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Abstract 

Energy radiations depending on linearity of intrinsic semiconductors possessing of two types conductivities have 
been investigated. It is found that in order to start the radiation, the real part of the impedance must be zero. 
Frequency of the radiation and the relevance electric field strength, have been calculated analytically. It has been 
proved that in nano-dimension the radiations take place even though at smaller intense of electric fields. 
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1. Introduction  

The properties of basic semiconductors and their miscellaneous components have been investigated 
experimentally and theoretically at point of unbalanced states at external electric fields. But in that researches the 
material investigations were performed in only macroscopic forms (Jameshed, 2007). For example, works of 
Qann on compound of GaAs, the length of the compound was about 0.1 cm. The main aim of our study is to find 
radiation conditions in nano dimensions, such as 0.1  cm, for electron and hole conductivity 
semiconductors in existent of an electric field. In periodical journals the occurring value of electrical radiation is 

3E 3 10  V/cm in experimental and theoretical works. Such as electric field value provides the condition of 

 Bk T e E                                       (1) 

at the both of liquid nitrogen and room temperatures and this value is known as larger electric value. Where Bk  
is the Boltzmann constant (1.38×10-23 J/K), T is the absolute temperature, e is the charge of electron and   is 
the length of the semiconductor. At the smaller temperatures ranges, when 810 cm, conditions of Equation 
(1) is provided.  

2. The Theory of Electical Radiation 

Electric current density in electron and hole carriers semiconductors is given in following equation. 

    J E D n                                   (2) 

Where n  is the concentration of the hole and electron,  = e n   is the conductivity,   is the mobility 
of hole and electron and D  is the diffusion constant of electrons and holes. From conservation condition of 
Equation (1)  

1



 D n

E
                                    (3) 

is obtained. Diffusion current density, D n , becomes smaller than that of the current, E , in the intrinsic 
semiconductors. We will take into consideration Equation (3) in the following theoretical calculations. At larger 
electric field, the drift velocities of electrons and holes providing (1) condition become u E    and are 
higher than that of temperature emitting velocity [ 1/2

T Bv (k T / m ) ]. Where m  is the mass of the hole or the 
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electron. Founded electric field values from condition of   Tvu  are relating to stronger fields. Assuming 
that, the external electric field is strong enough to take into consideration. 

1 2
1

 

 
  

 

/

B
o

k T
E

m
                                  (4) 

Note that this result must provide the mentioned condition. 

In the intrinsic semiconductors, the larger electric field providing condition of Equation (4) condition ruins the 
balances of the concentrations of the charge carriers and the semiconductor comes to unbalanced state. The 
charge carriers, electrons and holes, are detained by doping atoms (recombination) or new carriers occur 
(generation) (Hasanov, 2009). Process of the recombination and the generation changes inequality the number of 
free charge carriers and then the system deviates from balance state (Demirel, 2011). Depending on impurity 
atoms the recombination and the generation gain various characters. Types and charges of impurity atoms can be 
determined experimentally. By following calculations we will investigate the state of Au doped into Ge 
semiconductor.  

When Au atoms doped into Ge atoms, various states are constructed. These structures can be statement: For 
neutral Ge, Au takes one positive valence, for one valence negative Ge, Au takes di-valence negative and for Ge 
di-valence negative, Au takes three-valence negative (Hasanov, 2009, 2011; Demirel, 2011).  

For such intrinsic semiconductors, the energy levels are being in various levels in the forbidden zones. In this 
case these levels are called as deep traps and they can hold electrons and holes (recombination). Keeping of the 
electron in these levels, decreases the number of electrons in the conduction band so that the conductance of the 
semiconductor is reduced. Keeping of the holes, decreases the number of them in the valence band. In some 
experimental conditions the activation of these deep traps can change. For example, when one valence negative 
and di-valence negative for Ge and Au respectively, Au atoms become more active than that of Ge. These deep 
traps change the numbers of the electrons and the holes as following. An external electric field E0 existent, the 
electrons and the holes gain of 0eE   energy. Where   is the mean free path between two collisions, which is 
in scale of nanometer, and e is the charge of the electron. The electrons having eE  energy overcome Coulomb 
wells surrounding negative one valence doping atoms and then they are seized by these atomic centers. This 
event is called as the recombination and due to this effect the number of the electrons in the conduction band is 
diminished. In the other side, the electrons are activated to pass through from deep trap to the conduction band 
by thermal energy. Thus the recombination decreases the number of the electrons in the conduction bands and on 
the contrary the generation increases it. With the decreasing of the number of electrons in the valence bands, the 
number of the holes is increased and the other side the number of holes is decreased in the deep traps. Since the 
recombination and the generation occurring probabilities are various, then the number of the charge carriers is 
changed. Let us indicate the number of electrons as n , that of the holes as n  and that of the deep traps as 

0N , which is constant and  

0  N N N .                                    (5) 

Where N  is the one negative valence deep traps number and N  is the di-valence negative deep traps 
number. 

3. Fundamental Equations System 

In mentioned above semiconductor having deep traps, equations characterizing of the movement of the electrons 
and the holes are basically continuity equations. As mentioned above, the recombination process reduces the 
number of electrons and the generation process increases it. According to these processes the electrons 
concentration ( n ) change depending on time can be written as following equation (Hasanov, 2009). 

         
   gen. recomb.

dn dn dn

dt dt dt
                              (6) 

10
  

   
 gen.

dn
( )n N

dt
                                 (7) 

Where (0)  is electron releasing (by thermal activated) coefficient from the deep trap negative di-valence 
centers we will call it as heat coefficient in absence of the electric field. Concerning of the non degenerated 
semiconductor, the distribution function of the electrons and holes depending of energy, obeys the Boltzmann 
distribution as following equation. 
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.

( )
recomb

dn
E n N

dt

 

   
 

                                 (8) 

Where ( )E  and ( n ) are the electron taking coefficients for one negative valence deep trap ( N ) and for 
existent of an external electric field respectively. When electric field E = 0, the distribution should be as Equation 
(9). 

( ) (0)E   ; 
0
1 0

1 0

n N
n

N


                                (9) 

If we replace Equations (7) and (8) into Equation (6) we obtain Equation (10). 

1
.

(0) ( )
recomb

n n
divJ n N E n N

t t
  

     
         

                  (10) 

Where J  is the electric current density and this density in the absence of the temperature gradient and external 

magnetic field should be as following. 

( )J n E E D n                                        (11) 

If Equation (3) is conserved Equation (11) is alternated to Equation (12). 

( )J n E E                                         (12) 

Similarly Equation (10), the continuity equation for holes becomes as given in Equation (13). 

1
.

( ) (0)
recomb

n n
divJ E n N n N

t t
  

     
         

                    (13) 

( )J n E E   , 
0 0

1
0

n N
n

N
 

            (14) 

Where ( )E  is the coefficient of the holes released from the deep traps and (0)  is the coefficient for holes 
taken by the negative di-valence deep traps in absence of the external electric field.  

( ) (0)E   , 0E           (15) 

In the end of the recombination and generation processes, the number of one valence and di-valence deep traps 
change (It is clear that the number of deep traps does not change.). Change of the number of the one negative 
valence deep traps depending on time, changes the number of the negative di-valence deep traps. Thus 

1 1N N   .          (16) 

1N  and 1N  are the parts of the negative di-valence and the negative one valence centers respectively. It is 
possible to write the changing of the deep traps as following.  

. .recomb recomb

N n n

t t t
                

       (17) 

Quasi neutral equations should be added to (10-17) equations systems. In absence of recombination and 
generation, quasi neutral condition is as ''

  nn . In existence of the recombination and the generation, the 
condition of quasi neutral is that the whole current does not depend on the coordination, but depend on the time. 
Thus following equation can be written. 

( ) . ( ) 0divJ t e div j j           (18) 

Occurring of the recombination and the generation in crystal causes taking place of electric field, concentrations 
and oscillations. These oscillations can spread inside the crystal only, or they can cause to change the current in 
an outside circuit. When an oscillation takes places in current of outside circuit, the resistance (impedance) of the 
crystal decreases rapidly. This kind behavior of the crystal is the state of negative resistance. When the crystal in 
its negative resistance state, energy radiation takes places in its own frequency interval. Such radiation is 
strongly depends on the dimensions of the crystal. We will prove that as the dimensions of the crystal is lesser to 
nanometer scale, the frequency of the radiation increases. In other side, as the dimension of the crystal decreases, 
the need external electric field strength for radiation decreases. That is, nano dimension intrinsic semiconductors 
can be more useful energy source for the radiation. The radiation of the crystal depends on time of taking and 
releasing of the free charge carriers. We will concern following characteristics times: 
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0 0

1
( )E N

 


 : Taking frequency of the free electrons by one negative deep traps 

01
(0)N

  


 : Taking frequency of the holes by two negative deep traps. 

0
0 1

1
( ) (0)

e

E n n 
      : Effective frequency for charactering of taking and releasing of the electrons. 

0
0 1

1
( ) (0)

p

E n n 
      : Effective frequency for charactering of taking and releasing of the holes. 

0 0

1
( )

E
E N

 


 : Releasing frequency of the holes by one negative deep traps.  

, , ,e pE     and E characteristic terms depend on the external electric field and concentrations balance of the 
electrons and the holes. The radiation of the crystal also depends on these characteristics terms. The radiation of 
the crystal is a non equal distribution of the external electric field inside the crystal. The electric field E, the 
whole concentration of the electron n , the whole concentration of the holes n , one negative traps 
concentration N  and two negative traps concentration N  can be written for inside crystal as following 
equation. 

     
0

, , , , , , , ,
i kr t

E n n N N E n n N N e


     
 

      (19) 

In Equation (19) to find the value of the amplitude forms fundamental of non linear equations systems. Our aim 
is to obtain occurred oscillation frequency inside the crystal and changing interval in appropriate external field. 
Consequently it is possible to write Equation (19) as following form. 

' ' ( )
0 0 0

0 ' 0 ' ( )
0

' ' ( )
0 0 0

0 ' 0 ' ( )
1 1 0

( )

( )

( )

( )

i kx t

i kx t

i kx t

i kx t

E E E E E e

n n n n n e

N N N N N e

N N N N N e












    




  

   

   

   

   

       (20) 

Where k is the wave vector and   is the oscillation frequency. Since the external electric field is in the 
direction of 0J , Equation (20) can be written in one dimension. Considering Equation (18) in quasi neutral 
conditions, Equations (10, 12, 13, 16, 17) can be written as following forms. 

' '
0 0

0 ' ' 0

' '
0 0

0 ' ' 0

;

;

;

;

E E E E E

n n n n n

N N N N N

N N N N N

    

    

  

  

  

  

                  (21) 

These conditions are convenient for solutions. With the conditions of Equation (21) it is possible to transform to 
linear nonlinear Equations (10-17). From Equation (18) we can obtain following equation.  

 ' ' ' '1

d

E J ev n ev n
               (22) 

Where d  is the conductivity of the crystal and 0 0( )v E E
   is the drift velocity of the holes and the 

electrons. The whole conductivity of the crystal is given as the next equation. 

2 2

2 ln 2 ln
1 1

ln( ) ln( )d

d d
en en

d E d E

    
   

   
      

   
. Coefficient ( )E


 characterizing recombination and 

releasing of the electrons and the holes, can be written in serial form as this equation 
' '

2 2
0 02

0 0

ln
( ) 1 2 . ( ) 1

ln( )

d E E
E E

d E E E
   

   

   
      

   

 
  . Where   is a parameter without unit and it depends on 

taking of the electrons and the holes by the deep traps. Since negative centers attract the holes, as the external 
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electric field increasing,  decreases and   increases, consequently 0  , and 0  . Radiation 

frequencies and convenient external electric field values to these frequencies definitely depend on the parameters 
of  . If we make linear Equation (17) with concerning the conditions of Equations. (21-22), we can obtain 

following equation. 

   
' '

'

ep ep

n n
N

i i     
 


 

 
 

        (23) 

Where 
1 1

ep
p e


 

  is a characteristic frequency. Replacing (22) and (24) statements into (10-13) we obtain 

following equation systems to definite '
n values. 
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Here  0 1dkv kv     ;  2
0

ln
2

ln

d

d E
  
  . Above (I) and (II) equations can be shortened as following form 















'
0

''

'
0

''

JBnBnB

JAnAnA
        (24) 

In this equations system current 'J  is depended only time, but the concentrations n  are depended on time 
and coordination and them can be written as below. 

 tkxiti eCenn  



 '         (25) 

In Equation (24) equations system, when ' 0J  , k wave vector is determined, when 0k  , n  coefficients are 
determined. For calculation of the wave vector k, we will consider characteristic time values  , , , , E

p e        of 
  parameter. 

   
2 0

0 0
0

1 1

; ; 1 1 ; ;
E E

p d d

e

n
n n

n
            

     
  

       
    

 
       

 
                (26) 

In Equation (26) possibilities for taking of the electrons and the holes are the same, and it is shown that the 
concentrations 0n  are equal which mean that the semiconductor is approximately intrinsic. Considering 
Equation (26), the real and imaginer parts of the wave vector given in Equation (24) can be written as below. 

1/2

0 0 1; ; ( )
2 2

epd d
epd d

k k ik k k f
v v

   
      

 
    

 
        (27) 

2

2 2

1
( ) 0ep

ep ep

f
  

   


 
      

 ; 2 ep




      (27a) 
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Accepting that in Equation (27) 1ep    and in Equations (26-27) 0k  , from Equation (24), n  can be 
calculated as following statement. 

 '
0 0J A B B A

n
A B A B

  


   





;  

 '
0 0J A B B A

n
A B A B

  


   





     (28) 

Replacing   BBAA ,,,  coefficients into Equations (I) and (II) we can obtain following equations. 

 

3/2
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' '
1/2

1 1

2 2

ep ep

ep

J J
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ev ev

J J
n i

ev ev
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 
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   

 
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   

 
    

 
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      (29) 

By replacing statement of Equation (29) into Equation (25), variables of '
n can be determined, but 

C coefficients can only be solved from limit conditions. To find limit conditions, it must be considered that, the 
contacts of the applied crystal to the circuit are not whole ohmic. From the contact the charges go into the crystal 
and vice versa. The same type charge carriers or opposite type of them can across through. The ends of the 
crystal 0x   and x    play principal roles and for that case we will accept these conditions; 

' 0 '( 0)n x J   ; ' '( )n x J           (30) 

Where 0  and 
  are the injection coefficients of the holes and the electrons respectively. If we consider 

Equation (30) into Equation (25) we can find the coefficients of C . 

 0 'C n J     ;   iklC n e  
          (31) 

Taking into consideration Equation (30-31) and replacing the electric field of the '
n variables into Equation (22), 

we obtain complex resistance (impedance) of the crystal as following equation. 

'
' '

0

1
( , )Z E x t dt

J S
 



         (32) 

Where 'S  is the cross section surface of the crystal. If we compute above integral, following statements are 
obtained.  

' ' 0 ' '
0

0

1 1
1 ( ) ( ) ( ) ( )

ikl iklZ e e
ev a ia ev b ib ev a ia ev b ib

Z ik ikl
 



            
           


     (33) 

Where  

 
3/2

1/2' '
0

2 21 1 1 1 1 1 1
; . ; . ; . ;

. ep
d ep ep

Z a a b b
S ev ev ev ev

 
 

      
 

    
       

 
       

 
       (34) 

If we consider Equation (34) and  1
0 1; cos sinikiklk k ik e e i     statements into Equation (33), we 

obtain real and imaginer parts of the complex crystal impedance as following equations. 

       ' 0 '
1 1 1 1 1 1 1 1

0

Re
1 cos sin

Z
ev a z a z z a ev b z b z z b z M zu z z F

Z
                           

       ' 0 ' '
1 1

0

Im
cos sin

Z
ev a za z za ev b zb z zb zM z u zF z

Z
    

                          (35) 

Where 
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0 1 0 1

.

. .
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e ev b e ev a

k k
k k z z
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 

 
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 

 

  

 


     


   


   


     

   

 

 

   

   
 





 
 

     (36) 

The electric field should produce the condition of Equation (1), thus for 1   

0

.
( )

2
d

ep extd
E f E

  
  

 
        (37) 

Here the function should be ( ) 1f   . Equation (37) shows that as the dimension of the crystal getting lesser, 

extE  decreases and the condition of Equation (37) is well executed. That is radiation condition founded from 
complex resistance (impedance) prefers lesser values of the 0E  electric field.  

Since 1  , if we replace (34-36) statements into Equation (35), we can obtain real part of the impedance as 
below.  

     

 

2

1/2 1/2 1/2
1 1 1

0

1/2
1 1

2 2Re
cos

2
sin cos sin

Z
z zx z z x z zx

Z

zx z d j j

  
 
   


 

 





            

    

    (38) 

Here epx   . The sign of Equation (38) is determined by the trigonometric functions sin  and cos . We 
can rewrite Equation (38) as following form. 

 2 2
1

0

Re
cos

Z
d j j Q

Z
    ; 1

2 2 2 2
1 1

cos ;sin
jj

Q Q
j j j j

 
 

    (39) 

Equality to zero for this equation depends on the values of parameters , j  and 1j  (as 0  , 0j   and 

1 0j  ).  

In the interval of  1 cos 1Q     the statement of 
0

Re Z

Z
becomes positive for  cos 0Q    and 

2 2
1d j j  and becomes negative for 2 2

1d j j  . In the other side for  cos 0Q   this statement 

becomes greater than zero. Let us investigate the condition of 
0

Re
0

Z

Z
 , that is starting of radiation. For the 

situations of  cos 1Q     and 
0

Re
0

Z

Z
  parameter of d becomes 

2 2
1d j j  .         (40) 

Analysis of Equation (40) shows that when
1

3
ep k

  


, 2 1ep

p
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p d v

 
  

 
  
 


 and 

0

Re
0.

Z

Z
  

That is with the frequency of 

1/2

1

e p


 
 

   
 

 the radiation starts. From Equation (35), if we write the real part of 

the impedance as 1 2
0

Im
cos( ) sin

Z
F F F

Z
    , it is possible to determine easily F , 1F  and 2F  

parameters. Thus following equation is obtained. 
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 2 2
1 2 1

0

Im
cos

Z
F F F

Z
     ; 1

1 2 2
1 2

cos
F

F F
 


;  2

1 2 2
1 2

sin
F

F F
 


  (41) 

It is seen from analysis of Equation (41) and Equation (40) (that is 
0

Re
0

Z

Z
 ), 

0

Im
0

Z

Z
  and when the radiation 

starts the complex resistance has inductance characteristics.  

4. Conclusion 
Thus doped semiconductors having electron and hole conductivity, when extE E  radiate an energy in a 
certain frequency. This radiation becomes more effective as the dimension of the semiconductor decreases. As   
getting smaller, the radiation takes place in smaller values of the electric field. Related the radiation, the external 
electric can be written as below. 

 0 3
2 2

d d
ep ep extd d

p

E f E
  
           

     
 

Let us in Ge semiconductor the mobility of the holes 410   cm2/v.s, the generation time 910p
  s and the 

dimension 100 150   nm, in that conditions obtained external electric field is about 104 v/cm. When the 
dimension of the crystal is in macroscopic scales ( 0.1 cm) and radiation takes place, the calculated external 
electric field is about 33 4 10   v/cm which is one degree lesser than the above value. It means that when 
semiconductor dimensions are in nanometer scale, the distribution of the electric field inside the crystal should 
not be homogenous and at this moment the crystal becomes more effectively radiant.  
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