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Abstract 

The paper is concerned with the gravitational constant in the General Theory of Relativity (GTR) which is 
traditionally determined under the condition of asymptotic reduction of GTR equations to Newton gravitation 
equation for low intensity gravitation field. As shown in the paper, for spherically symmetric static GTR problem, 
the traditional gravitational constant is accordingly valid for low intensity gravitation field only and should be 
generalized for gravitation fields with high intensities. The same conclusion is made for the gravitational 
(Schwarzschild) radius. 
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1. Introduction  

The classical Newton’s law of gravitation, according to which the gravitational force acting between two bodies 
with masses m1 and m2 located at a distance r from each other is specified as F = Gm1m2/r

2 and includes the 
universal constant G originally measured with the aid of a torsion balance by Cavendish in 1798. Refined value 
of this constant (G = 6.693×10-11Nm2/kg2) has been found by Fixler, Foster, McGuirk and Kasevich (2007) from 
the atom interferometer measurement. Within the framework of the classical gravitation theory, the gravitational 
potential   satisfies the following Poisson’s equation: 

4 G                                        (1) 

which includes the universal constant G and the matter density ρ. 

In GTR, the energy tensor Tij is associated with the Ricci curvature tensor Rig through Einstein equation 

1

2ij ij ijT R Rg                                      (2) 

which includes the GTR gravitational constant χ. To express χ in terms of G the gravitation field with low 
intensity for which the metric coefficients gij are close to the corresponding coefficients of the Euclidean space is 
considered. The only one remaining Equation (2) for i = j = 4 is reduced to Equation (1) and the following 
relationship between χ and G is established: 

48 /G c                                        (3) 

in which c  is the velocity of light. Traditionally, Equation (3) is treated as the universal equation for χ which 
does not depend on the intensity of the gravitation field. However in the strict sense, the derivation of Equation 
(3) is valid only for the gravitation fields with low intensity and we can suppose that in the general case, the 
expression for χ can be different from Equation (3) which provides only the asymptotic value of this constant 
valid for gravitation fields with relatively low intensities. The paper provides the corresponding expression for 
the spherically symmetric GTR problem. 

2. Equations of the Classical Gravitation Theory 

Within the framework of the classical gravitation theory, the gravitational potential   which governs the 
spherically symmetric gravitation field induced by a solid sphere with radius R and density ρ satisfies the 
following Poisson’s equation which is a particular case of Equation (1): 
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2 / /
2

1
( ) 4r G

r
                                     (4) 

in which r is the radial coordinate, G is the classical gravitational constant and /(...) (...) /d dr . The solutions 
of Equation (1) for the internal space for which 0 r R   and const  (index “i”) and the external space 
for which R r    and 0   (index “e”) are 

 / (4 / 3)i G r   , / 2
1 /e C r                                    (5) 

Using the boundary condition / /( ) ( )i eR R   to determine the constant C1, integrating and neglecting the 
integration constant which is not important for the potential function, we get for the potential of the external 
space 

/e m r                                          (6) 

where 

3
0 (4 / 3)m m R                                        (7) 

is the sphere mass in the Euclidean space. 

Introduce the so-called gravitational radius 0
gr  which was found by Michell in 1783 and Laplace in 1796 

(Thorne, 1994) from the following equation for the escape velocity: 

02 /v m G R  

Taking v c  and 0
gR r , we get                            

0 2
02 /gr m G c                                      (8) 

which is the radius of the sphere for which the escape velocity is equal to the velocity of light c. 

3. Equations of the General Theory of Relativity 

Consider a GTR spherically symmetric problem for which the line element of the semi-Riemannian space 
induced by the gravitational field can be written as (Synge, 1960) 

2 2 2 2 2 2 2 2( sin )ds gdr r d d hc dt                                 (9) 

where g(r) and h(r) are the coefficients of the metric tensor. The components of the energy tensor for the static 
problem are (for the problem under study the mixed components which coincide with the corresponding physical 
components are used) 

1
1 rT  , 2 3

2 3T T   , 4 2
4T c                            (10) 

Here, σr and σθ are the radial and the circumferential stresses induced by the gravitational field. The energy 
tensor, j

iT , must satisfy the following conservation equation (Synge, 1960): 

1 2 1 1 4
1 2 1 1 4

2
( ) ( ) ( ) 0

2

h
T T T T T

r h

                                  (11) 

According to GTR, Equation (11) is satisfied identically if the energy tensor is expressed in terms of the Einstein 
tensor j

iG  as 

1 1
1 1 2 2

1 1 1h
T G

g rh r r
       

 
                             (12) 

2
2 3 2

2 3 2

1 1 1

2 2 2

h h h g g h
T T G

g h h r h g gh
 

                  
     

                     (13) 
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4 4
4 4 2 2

1 1 1g
T G

g r rg r
       

 
                              (14) 

in which χ is the GTR gravitational constant. Equations (12)-(14) present the explicit form of Equation (2) for 
spherically symmetric problem. Because substitution of Equations (12)-(14) in Equation (11) satisfies this 
equation identically, only three of four Equations (11)-(14) are mutually independent. Traditionally (Synge, 
1960), the simplest set of equations which is used for analysis includes Equations (11), (12) and (14). The 
remaining Equation (13), is satisfied identically. Substituting Equation (10) in Equations (11), (12) and (14), we 
arrive at the following final set:    

22
( ) ( ) 0

2r r r

h
c

r h                                  (15) 

2

1 1 1
r

h

rg h r r
      

 
                              (16) 

2
2

1 r
c r

r g


   
 

                                  (17) 

The boundary conditions of the problem 

)0()0(  rrr  , ( ) 0r r R                          (18) 

should be supplemented with the regularity condition at the origin r = 0, the compatibility conditions of the 
metric tensor for the internal and the external space at r = R and the asymptotic conditions at r → ∞. 

4. GTR Gravitational Constant 

As follows from Introduction, the GTR gravitational constant χ which enters Equations (16) and (17) is 
traditionally expressed in term of the gravitational constant G in Equation (4) of the classical gravitation theory. 
In application to the spherically symmetric problem, consider the semi-Riemannian space for which the 
coefficients of the line element form in Equation (9) are close to the coefficients of the corresponding Euclidean 
space, i.e., 

1 ( )rg f r  , 1 ( )th f r                                (19) 

where | | 1f  . Performing linearization of Equations (15)-(17) with respect to f, we arrive at 

/ 2( ) 0r rr                                        (20) 

/
0 2

1
( )r r tf rf

r
                                       (21) 

2 /
0 2

1
( )rc rf

r
                                        (22) 

We introduce here the GTR gravitational constant χ0 which corresponds to the linearized equations. As shown 
further, this constant, in general, does not coincide with χ in Equations (16) and (17). 

Expressing fr in terms of ft and σr with the aid of Equation (21) and substituting the result in Equation (22), we 
get 

2 / / 2 /
02

1
( ) ( 3 )t r rr f c r

r
       

Expressing /
r  from Equation (20), we can reduce this equation to 

2 / / 2 0
02 2

1
( ) 1tr f c

r c

 


   
 

                              (23) 

where 0 2r      is the first invariant of the stress tensor for the sphere under consideration. To compare 
Equation (23) with Equation (4) of the classical gravitation theory, we need to link the function ft(r) with the 
gravitational potential ( )r . For this purpose, the trajectory of a small object in a gravitational field induced by 
a solid is traditionally considered. In the classical theory, the trajectory is governed by the gravitational force 
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with potential ( )r , whereas in GTR, it coincides with the geodesic line of the semi-Riemannian space whose 
curvature depends on function ft(r). Because the trajectories must be the same, the following relationship 
between the functions is valid (Weinberg, 1972): 

2( ) 2 ( ) /tf r r c  

Substituting this result in Equation (23), we arrive at 

2 / / * 4
02

1 1
( )

2
r c

r
                                   (24) 

where 

* (1 )     , 2
02 / c                                (25) 

Note that the right-hand part of Equation (24) which is derived here for the spherically symmetric problem 
includes the reduced density ρ*. In the general case, if (in contrast to the traditional derivation) the stresses are 
not neglected, the resulting Poisson’s equation similar to Equation (1) also includes ρ* (Vasiliev & Fedorov, 
2003). Thus, tensile stresses reduce the effective density and hence, the gravitational potential of a solid, whereas 
compressive stresses (i.e., negative values of the stress invariant) increase the density and the gravitational 
potential. Tensile stresses can occur, for example, in steadily spinning solids. The maximum σ0 value can be 
reached today in composite flywheels of uniform strength reinforced with high-strength carbon fibers (Vasiliev, 
1993). For such flywheels, σ0 = 3600 MPa, ρ = 1550 kg/m3 and α = 0.52·10-10. Thus, the stress effect is small 
and for real structural materials we can neglect α in comparison with unity taking ρ* = ρ in Equation (24). Then, 
this equation coincides with Equation (4) if 

4
0 8 /G c                                      (26) 

which is the traditional expression in Equation (3) for the GTR gravitational constant. 

5. Solution of the GTR Equations for a Spherically Symmetric Space 

Consider the traditional solutions of Equations (15)-(17) corresponding to the external ( R r   ) and the 
internal ( 0 r R  ) spaces of the solid sphere with radius R  (Schwarzschild, 1916).  

For the empty external space, ρ = 0 and σr = σθ = 0. Then, Equation (15) is satisfied identically and the remaining 
Equations (16) and (17) can be reduced to 

1
( 1)e

e
e

h
g

h r


  , 0

e

r
r

g

 
  

 
                            (27) 

Integration of Equations (27) yields                                  

rC
ge /1

1

2
  ,  






 

r

C
Che

2
3 1                            (28)   

Determine the integration constants C2 and C3. For r → ∞, Equations (28) must reduce to the solution of the 
classical gravitation theory (Landau & Lifshitz, 1962), i.e., to 

0
2

2
1 e

eg
c

  , 0
2

2
1 e

eh
c

   

where the gravitational potential e  is specified by Equation (6). Then, Equations (28) become 

0

1

1 /e
g

g
r r




, 
0

1 g
e

r
h

r
                                 (29) 

where 0
gr  is the gravitational radius specified by Equation (8). As follows from Equations (29) the metric 

coefficient can become singular if the radius r  reaches the value 0
gr  which is referred to as the radius of the 

Black Hole event horizon (Frolov & Zelnikov, 2011). It does not look natural that Equations (29) corresponding 
to GTR include the radius 0

gr  which is specified by Equation (8) corresponding to the classical gravitation 
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theory. 

For the internal space, const   and integration of Equation (17) in which χ = χ0 in accordance with Equation 
(26) yields 

2 20 4

1

1
3

ig
C

c r
r

 


 
                                (30) 

From the traditional regularity condition it follows that C4 = 0 (Misner, Thorne, & Wheeler, 1973). Apply the 
compatibility condition for the metric coefficient at the sphere surface r = R, according to which ge(R) = gi(R). 
Using Equations (29) and (30), we arrive at the following relationship: 

2 3 00

3 gc R r
                                       (31) 

Then, Equation (30) takes the following final form: 

0 2

3

1

1
i

g

g
r r

R




                                      (32)    

Substituting 0
gr  from Equation (8) in Equation (31) and taking into account that m0 is specified by Equation (7), 

we can find χ0 = 8πG/c4 which coincides with Equation (26). 

Note that if 0
gr  is much smaller than R, we can neglect the terms with 0 /gr R  in comparison with unity in 

Equations (29) and (32) and the metric coefficients reduce to the corresponding coefficients of the Euclidean 
space for which the sphere mass m0 is specified by Equation (7). However, if the space inside the sphere is not 
Euclidean, the sphere mass is not equal to m0. Calculating the sphere mass corresponding to the Riemannian 
space with the metric coefficient specified by Equation (32), we arrive at the following expression: 

2
0 02 3 1

0 0
0 0 0

2 1
2 sin sin 1

R

g gi

g g

m d d g r dr R r r
r r

       
 
    
 
 

                      (33)  

in which 

0 0 /g gr r R                                        (34) 

Decomposing the right-hand part of Equation (33) into the power series and using Equation (7) for m0, we get 

0 0 2
0

3 9
1 ( ) ...

10 56
g gm m r r      

                              (35) 

This equation coincides with Equation (7) only for the Euclidean space for which 
0

0gr  . In the general case, 

0m m  which means that either the space inside the sphere is not Riemannian (Vasiliev & Fedorov, 2013) or the 
theory is not consistent. Indeed, it looks natural that if the GTR equations are valid, the potential function e  in 
Equation (6) which governs the gravitational field at a distance from the sphere should depend on the actual 
mass of the sphere m specified by Equation (33). 

6. New Expressions for the Gravitational Radius and Constant 

Because 0
gr  and χ0 correspond to the Euclidean space to which the Riemannian space is reduced for gravitation 

fields with low intensities, assume that these constants are only the asymptotic values of the corresponding GTR 
constants. In the general case, the sphere mass m corresponds to the Riemannian space and Equation (8) for the 
gravitational radius can be generalized as 

22 /gr m c                                     (36) 

Repeating the derivation of Equations (29) and (32), we arrive at the following metric coefficients for the 
external and the internal spaces: 
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1

1
e

g

g
r

r




, 
2

1

1
i

g

g
r r




                             (37) 

in which 

/g gr r R , /r r R                                (38) 

Note the second equation of Equations (37) exists under the condition that the following relationship which 
generalizes Equation (31) is valid: 

2 3

3 gc R r
                                       (39) 

Here, rg is specified by Equation (36) and χ is the new GTR gravitational constant. 

Now, the sphere mass which is specified by the left-hand part of Equation (33) becomes 

3 12 1
sin 1g g

g g

m R r r
r r

  
 
   
 
 

                            (40) 

Substituting m from Equation (40) in Equation (36), we get the following equation for the gravitational radius: 

0

13 1
sin 1

2

g
g g g

g g

r
r r r

r r


 
   
 
 

                            (41) 

in which 0
gr  is the traditional gravitational radius specified by Equation (8). Approximate version of this 

equation corresponding to Equation (35) is 

0 23 9
1 ...

10 56
g g g gr r r r      

                             (42) 

It looks natural that the derived expression for the gravitational radius in GTR does not coincide with Equation 
(8) following from the classical gravitation theory. 

Using Equation (39), we can determine now the corresponding value of the gravitational constant, i.e., 

103 1
sin 1

2
g g

g g

r r
r r

 
 
   
 
 

                           (43) 

Or approximately 

   
2

0

3 9
1 ...

10 56
g gr r        

                              (44) 

Where χ0 is the traditional GTR gravitational constant specified by Equation (26). For 0gr  , we have 

o  . 

Note that the metric coefficients in Equations (37) are formally the same that follow from the traditional 
Schwarzchild solution, but the gravitational radius gr  is different from the Schwarzchild radius o

gr  and, in 
accordance with Equation (42), coincides with it for gravitation fields with relatively low intensities. 

Dependences between the ratios 
0

/g gr r , 0/   and 
0
gr  plotted in accordance with Equations (41)-(44) are 

presented in Figure 1. As can be seen, gr  is close to the traditional value 0
gr  only for low 0

gr  values. The 

maximum possible value of gr  is 1 , whereas the corresponding 
0
gr  value is 4/3 . As follows from Figure 1, 

the normalized traditional gravitational radius reaches the maximum value 0.544 which means that that the 
sphere radius R  cannot be lower than 1.838 0

gr . 
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Figure 1. Dependences between the rarios 0
0/ , /g gr r   and the traditional gravitational radius 0

gr  

 
7. Conclusion 

As follows from the foregoing analysis, the traditional gravitational constant χ0 which is obtained matching the 
linearized GTR equations with the corresponding equations of the classical gravitation theory is not universal 
and can be treated as the asymptotic value valid for gravitation fields with low intensity. In the general case, the 
GTR gravitational constant χ depends not only on the classical gravitational constant G, but also on the mass of a 
body inducing the gravitation. Respectively, the gravitational radius rg, in the general case, does not coincide 
with the traditional Schwarzschild radius. For spherically symmetric static problem of General Relativity, 
close-form analytical solutions which specify the GTR gravitational constant and radius are obtained. If the body 
mass m is such that the parameter 2mG/c2 is much less than unity, the obtained expressions for χ and rg provide 
the traditional results. 
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