP it is quite clear that any residual electromagnetic radiation cannot be responsible for the 
observed acceleration of far targets. In fact, the anomalous radiation conveys a momentum which is certainly not 
related to the carried energy by the usual dispersion relation E = cp, but is much larger. One can estimate, for 
instance, considering EP data for the 18.5 grams pendulum, that the kinetic energy associated to the observed 
acceleration is of the order of 10-3 J and the momentum is of the order of 10-2 kgm/s. If this momentum had to 
be imparted to the pendulum by radiation pressure, the energy needed in the beam would exceed the total energy 
available in the discharge ( 103 J). 

In the EP experiment, the laser-like focalization of the radiation beam appears to signal the occurrence of a 
coherent stimulated emission process in the whole bulk of the emitter. Key factors enabling this stimulated 
emission could be the melt-textured structure and the high frequency components of the current pulse. The 
theoretical model mentioned in Section 4.1 gives an estimate for the A and B coefficients of spontaneous and 
stimulated emission. According to the CP theoretical model (Section 4.2), stimulated emission would also occur 
in the sintered emitters at the level of the single grains. 

The article is organized as follows. In Section 2 we continue our analysis and comparison of the two experiments, 
discussing first for both the energy efficiency (2.1, 2.2). In Section 2.3 we discuss some features of the EP 
experiment: propagation velocity of the radiation, features of the vacuum spark discharge, skin effect. In Section 
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2.4 we return to the CP experiment, focussing on the delicate issue of accelerometer calibration. In Section 2.5 
we briefly touch upon the estimate of the dynamical resistance of the emitter. In Section 3 we discuss a possible 
conventional explanation of the recoil observed by CP, namely we estimate an upper limit on the mechanical 
effect of the non-linear self inductance of the emitter. We employ for this a simplified model, representing the 
emitter as made by intrinsic Josephson junctions described by the RSJ equations. The recoil momentum per unit 
mass estimated in this way turns out to be much smaller than the momentum really observed in the experiment, 
so this explanation does not appear to be viable. The situation may be different if one admits the presence of a 
strong electric field in the insulating or inter-grain layers of the emitter (Section 3.2). In Section 4 we review the 
new theoretical models proposed for the explanation of the experiments. They are mainly based on the concept 
of anomalous gravitational fluctuations 4.1 or the universons theory (Section 4.2). Further theoretical ideas are 
mentioned in Section 4.3. Section 5 presents our conclusions. 

2. Further Analysis of the Experiments 

2.1 Energy Efficiency (CP) 

According to CP, the recoil momentum is always, to a good approximation, proportional to the total electric 
energy Utot of the discharge (Utot=CV2/2). For any emitter it is then straightforward to define a total efficiency 
coefficient, which gives the recoil momentum for unit of total energy. For emitters having the same structure, but 
different surfaces, the recoil momentum is found to be proportional to the surface, so a total efficiency 
coefficient per J and cm2 can be also defined. Typical values for low-efficiency emitters described in (C. Poher & 
D. Poher, 2011) are 0.1 g(m/s)/(Jcm2). Typical values for efficient multi-layer emitters are 100 times larger or 
more (Poher, 2013a). 

Another “local” energy efficiency coefficient of the emitter can be defined, as mentioned, as the ratio between 
the recoil energy and the sole electric energy IVecost available on the emitter. From the available data it is 
possible to estimate its magnitude order, but an exact evaluation would require further dedicated measurements. 
According to (C. Poher & D. Poher, 2011), Section 3.1, the energy transferred to the EM3 emitters was 3 to 4% 
of the stored energy. The same figure approximately applies to other emitters as well (Poher, 2013b). (In this 
connection, also note that the voltage readings of Figure 5 of [C. Poher & D. Poher, 2011] are not reliable for an 
estimation of the emitter voltage.) 

Consider for instance a 1604 V discharge of total energy 265.6 J into a quadruple type-V emitter (Poher, 2013b). 
This discharge imparted to the alternator a propelling momentum of 905 gm/s. Considering a total mass for the 
emitter of the order of 1 kg, the emitter energy efficiency turns out to be ca. 25%. This might be underestimated, 
however, for the following reasons: (1) The energy of the recoil does not include the energy of the anomalous 
radiation. (2) When the recoil momentum is large, mechanical losses in the alternator can be relevant. (3) When 
the emitter undergoes a violent recoil, it often causes the expulsion of jets of liquid nitrogen from the cryostat. 
This phenomenon, which can be clearly seen in the video recordings, prevents a part of the recoil momentum 
from reaching the alternator. CP has demonstrated in several ways (Poher, 2013b) that the recoil is the cause of 
the jets, and not the opposite. It is impossible, he has shown, to produce in liquid nitrogen heat and pressure 
levels sufficient for “thermal propulsion” through a microsecond current pulse. (4) One may argue that the 
emitter could be made lighter by using different materials for the non-superconducting parts, while leaving the 
superconducting parts unchanged. Admitted the recoil momentum stays the same, in that case one would obtain a 
larger recoil energy. 

2.2 Energy Efficiency (EP) 

The emitter voltage was not measured by EP, therefore it is difficult to compute the local energy efficiency. In his 
partial replication of the EP experiment (Junker, 2012), T. Junker made an attempt to measure it, but the strong 
disturbances due to the high voltage discharge spoiled the measurement. It is possible to do a theoretical 
calculation of the emitter voltage, based on a representation of the emitter as a series of intrinsic Josephson 
junctions. This is a good approximation for melt-textured YBCO, according to the classical work of Kleiner 
(Kleiner & Müller, 1994-1997). The equations of the Resistively Shunted Junctions (RSJ) model (see also 
Section 3) can be solved numerically when the emitter is coupled to an external oscillating circuit (Modanese & 
Junker, 2008) or receives an arbitrary current pulse. The simulation shows that there is an (almost linear) relation 
between the emitter voltage and the main frequency Fourier component of the pulse. For the frequency 
components of EP pulses, however, the estimated voltage turns out to be quite small, of the order of 1 V or less. 
This corresponds to an emitter energy of 10-3 J, which is also the magnitude order of the energy of a single target 
pendulum. The total beam energy is probably larger, so the theoretical model should be corrected to possibly 
include (1) some other junctions with large resistance (in addition to the intrinsic junctions), located for instance 
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near the insulating layer; (2) higher frequency components of the current, besides the main component 1/t, 
possibly generated in the vacuum discharge or due to the short rise time of the Marx generator. The values of Ve 
given in Table 1 range between 1 and 10 V, thus comprising these two corrections. 

2.3 Propagation Velocity, Vacuum Spark Discharge, Skin Effect (EP) 

The propagation velocity of the anomalous radiation was measured by EP after the main experiment over a 
distance of 1211 m, using two synchronized rubidium clocks triggered by fast piezoelectric sensors (Podkletnov 
& Modanese, 2012). The startling and still unconfirmed outcome was an apparent superluminal velocity of (64 ± 
1)c. Note that this is not in contrast with causality, as discussed in (Modanese, 2013), since the correlation 
between two sensors placed on the radiation path does not include the initial time for the generation of the pulse 
in the source. (The latter cannot be measured with a comparable accuracy.) Instead, the observed superluminal 
correlations appear in our opinion to confirm the quantum nature of the anomalous radiation phenomenon 
(compare Section 4.1); according to this interpretation, distant detections of the beam amount to measurements 
made on the same wavefunction. 

A recent analysis of the EP discharges (Modanese & Podkletnov, personal communication, 2013) in the vacuum 
chamber has evidenced a strong similarity to “vacuum spark discharges” with superconducting cathodes. 
Accordingly, EP discharges would not involve chain ionization in a pre-existing gas, but evaporation of electrode 
material, as described for instance by (Küchler, 2004) for “vacuum switches” and by earlier articles on the 
vacuum spark discharge (Korop, Meierovich, Sidel'nikov, & Sukhorukov, 1979; Koshelev & Pereira, 1992). 

The same analysis also discusses the possible role of the normal layer in EP emitter in the suppression of the skin 
effect. If there was a direct contact between a metal electrode and the superconducting emitter, the skin effect at 
high frequencies might prevent the current from passing through the bulk of the superconductor. Although no 
definitive conclusion on the internal skin effect in the emitter was reached, based on the available literature, it is 
believed that it is absent or moderate in YBCO in the ab crystal direction, for current flow in the c direction. An 
important role of the normal layer in the EP emitter could then be that of avoiding direct metal-superconductor 
contact and re-distribute the current on the bulk before it is injected into the superconductor.  

The normal layer also hosts a strong electric field, which is supposed to be essential in the universons theoretical 
model (Section 4.2). In Section 4.1 we discuss whether this field could improve the spontaneous emission of 
anomalous radiation according to the gravitational vacuum fluctuations model. 

2.4 Calibration of the Accelerometer (CP) 

In (C. Poher & D. Poher, 2011), Section 2.6.1, CP mentions a calibration procedure of the piezoelectric 
accelerometer based on dropping a small test mass from certain heights. This procedure was described in more 
details in (Poher, 2013b) and is straightforward for forces in a low frequency band, but requires an extrapolation 
in order to be applied to the impulsive microsecond forces observed in the experiment. The figure of 8.8×10-8 
kgm/s given in Section 3.2.2 for the recoil momentum is not directly compatible with the low-frequency 
calibration constant of Figure 8 (12.33 mV per Newton). An extrapolation to higher frequencies has been 
implicitly applied. Actually, what was measured was not the immediate response of the accelerometer to the 
force beam, but the residual oscillations of the test mass connected to the accelerometer after the action of the 
beam. During the pulse the output of the accelerometer is considerably affected by inductive disturbances, which 
are only partially screened by the aluminum enclosures. This time sequence is clearly seen from the oscilloscope 
readings. The inductive disturbances are very short-lived and erratic. On the contrary, the voltage output of the 
accelerometer during the residual oscillations is always proportional to the electric energy of the discharge, and 
in turn proportional to the output of the alternator (except when the recoil is so strong that some of the recoil 
momentum is dissipated before it can reach the alternator). Since the accelerometer measures the final velocity 
of a test mass placed in the force beam, it behaves in practice like the pendulums of EP, but in a kHz band 
instead of a Hz band.  

The effect of a short force pulse on a harmonic oscillator, with special reference to the balance between the 
transmitted energy and momentum and to the specific features of a piezoelectric sensor, has also been discussed 
in (Podkletnov & Modanese, 2012). 

2.5 Dynamical Resistance of the Emitter 

The concept of “dynamical” resistance of the emitter plays an important role in both experiments. 

CP: The resistance of the emitter during the discharge is usually different from the resistance measured with a 
four-contact ohmmeter before the discharge. For certain sintered emitters the two values can differ by magnitude 
orders, probably due to the presence of oxide layers. The dynamical resistance is estimated from the plot of the 
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principle be obtained in a hot plasma, if between successive scatterings the accelerated electrons emit 
electromagnetic radiation in one preferred direction (Figure 3). For a field strength of the order of 106 V/m and a 
collision time of 10-9 s, the radiated energy is typically less than 1 part in 1020. The photon energy-momentum 
ratio p=E/c implies that the “imbalance” momentum carried away by radiation is always extremely small.  

3.1 Simulation of Recoil Forces on a Josephson Junction 

In a superconducting material one can imagine a non-stationary process in which an electric field accelerates 
electron pairs and positive ions in opposite directions, thus creating a recoil that cannot immediately be balanced 
by ohmic friction. The balance is restored a bit later at the normal-superconducting junctions at the border of the 
material. The situation is difficult to model theoretically, also because the allowed electric field configurations 
must be compatible with some time-dependent evolution equation for the superconductor (compare also Section 
3.2). A general upper estimate appears to be possible for the recoil of a Josephson junction described through the 
RSJ model (Figure 3). This estimate can then be applied to real cases, like sintered ceramic superconductors 
(with inter-grain junctions) or melt-textured ceramic superconductors (with intrinsic junctions, see [Kleiner & 
Müller, 1994-1997]). 

In the RSJ model a real Josephson junction is described as the parallel of an ideal junction and a resistance. The 
ideal junction carries only supercurrent and obeys the Josephson equations 

 

0

( ) sin ( )

1
( ) ( )

s JI t I t

t V t








  

                                     (1) 

where Is is the supercurrent, IJ the critical current of the junction,  is the Josephson phase, 0 = 2e/h and V(t) is 
the applied voltage. R is the resistance of the junction in its normal state and depends on the material, on the 
surface S and on the thickness d. The general relation IJR = V0 also holds, where V0 is a characteristic voltage 
which depends only on the material; for niobium junctions, for instance, one has V0 = 2.2 mV. For YBCO 
junctions V0 is usually in the range from 0.1 to 8 mV, depending on the micro-structure (Waldram, 1996). The 
simplest case is that of a junction subjected to a constant voltage; in that case Is oscillates in a pure sinusoidal 
way with frequency  = V/0. When the junction is inserted into an arbitrary external circuit, the voltage is not 
constant and V(t) = RIn(t). The simulation of the circuit requires to solve two coupled non-linear differential 
equations. It can be shown that real junctions in series become synchronized, so it is sufficient to consider only 
one junction (Modanese & Junker, 2008).  

Results are given in Figures 4, 5. Further details will be published elsewhere. For the purpose of the numerical 
simulation we can choose a value of IJ which corresponds to that of the entire emitter. (In reality, the emitter 
contains many junctions in parallel and in series, but in the end we compute a force per unit mass, which is 
independent from the size of the junction.) Let us take an external pulse with a peak of ca. 2500 A. In the first 
simulation (Figure 4) we chose a “safe” critical current IJ = 5000 A. From the relation IJR = 10-3 V this implies 
that R = 10-7 Ω. In the second simulation (Figure 5) we chose a critical current IJ = 2600 A, which is only slightly 
larger than the total current. See the figure captions for further comments. 
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The model postulates the existence in all space of a homogeneous and isotropic flux of particles called 
“universons” which propagate at light speed and are continually absorbed and re-emitted in a very short time by 
all massive elementary particles, thus giving rise to their inertia. (In this sense, the model has elements in 
common with theories like those of Puthoff-Haisch-Rueda, which explain the particles' inertia as a result of their 
interaction with electromagnetic vacuum fluctuations [Haisch & Rueda, 1998].) The initial aim of the model was 
to address some problems in astrophysics, in particular the anomalies in the galactic rotation velocity curves. In 
this context the universons hypothesis is a substitute (more simple and natural, according to CP) for other kinds 
of dark matter. 

From the point of view of the universons model, the superconducting emitter employed in the experiment 
interacts strongly with the natural universons background flux, and is able to divert a small part of the flux and 
extract some energy from it. This interpretation allows to circumvent a considerable conceptual difficulty, 
namely to explain how the observed anomalous radiation can convey to the targets a momentum which is much 
larger than the radiation pressure momentum p = E/c. In the universons model, the “transmission balance” is not 
limited to emitter and radiation, but also encompasses the surrounding background. Roughly speaking, a kind of 
vacuum pressure is involved, which is able to transfer much more momentum than could be carried by single 
particles. In this picture, the universons of the anomalous beam are not just absorbed in the target, but absorbed 
and quickly re-emitted. 

As mentioned in Section 2.1, CP measurements show a proportionality between the recoil momentum and the 
electric energy of the discharge. Since the recoil energy is in turn proportional to the square of the momentum, an 
extrapolation of this proportionality relation to higher energies would imply that at some point the recoil energy 
exceeds the electric energy. CP has estimated in which conditions this should happen, supposed the 
proportionality relation keeps true. These “excess energy conditions” are quite far from the present experimental 
parameters. The presence of an excess output energy would clearly be a confirmation of the universons model. 
The vacuum fluctuations model of Section 4.1 predicts the exchange of some momentum with the vacuum, but 
not an energy gain. 

CP has proven within his model that an accelerated particle emits universons in an anisotropic way. The main 
idea behind the experiment is that during the discharge a large number of electrons in the emitter are strongly 
accelerated and emit universons in the direction of their acceleration. The acceleration would be possible thanks 
to the partial penetration of the electric field in certain regions of the superconductor, mainly near the borders of 
the YBCO grains and near the insulator-superconductor junctions. The product of large electron acceleration (up 
to 1017 m/s2) and high electron density achieved in these conditions would be much larger than the analogous 
quantity obtained in other devices like X-ray tubes or particles accelerators. Moreover, the emitted universons 
could themselves accelerate further electrons in the bulk of the superconductor, thus leading to an amplification 
of the process. The fact that the many individual anisotropic fluxes of universons simultaneously emitted by all 
the atomic nuclei accelerations do not cancel the effect of the anisotropic fluxes emitted by all the primary 
accelerated electrons would be peculiar of superconductors. 

4.3 Other Theoretical Models 

According to N. Wu (2006), anomalous gravitational emissions in superconductors could be explained by a 
generalized gauge theory of gravitation that she developed over several years (Wu, 2004).  

In a series of papers (Robertson, 2007-2012), G. A. Robertson looks at special features of superconductors for 
guidance toward the understanding of what properties could lead to anomalous gravitational phenomena. This is 
accomplished by first looking at properties for rapid power flow internal to the superconductor, applying these 
properties to energy radiated in gravitational wave, establishing an experiment to setup this power flow (which 
happens to look much like the EP experiment) and evaluating the theoretical calculations to the EP experiment. 
The theoretical calculations and the experimental data are shown to be surprising similar both in graphical form 
and value.  

It has been known for a long time (Halpern & Laurent, 1964) that the probability of spontaneous or stimulated 
gravitational emission from atomic systems is so small that laser action can not be obtained in any realistic 
conditions. This conclusion is inevitable in the weak-field approximation, and if one considers only incoherent 
matter and real radiation with energy-momentum ratio E/p = c. Recently G. Fontana (Fontana, 2012) has studied 
the possibility of generating gravitational laser action in certain special circumstances, which can only occur at 
the junctions of two different superconductors, namely (a) transitions of Cooper pairs between s and d states, (b) 
super-radiance due to the macroscopic coherence of the superconductors, (c) suppression of the competing 
electromagnetic transitions due to the peculiar electrodynamics of superconductors. 
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In an unpublished report (Lewis, 2011), R. A. Lewis analyses an early version of the CP experiment and the 
viability of an explanation of the observed phenomena through a vacuum field of the universon type. He 
observes that a phenomenological model involving Dirac string flux tubes may summarize some features of the 
experimental data. He hypothesizes that vaporization of liquid nitrogen could contribute to the observed recoil. 
(This hypothesis has been however confuted by the most recent data of C. Poher with high-efficiency emitters.) 

Further speculative works on EP and CP experiments have been published by Consiglio (2012), Sukenik and 
Sima (2001), and LaViolette (2012). 

5. Conclusions 

We have analysed similarities and differences between the high-voltage discharge experiments by E. Podkletnov 
(EP) and C. Poher (CP). Both authors report the emission from YBCO electrodes of an anomalous radiation with 
small energy-momentum ratio, under conditions which are peculiar but not prohibitive. CP expands considerably 
the range of possible choices of emitter structure, applied voltage, duration and form of the discharge. He further 
measures a recoil momentum of the emitter which is always proportional to the total electric energy of the 
discharge; typical values for efficient emitters are of the order of 1 kgm/s per 200 J of electric energy.  

The recoil momentum is always opposite to the radiation momentum, but the exact relation between the two is 
tricky. On one hand, EP does not observe any recoil. This might be because the recoil is prevented or damped by 
a rigid structure (possibly the large discharge vacuum chamber, which is the main difference between the EP and 
CP devices). On the other hand, since the momentum imparted by the radiation on a target is proportional to the 
mass of the target, it is not obvious that one can detect the same momentum per unit target surface, no matter 
how many detectors one places, and no matter how much they weigh. We might call this the “paradox of the 
virtual radiation” (a term borrowed from the theoretical model of the effect based on vacuum fluctuations and 
virtual gravitons). It would imply that the recoil of the emitter depends to some extent on the target. There would 
also exist a maximum target mass, such that for larger masses the target acceleration would not be constant, but 
would decrease and tend to zero (Podkletnov & Modanese, 2012). 

A totally different view of the whole process is offered by the universons model. In that model, the background 
universons flux enters the local and total balance of energy and momentum and can completely alter it. For 
comparison, according to the virtual gravitons model there is in the emitter an exchange of momentum with the 
vacuum, but not an exchange of energy; and the propagation of the radiation and its interaction with the targets 
do not involve any further interaction with the vacuum. 

Our theoretical simulation of the electromagnetic recoil of a Josephson junction suggests that that kind of recoil 
is much smaller than the one observed. More realistic simulations should take into account the penetration of 
strong pulsed electric fields into the insulating layers between the YBCO grains, and effects at the YBCO-metal 
junctions. This appears to be out of reach of the standard superconductivity theory, and will require further 
investigation. 

Independently from the theoretical interpretations, the possible practical applications of both the anomalous 
radiation and the recoil phenomenon appear to be quite relevant. A working phenomenological model would be 
important, of course, in order to optimise the effects and to connect them to prior art. But the reported 
phenomena appear so new and peculiar that much further experimental and theoretical work will probably be 
necessary for that purpose. 
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