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Abstract

We employ a test-particle code to explore diffusion of energetic particles interacting with the solar wind plasma.
The first time we investigate the pitch-angle dependence of perpendicular diffusion for different parameter regimes.
These results are important for numerical solutions of the pitch-angle dependent Cosmic Ray Fokker-Planck equa-
tion. We compare our finding also with predictions made by analytical theory.
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1. Introduction

In the present article we explore the interaction of energetic particles such as cosmic rays with the solar wind plasma
by using numerical simulations. The propagation and acceleration of such particles is usually modeled by solving
the cosmic ray transport equation (Parker, 1965). A fundamental quantity which enters the diffusive transport
equation is the diffusion tensor describing the stochastic motion of the particles. The latter tensor contains, in the
general case, the diffusion coefficient along the mean magnetic field κ∥, the perpendicular diffusion coefficient κ⊥,
and the drift coefficient κA. Here we assumed axi-symmetry with respect to the mean field B⃗0. Usually the different
transport coefficients depend on turbulence parameters and the particle rigidity/energy.

A more fundamental description can be achieved if the diffusive transport equation discussed above is replaced by
the so-called cosmic ray Fokker-Planck equation (see, e.g., Schlickeiser, 2002). In this case the particle intensi-
ties depend also on the pitch-angle cosine defined as µ = v∥/v where v is the particle speed and v∥ is the parallel
component of the particle velocity. If we describe particle transport by using the Fokker-Planck equation instead
of Parker’s diffusion equation, all parameters in the latter equation depend on µ. Instead of the parallel diffusion
coefficient κ∥ the important quantity is now the pitch-angle Fokker-Planck coefficient Dµµ(µ) and instead of the per-
pendicular spatial diffusion coefficient κ⊥ we have to use the Fokker-Planck coefficient of perpendicular diffusion
D⊥(µ). The spatial diffusion coefficients are related to the pitch-angle dependent quantities via the relations (see,
e.g., Schlickeiser, 2002)

κ∥ =
v2

8

∫ +1

−1
dµ

(
1 − µ2

)2
Dµµ (µ)

(1)

and

κ⊥ =
1
2

∫ +1

−1
dµ D⊥ (µ) . (2)

In which parameters one is interested in depends on whether the Fokker-Planck equation or the pitch-angle aver-
aged cosmic ray transport equation has to be solved.

In test-particle simulations one simulates the magnetic field structure by employing certain turbulence models (e.g.,
isotropic turbulence, two-component turbulence, three-dimensional anisotropic turbulence) and then the Newton-
Lorentz Equation is solved numerically for a high amount of test-particles. From these particle orbits one can
obtain the diffusion parameters κ∥ and κ⊥. This procedure can be seen as standard approach and it was performed
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by numerous authors (see, e.g., Michałek & Ostrowski, 1996; Mace et al., 2000; Qin et al., 2002a, 2002b; Pommois
et al., 2005; Zimbardo et al., 2006; Pommois et al., 2007; Ruffolo et al., 2008; Tautz, 2010; Qin & Shalchi,
2012; Tautz & Shalchi, 2013). However, one can also be interested in the pitch-angle dependence of the different
transport parameters. In particular one could try to compute the transport parameters Dµµ(µ) and D⊥(µ) from
computer simulations. In Qin and Shalchi (2009) we started to explore the pitch-angle dependence of Dµµ(µ). It
is the purpose of the present paper to complement this previous work to explore the pitch-angle dependence of
perpendicular diffusion.

To obtain pitch-angle dependent transport parameters is important to develop and test analytical theories for perpen-
dicular diffusion and pitch-angle scattering (see, e.g., Shalchi 2009 for a review) but also for different astrophysical
applications. For example, Florinski et al. (2008) and Zuo et al. (2011) studied the termination shock acceleration
of pickup ions with the Fokker-Planck equation, they were able to discuss in detail different observational features
of shock acceleration. In addition, Danos et al. (2013) solved the two-dimensional Fokker-Planck equation nu-
merically to investigate the effect of adiabatic focusing on the motion of energetic particles. One of the parameters
which enters such numerical work is the pitch-angle scattering coefficient Dµµ(µ). In principle such investigations
can be extended to take into account perpendicular diffusion described by the parameter D⊥(µ).

Furthermore, Qin et al. (2006) studied the effect of pitch-angle dependent adiabatic cooling on the Solar Energetic
Particles (SEPs) by numerically solving the Fokker-Planck equation, with the Markov stochastic process method
(Zhang, 1999). In addition, by solving SEPs transport equation including pitch-angle independent perpendicular
diffusion, Qin et al. (2011) showed that perpendicular diffusion can be used to approximately explain the Wind
spacecraft observation of counterstreaming particle beams with a deep depression of flux at µ = 0 during the
beginning of the event, which is usually explained by a reflecting boundary at some distance outside of 1 AU (Tan
et al., 2009). It is possible to improve the modeling results of Qin et al. (2011) to agree with observations better by
including a pitch-angle dependent perpendicular diffusion coefficient in the Fokker-Planck equation.

The paper is organized as follows: in Section 2, we discuss models for solar wind turbulence. Such models enter
numerical as well as analytical work about test particle transport. In Section 3, we briefly discuss analytical results
obtained for the pitch-angle dependent perpendicular diffusion coefficient. In Section 4, we explain the test particle
code and show our new results. Finally, Section 5 provides a short summary and conclusion.

2. Models for Solar Wind Turbulence

An important quantity entering analytical transport theories as well as computer simulations is the magnetic corre-
lation tensor defined as

Plm (⃗k) =
⟨
δBl (⃗k)δB∗m (⃗k)

⟩
. (1)

In the following we discuss models for the latter quantity which should be valid in the solar wind.

2.1 Slab/2D Turbulence

In the solar wind it is usually assumed that turbulence can be described as superposition of slab and two-dimensional
modes (see, e.g., Matthaeus et al., 1990, Zank & Matthaeus, 1993).

By definition we have for slab turbulence

Pslab
lm (⃗k) = gslab(k∥)

δ(k⊥)
k⊥
δlm (2)

where we have used the Kronecker Delta δlm with l,m = x, y. To satisfy the solenoidal constraint, we need to have
Plz = Pzm = Pzz = 0. Here gslab(k∥) is the (one-dimensional) turbulence spectrum of the slab modes.

Another turbulence model is that of pure two-dimensional (2D) turbulence where we have by definition

P2D
lm (⃗k) = g2D(k⊥)

δ(k∥)
k⊥

[
δlm −

klkm

k2

]
(3)

where we have employed the Dirac Delta δ(z). Furthermore, we used the two-dimensional turbulence spectrum
g2D(k⊥) which will be discussed below.

In the present paper we employ a slab/2D composite model where we assume a superposition of slab and two-
dimensional modes. In this case the correlation tensor is given by Pslab/2D

lm = Pslab
lm + P2D

lm where the two individual
components are given by Equations (2) and (3), respectively.
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2.2 The Shalchi & Weinhorst Model Spectrum

Shalchi and Weinhorst (2009) proposed the following form for the spectrum of the two-dimensional modes

g2D(k⊥) =
2D(s, q)
π

δB2
2Dl2D

× (k⊥l2D)q[
1 + (k⊥l2D)2](s+q)/2 . (4)

This form of the spectrum is correctly normalized. Above we have used the function

D(s, q) =
Γ
(

s+q
2

)
2Γ
(

s−1
2

)
Γ
(

q+1
2

) (5)

where Γ(z) is the Gamma function. The parameters used in the spectrum are the inertial range spectral index s, the
energy range spectral index q, and the bendover scale of the two-dimensional modes l2D. The latter length scale
denotes the turnover from the energy range of the spectrum to the inertial range. δB2D denotes the total magnetic
field associated with the two-dimensional modes.

As discussed in Shalchi and Weinhorst (2009), a similar spectrum can also used for the slab modes. In the following
we only discuss a flat spectrum (with q = 0) if the slab model is considered. In this special case the model spectrum
is given by

gslab(k∥) =
C(s)
2π
δB2

slablslab

× 1[
1 + (k∥lslab)2]s/2 (6)

with the same parameters as used for the two-dimensional modes (e.g., lslab is the slab bendover scale). Furthermore
we have used

C(s) = D(s, q = 0) =
Γ
(

s
2

)
2
√
πΓ
(

s−1
2

) . (7)

This type of spectrum was used before in cosmic ray diffusion theory (see, e.g., Bieber et al., 1994; Teufel &
Schlickeiser 2003; Qin et al., 2002a, 2002b; Matthaeus et al., 2003; Ruffolo et al., 2004; Zank et al., 2004; Shalchi
et al., 2004; Ruffolo et al., 2006).

The two spectra (4) and (6) are also in agreement with the forms discussed in Matthaeus et al. (2007).

3. Analytical Considerations

3.1 The UNLT Theory

Within the so-called Unifield-Non-Linear Transport (UNLT) theory developed by Shalchi (2010) the perpendicular
diffusion coefficient is given by

κ⊥ =
a2v2

B2
0

∫
d3k Pxx (⃗k)ℜ

[
T (⃗k)
]

(8)

where Pxx (⃗k) is the xx-component of the magnetic correlation tensor. The parameter a2 used here was introduced
by Shalchi (2010) in the same way as originally in Matthaeus et al. (2003). The latter parameter is related to the
probability that the particle is tied to a single magnetic field line.

The function T (⃗k) is given by

T (⃗k) =
1
2

∫ +1

−1
dµ µS (µ, k⃗). (9)

where S (µ, k⃗) is the solution of the following ordinary differential equation

−µ = ivµk∥S +
∂

∂µ

[
Dµµ
∂S
∂µ

]
− k2
⊥D⊥S . (10)
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Since the relation between the pitch-angle independent diffusion coefficient κ⊥ and the pitch-angle dependent
Fokker-Planck coefficient D⊥ is given by

κ⊥ =
1
2

∫ +1

−1
dµ D⊥ (µ) , (11)

we find from Equation (8)

D⊥ (µ) =
a2v2

B2
0

µ

∫
d3k Pxx (⃗k)ℜ

[
S (µ, k⃗)

]
(12)

where the function S (µ, k⃗) is still obtained by solving Equation (10).

3.2 Two-Dimensional Turbulence

Above we have argued that the two-component model is an appropriate model for solar wind turbulence. However,
there is no direct contribution to the perpendicular diffusion coefficient from the slab modes. The latter effect is
sometimes called the Shalchi slab hypothesis (see Ruffolo et al., 2012) but it can easily derived directly from the
UNLT theory (see, e.g., Shalchi, 2010). Therefore, only the two-dimensional modes contribute explicitly to the
total perpendicular diffusion coefficient.

In the following we evaluate Equations (10) and (12) for the two-dimensional correlation tensor (3). For this
specific turbulence model the Fokker-Planck coefficient of perpendicular diffusion becomes

D⊥ (µ) = π
a2v2

B2
0

µ

∫ ∞
0

dk⊥ g2D(k⊥)S (µ, k∥ = 0) (13)

where S is now provided by the solution of

−µ = ∂
∂µ

[
Dµµ
∂S
∂µ

]
− k2
⊥D⊥S . (14)

The solution of the latter equation is difficult (see discussion in Shalchi, 2010; Lerche & Tautz, 2011a, 2011b;
Shalchi, 2011b). In the following we discuss two asymptotic solutions of (14).

3.3 Dominant Perpendicular Diffusion

If the perpendicular diffusion term in (14) is dominant we find the following equation

−µ = −k2
⊥D⊥S (15)

which has the solution
S =

µ

k2
⊥D⊥

(16)

and the Fokker-Planck coefficient (13) becomes

D2
⊥ = π

a2v2

B2
0

µ2
∫ ∞

0
dk⊥ g2D(k⊥)k−2

⊥ . (17)

According to Equation (11) of Shalchi (2011a), the latter integral corresponds to the square of the field line diffu-
sion coefficient for pure two-dimensional turbulence (see also Matthaeus et al., 1995, 2007)

κ2FL =
π

B2
0

∫ ∞
0

dk⊥ k−2
⊥ g2D(k⊥). (18)

Therefore, we find in this limit
D⊥ (µ) = av |µ| κFL (19)

which is, for a = 1, the well-known Field Line Randon Walk (FLRW) limit originally discussed in the pioneering
work of Jokipii (1966). In this case the Fokker-Planck coefficient scales like D⊥ ∼ |µ|.
As shown in Shalchi and Weinhorst (2009), the field line diffusion coefficient for q > 1 is given by

κFL =

√
s − 1

2(q − 1)
l2D
δB2D

B0
. (20)
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The pitch-angle independent perpendicular diffusion coefficient κ⊥ can easily derived from (19) by pitch-angle
averaging the latter equation. We find in this case

κ⊥ =
av
2
κFL. (21)

The latter formula is well-known in diffusion theory and was derived before from the UNLT theory (see, e.g.,
Shalchi, 2010). Below we focus on the pitch-angle dependent result (19).

3.4 Dominant Pitch-Angle Scattering

If the pitch-angle scattering term in (14) is dominant we find the following differential equation

−µ = ∂
∂µ

[
Dµµ
∂S
∂µ

]
. (22)

In this case the function S does not depend on the wavenumber k⊥ and the Fokker-Planck coefficient (13) becomes

D⊥ (µ) = π
a2v2

B2
0

µS (µ)
∫ ∞

0
dk⊥ g2D(k⊥). (23)

With the normalization condition ∫ ∞
0

dk⊥ g2D(k⊥) =
δB2

2D

2π
(24)

this reads

D⊥ (µ) =
a2v2

2
δB2

2D

B2
0

µS (µ) (25)

where S (µ) is still given by the solution of (22). If we integrate the latter equation once we find

∂S
∂µ
=

1 − µ2

2Dµµ
. (26)

Obviously the latter equation can only be solved if the pitch-angle dependence of Dµµ is known.

Motivated by the simulations of Qin and Shalchi (2009) and section IV of the present paper, we employ the
isotropic form

Dµµ = (1 − µ)2D (27)

where D is a pitch-angle independent constant. In this case Equation (26) can easily be solved by

S (µ) = S (µ = 0) +
µ

2D
. (28)

Since we expect (due to symmetry considerations) D⊥ to be an even function of µ we can set S (µ = 0) = 0 and the
Fokker-Planck coefficient of perpendicular diffusion (25) becomes

D⊥ (µ) =
a2v2µ2

4D
δB2

2D

B2
0

(29)

If one is just interested in the pitch-angle independent perpendicular diffusion coefficient κ⊥, one can µ-average the
latter result to obtain

κ⊥ =
a2v2

12D
δB2

2D

B2
0

=
a2

2
κ∥
δB2

2D

B2
0

(30)

where we have used 6D = v2/κ∥ (see, e.g., Shalchi, 2006). Formula (30) is well-known in diffusion theory and was
derived before (see, e.g., Shalchi, 2013).

4. Simulations

In this work, we use numerical simulations to study pitch-angle dependent perpendicular diffusion coefficients.
We use the same simulation code as that in Qin and Shalchi (2012), which was based on the previous code (see,
e.g., Mace et al., 2000; Qin et al., 2002a, 2002b). In the code, we use a periodic box of size 10000 lslab and
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Nz = 4194303 points to generate the slab component of magnetic turbulence, as well as a periodic box of size
100 lslab × 100 lslab and Nx × Ny = 4096 × 4096 points to generate the two-dimensional component of magnetic
turbulence. Here, we set the inertial range index s = 5/3. In addition, we use a Fourier analysis to obtain magnetic
turbulence in real space from that in k-space. With a fourth-order Runge-Kutta method with adaptive step size
control of accuracy of 10−9, we solve the Newton-Lorentz equation to get the particle trajectories, from which the
running diffusion coefficients are obtained.

Here, in order to get the pitch-angle dependent perpendicular diffusion coefficients, we have to choose the cases
with lower pitch-angle diffusion but higher perpendicular diffusion so that there is a time scale during which per-
pendicular diffusion is obtained with the pitch-angle not changing too frequently. We do simulations for different
values of ratios of particle gyro-radius to bendover scale of slab component, RL/lslab, and the ratio of bendover
scales between two-dimensional component and slab component, l2D/lslab. Note that we set turbulence level,
δB/B0 = 0.1, the ratio of two-dimensional component magnetic energy to the slab component magnetic energy,
δB2

2D : δB2
slab = 80 : 20, and the energy range index of the two-dimensional modes q = 1.5 in all simulations. In

addition, we fit the pitch-angle scattering coefficient Dµµ(µ) to the isotropic form (27).

The simulation runs are summarized in Table 1 and shown in Figures 1-6. In bottom panels of Figures 1-6 we
show the pitch-angle scattering coefficient Dµµ(µ) from simulation results (dots) and fitting results with Equation
(27) (dotted-lines). In addition, in top panels of Figures 1-6 we show the pitch-angle dependent perpendicular
diffusion coefficients D⊥(µ) from simulation results (dots) and theory of Equation (19) with a2 = 1/10 (dotted
lines) and a2 = 1/3 (dashed lines). The horizontal axis, µ, for simulation results, is obtained by averaging for
particles throughout the simulations.

Table 1. The different test-particle simulations performed in the present paper. For all runs the inertial range
spectral index is s = 5/3, the energy range index of two-dimensional modes is q = 1.5, the turbulence level
is δB/B0 = 0.1, and the ratio of two-dimensional component magnetic energy to the slab component magnetic
energy is δB2

2D : δB2
slab = 80 : 20

Run l2D/lslab RL/lslab Figure
1 0.2 0.1 1
2 0.2 1 2
3 0.2 10 3
4 0.2 40 4
5 0.2 100 5
6 0.5 100 6

4.1 Parameters and Results for Run I

In Figure 1 we set the ratio of particle gyro-radius to the slab modes correlation scale RL/lslab = 0.1 and the ratio
of correlation scales between two-dimensional component and slab component, l2D/lslab = 0.2. In the top panel
we show D⊥(µ) from simulations with dots and that from Equation (19) with a2 = 1/10 (dotted line) and a2 = 1/3
(dashed line). It is shown that the simulation results of D⊥(µ) agree well with Equation (19) with the a2 = 1/3.

In the lower panel we show Dµµ(µ) from simulations with dots. In addition, we show the fitting results of Dµµ
to Equation (27) with dotted-line. In this particular case Dµµ(µ) does not have an isotropic form as described by
Equation (27).
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Figure 1. Top panel: The pitch-angle dependent perpendicular diffusion coefficient D⊥(µ) from computer
simulations (dots) compared with Equation (19) with a2 = 1/10 (dotted line) and a2 = 1/3 (dashed line). Bottom

panel: The pitch-angle diffusion coefficient Dµµ(µ) from the simulation (dots) compared with Equation (27)
(dotted line). For the particle and turbulence parameters we used RL/lslab = 0.1 and l2D/lslab = 0.2 to obtain these

plots

4.2 Parameters and Results for Run II

Figure 2 is similar as Figure 1 except that we consider higher particle energies with RL/lslab = 1. It is shown that
the simulation results of D⊥(µ) agree well with Equation (19) if we set a2 = 1/3. In addition, the simulations
provide an almost isotropic form for Dµµ(µ) in agreement with Equation (27).
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Figure 2. The same as Figure 1 except that RL/lslab = 1

7



www.ccsenet.org/apr Applied Physics Research Vol. 6, No. 1; 2014

4.3 Parameters and Results for Run III

To obtain Figure 3 we have further increased the particle energy by setting RL/lslab = 10. It is shown that when
|µ| > 0.1 the simulation results of D⊥(µ) agree well with Equation (19) with a2 = 1/3. In addition, when |µ| > 0.5,
the simulation results are smaller than the theoretical results with a2 = 1/3. It suggests a smaller value of a2. But
when |µ| < 0.1, the simulation results of D⊥(µ) is much larger than the theoretical results from Equation (19). For
the case considered here we find an almost isotropic form for the parameter Dµµ(µ) in agreement with Equation
(27).
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Figure 3. The same as Figure 2 except that RL/lslab = 10
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Figure 4. The same as Figure 3 except that RL/lslab = 40

4.4 Parameters and Results for Run IV

For the fourth run we set RL/lslab = 40 and the results are shown in Figure 4. It is shown that when |µ| > 0.1 the
simulation for D⊥(µ) agree well with Equation (19) with a2 = 1/10. But when |µ| < 0.1, the simulation results for
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D⊥(µ) are much larger than the theoretical results from Equation (19). Similar as above, the simulation results for
Dµµ(µ) are almost isotropic.

4.5 Parameters and Results for Run V

To obtain Figure 5 we used RL/lslab = 100. As long as |µ| > 0.1 the simulation results of D⊥(µ) agree well with
Equation (19) with a2 = 1/10. But the fact that when |µ| > 0 the simulation results are smaller than the theoretical
results with a2 = 1/10 suggests a smaller value of a2. In addition, when |µ| < 0.1, the simulation results of D⊥(µ)
is much larger than the theoretical results from Equation (19).
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Figure 5. The same as Figure 4 except that RL/lslab = 100

4.6 Parameters and Results for Run VI

Figure 6 is similar as Figure 5 except that we set a different ratio for the bendover scale, namely l2D : lslab = 0.5.
We get similar results as from Figure 5 except that when |µ| > 0.4, the simulation results of D⊥(µ) is much smaller
than the theoretical results and a2 should be much smaller than 1/10.

From Figures 1-6 it is shown that D⊥ is an even function of µ and it agrees well with Equation (19) with a2

varying from 1/3 to less than 1/10. Furthermore, Dµµ can be assumed as an isotropic form (27) with a pitch-angle
independent constant D for the most cases.
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Figure 6. The same as Figure 5 except that l2D/lslab = 0.5

4.7 Discussion

In the six different runs we explored the pitch-angle dependence of the perpendicular Fokker-Planck coefficient
D⊥(µ). We also computed the pitch-angle scattering coefficient Dµµ(µ). We compared our numerical results with
the isotropic form (27) to complement the work done in Qin and Shalchi (2009). Furthermore, we compared the
parameter D⊥(µ) with the prediction made my the UNLT theory developed by Shalchi (2010). We performed our
test-particle calculations for different values of the magnetic rigidity R = RL/lslab. As shown in Figures. 1-6, the
parameter Dµµ(µ) is always close to the isotropic form except for low rigidities R = 0.1. For the perpendicular
Fokker-Planck coefficient D⊥(µ) we found results which are mostly directly proportional to |µ| in agreement with
Equation (19). We also found that for the different parameter sets we have different values of the parameter a2

which enters different theories for perpendicular transport.

The results found here basically confirm Equation (19) and therewith the UNLT theory for perpendicular diffusion.
Therefore, these results can be used in different astrophysical applications such as simulations of solar modulation
and diffusive shock acceleration.

5. Summary and Conclusion

In the present paper we have explored the pitch-angle dependent perpendicular diffusion coefficient D⊥(µ). The
latter parameter is also known as Fokker-Planck coefficient of perpendicular diffusion. In previous simulations the
pitch-angle averaged perpendicular diffusion coefficient κ⊥ has been computed (see, e.g., Michałek & Ostrowski,
1996; Mace et al., 2000; Qin et al., 2002a; 2002b; Tautz, 2010; Tautz & Shalchi, 2013). To obtain the pitch-angle
dependent transport parameters Dµµ(µ) and D⊥(µ) can be important for different astrophysical applications. To
know Dµµ(µ) and D⊥(µ) is required if the Cosmic Ray Fokker-Planck equation is solved numerically. Florinski et
al. (2008) and Zuo et al. (2011), for instance, studied the termination shock acceleration of pickup ions with the
Fokker-Planck equation. Danos et al. (2013) solved the two-dimensional Fokker-Planck equation numerically to
investigate the effect of adiabatic focusing on the motion of energetic particles and Qin et al. (2006) studied the
effect of pitch-angle dependent adiabatic cooling on the Solar Energetic Particles (SEPs) by numerically solving
the Fokker-Planck equation.

In the present paper we focus on pitch-angle dependent perpendicular diffusion. We have performed different runs
(see Table 1) and we compare our findings with analytical results. The difficulty of the pitch-angle dependent
transport is that pitch-angle scattering itself is usually very strong and the parameter µ is changing rapidly within
a short time (see Qin & Shalchi, 2009 for more details). Therefore, we had to find parameter regimes where µ
remains almost constant within a sufficiently long time. In such cases we were able to obtain D⊥ as a function of
µ. The obtained results agree very well with the pitch-angle dependent field line random walk limit (19) and the
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prediction made by the UNLT theory of Shalchi (2010).
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