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Abstract 

By means of a new concept of the Hydrogen atomic structure [where the electron of the Hydrogen is considered 
not as a non-dimensional object revolving around the atomic nucleus in a field of central forces, but as a 
three-dimensional electromagnetic spherical standing wave concentrically superimposed on the electromagnetic 
standing wave of the proton] we can obtain a new periodic classification of the elements. Up till now, chemistry 
has considered atoms to be made up of sub-shells with 2, 6, 10, 14 electrons and currently, the great number of 
electrons (14) in sub-shells f creates some problems in the formation of the sixth and seventh periods. Instead in 
this paper we will only consider sub-shells with 2, 6, 10 electrons, to achieve a better ordering of the heavy 
metals. Hence, Ni, Pd, and Yb have been drawn up in columns in the new periodic classification of elements, and 
Ytterbium could be proposed as a testing material in the cold fusion experiments. Moreover many new 
theoretical (albeit unsteady) electromagnetic wave-lengths of Hydrogen Spectrum appear. 

Keywords: periodic classification of elements, hydrogen atomic model, electromagnetic standing waves, 
hydrogen spectrum 

1. Introducation 

A new concept of the Hydrogen atomic structure (where the Hydrogen electron is considered not as a 
non-dimensional object revolving around the atomic nucleus in a field of central forces, but as a three-dimensional 
electromagnetic (e.m.) spherical standing wave concentrically superimposed on the e.m. standing wave of the 
proton) has been previously considered in (Bellotti, 2011).  

Since the e.m. standing waves have a defined angular frequency ωγ, then the wave equation can be written as: 
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where:     
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ψ is a function defined in polar coordinates ( r, θ, φ ); t is time and c is the speed of light. 

In (Bellotti, 2011) the following results were demonstrated: 
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Where: E is the energy of the e.m. standing wave; ωγ is the angular frequency of the e.m. standing wave and 
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  is wave number; a0 is the radius of the first nodal surface of the electron, considered to be an e.m. 
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where Zm  is the magnetic quantum number. 

The functions Θ (θ) are : 
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The equations in 5 are not normalized. They can be normalized as per (Persico 1971).  
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Where: K = the amplitude G = the phase 
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with the following values of Al ( where l = 0, 1, 2, 3, 4)  
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We can verify that for l = 0 the R0 ( r ) equation meets the boundary condition a0 R0 ( a0 ) = 0 even when the wave 
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 with Nj . The corresponding graphs show 

that each a0,j = ja0 root of R0 (r) is shifted to r = a0 and we have n = j nodal spherical surfaces in the radial interval 
[ 0, a0 ].  

2. The Periodic Classification of the Elements  

Using the symbol ns the sub-shells s joined to the principal quantum number n can be defined. For every sub-shell 
ns correspond the functions 
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 that vanish for r = a0 and that affirm the condition j = n. Then the 
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eigenvector R0(r) of the 1s sub-shell (j=1) shows one nodal surface within the interval of r [0, a0] ( at r = a0); the 
eigenvector R0(2r) of 2s sub-shell (j = 2) shows two nodal surfaces within [0, a0]; the eigenvector R0(3r) of 3s 
sub-shell (j =3), three; and so on. If we establish a0,j to be the jth-root of the function R0(r) shown in equation 7, 
then, from (3) and for the ns sub-shells, we can confirm that: 
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  j = 1, 2, 3, 4,...   (9) 

and, according to equation 21 of (Bellotti, 2009), the total sub-shell energy El,j that corresponds to each jth-root al,j 
of the Rl (r) shown in (7) is: 

      2
, ,l j l jE a              (10) 

If all the wl eigenvectors of a given (l, j) sub-shell have the same energy El,j
*, then from (10) we have: 
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Where wl ( with l = 0, 1, 2, 3,... ) are the number of equations present in the sub-shells l. 

Now by substituting the function  lw r  in place of r, within the Rl (r) shown in (7), we obtain the functions 

 *  l lR w r . The roots al,j of these functions  *
l lR w r  will be proportional to the square root of the energy E*

l,j of 
each eigenvector Rl (jr) that has j roots (or sometimes j-1 roots, for f and g sub-shells) within the interval of r [0, 
a0]. The eigenvectors Rl (jr) are calculated by substituting k* = jπ/a0 into the equations 7 instead of k = π/a0; and by 
imposing the boundary condition a0 Rl(ja0 )=0 in order to calculate the corresponding Al values. Then we can to 
draw the  *  l lR w r functions and obtain the graph shown in Figure 1 where the energies E*

l,j of the sub-shells 
increase in accordance with the following sequence (13): 

  1s (j=1), 1p (j=2), 1d (j=3), 1p2 (j=3), 1s2 (j=2), 1f (j=5), 1g(j = 6),...    (13) 

Thus, each shell associated to the principal quantum number n is formed by the sequence of the sub-shells ns, np, 
nd, np2, ns2, nf,...; where ns, np, nd … are the first useful root of the functions  *

0 0R w r ,  *
1 1R w r ,..., that belong to 

the same shell of the principal quantum number n.ns2, np2, etc., are the second useful root of  *
0 0R w r , 

 *
1 1R w r ,..., that belong to the same shell of the principal quantum number n. The root of the type 1d2 (j = 4), 

between 1p2 and 1s2 in Figure 1 is to be omitted since the sub-shell with minimal energy where there are four nodal 
surfaces within the interval [0, a0] has to be the sub-shell 1f. Since the eigenvector R3(jr) of the sub-shell 1f shows 
four nodal surfaces within the interval [0, a0] only when j=5, then we have to consider the fifth root of  *

3 3R w r , 
whose associated eigenvector is R3 ( 5r ). Now, sub-shell 1f has an energy greater than the energy of sub-shell 1s2; 
then also sub-shell 1d2 must have an energy greater than the energy of sub-shell 1s2. Hence, the fourth root of 
function  *

2 2R w r  does not have any corresponding energy value.  

In accordance with the fractals form of the superposition of the e.m. standing waves (Bellotti 2011, 370), we 
presume a filling up of each shell relative to the principal quantum numbers n = 1, 2, 3,... in accordance with 
sub-shell sequence (13) and in order to generate Table 1. In Table 1 there are only the s, p, d sub-shells. Therefore, 
we have to draw a graph (Figure 2) in order that the sub-shells in Table 1 and the roots of the functions  *

l lR w r  
correspond to each other. Now, if we consider the number j of nodal surfaces of the functions  lR jr  (with l = 0, 1, 
2) within the interval of r [0, a0], then this number j also identifies the position of the jth-root al,j of the 
corresponding  *

l lR w r .  
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Table 1. First approach to the periodic classification of the elements  

Principal quantum number Sub-shells coherent with the filling uporder (13) 
n = 1 l = 0      1s  
n = 2 l = 0      2s 

l = 1      2p 
n = 3 l = 0      3s 

l = 1      3p 
l = 2      3d 

n = 4 l = 0      4s 
l = 1      4p 
l = 2      4d 
l = 1      4p2 

n = 5  l = 0      5s 
l = 1      5p 
l = 2      5d 
l = 1      5p2 

l = 0      5s2 

n = 6 l = 0      6s 
l = 1      6p 
l = 2      6d 
l = 1      6p2 
l = 0      6s2 

n = 7 l = 0      7s 
l =1      7p 
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Figure 1. With this graph it is possible to recognize the sequence of sub-shells with increasing energy, valid for 
each shell that corresponds to the principal quantum number n 
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Given that the number of roots within the interval [0, a0 ] for each eigenvector R0(nr) of the sub-shell ns is equal to 
n, we have to consider all the ordered roots n = 1, 2, 3, …, and 7 of the function  *

0 0R w r . The eighth root of 

 *
0 0R w r  will be the sub-shell 5s2, the ninth the sub-shell 6s2. On the other hand, for each shell related to the 

principal quantum number n, the number of roots of the functions R1 ( jr ) within the interval [ 0, a0 ] for sub-shell 
np ( l = 1 ) must be equal to 2n; those for sub-shell nd ( l = 2 ) must be equal to 3n. For sub-shell 5s2 we have shown 
the position of the eighth root that coincides with 8s; sub-shell 5p2 will have five roots more when compared to 5s2, 
(that is 13); sub-shell 4p2 will, instead, have 11 roots [ in fact the hypothetical sub-shell 4s2 ( that does not exist ) 
coincides with 7s and we have to consider 7 + 4 = 11 roots for sub-shell 4p2 ]. Sub-shell 6s2 coincides with the 
position 9s and so will have 9 roots; instead sub-shell 6p2 will have six roots more, namely, 15 roots.  

Now it is possible to generate Table 2, where to each jth-root of the functions    * *
0 0 1 1,  R w r R w r  and  *

2 2R w r  
corresponds an eigenvector    0 1,  R jr R jr  and  2R jr ; moreover each eigenvector    0 1,  R jr R jr  and  2R jr  
within the interval [ 0, a0 ] gives the number j of nodal surfaces indicated (as roots) in Table II, and all these 
numbers j of roots coincide with the jth-root al,j position of the functions  *

l lR w r . Now we can order the 
sub-shells shown in Table 2 according to the increasing energies El,j

* shown in Figure 2 and begin building Table 
III. Through tests, we can check that, for Hydrogen atom, the frequencies νA,B that correspond to the transitions B 
→ A [ where the status A is characterized by the angular quantum number lA and by the jA position of the considered 
root of the function  *

A Al lR w r ; and status B is characterized by the angular quantum number lB and by the jB 
position of the considered root of the function  *

B Bl lR w r  ] are obtained in the following Formula 14 (White, 1934): 

   
* *
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, 2 2 2 2

1 1 1 1
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where: 

R∞ = Rydberg constant = 1.097 373 12(11) 107 m-1 

 

Table 2. Second approach to the periodic classification of the elements. The j number of roots within the r 
interval [0, a0] of the Rl ( jr) eigenvector coincides with the jth-root position of the  *

l lR w r  function 

Principal quantum number Sub-shells coherent with the filling up order (13) 
n = 1 l = 0       1s      1  root 
n = 2 l = 0       2s      2  roots 

l = 1      2p      4  roots 
n = 3 l = 0      3s      3  roots 

l = 1      3p      6  roots 
l = 2      3d      9  roots 

n = 4 l = 0      4s      4  roots 
l = 1      4p      8  roots 

l = 2      4d      12  roots 
l = 1      4p2     11  roots 

n = 5  l = 0      5s       5  roots 
l = 1      5p      10  roots 
l = 2      5d      15  roots 
l = 1      5p2     13  roots 
l = 0      5s2      8  roots 

n = 6 l = 0      6s       6  roots 
l = 1      6p      12  roots 
l = 2      6d      18  roots 
l = 1      6p2     15  roots 
l = 0      6s2      9  roots 

n = 7 l = 0      7s       7  roots 
l =1       7p      14  roots 

c = speed of light = 2.997 925 0(10) 108 m / s 
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All the values of the Physical constants are taken from (Jordan, 1988). 

nA
2, nB

2 = numerical data (shown in Table 3) proportional to the square of the corresponding root values of the 
functions  *

A Al lR w r  and  *

B Bl lR w r ,  

where we have considered the minimum value of nA = n l=0, j=1 = 1 

Equation (14) is in accordance with the following equation (15), that was obtained from (9), (10) and (11), applied 
to ns sub-shells (l = 0): 
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where n0,j
2 has the same meaning as nA

2, nB
2 in (14), for l = 0. 

Now we can assume that the sub-shell energy E*
l,j, that corresponds to each jth-root al,j of  *

l lR w r  obtained from 
(7), is: 
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where the nl,j
2 in (16) correspond to either the nA

2 or nB
2 in (14), according to the ( lA, jA ) or ( lB, jB ) values. Both the 

nA
2 or nB

2 values are proportional to the square of the corresponding root values 
, , ,  

A A B Bl j l ja a  of the functions 

 *

A Al lR w r  and  *

B Bl lR w r . 

Now, by putting nA
2 = 1 and nB

2  ∞ into (14), we can calculate the maximum energy | EA
* | = R∞ c h that in a B  

A transition can be emitted as a light spectrum row; this energy is half the energy 2 2E em c  of an elementary 
e.m. standing wave of radius a0 (Bellotti, 2011). On the other hand this result is also valid for all the s, p, d 
sub-shells. In fact we can substitute the equivalent energy referred to the last column of Table 3, in place of nA

2
, in 

14; and we can substitute a value tending towards infinity in place of nB
2; and in accordance with (16) (and its 

marking), we can obtain two possibilities for emitting a light ray for each eigenvector (an e.m. standing wave) that 
forms each sub-shell. In fact: 

     * 2 2
, 2 2

, ,

1 1 1

2l j e

l j l j

E R ch m c
n n

            (17) 

Where: h = Planck constant; α = fine structure constant and me = electron mass. 

By returning to (12) and the definition of wl (with l = 0, 1, 2, 3,...) being the equation number present in each 
sub-shell l, we can assume that in the sub-shells s ( l = 0 ) we have w0 = 2 possibilities of light emissions (and this 
value of w0 can replace the number of equations w0 = 1 ). In a similar way, we can obtain w1 = 6 instead of w1 = 3 
for the sub-shells p ( l = 1 ); w2 = 10 for the sub-shells d ( l = 2 ); and so on. The energy property of this eigenvector 
brings to mind the Pauli principle. So the sequence of the sub-shells shown in Table 3 faithfully reproduces the 
properties of the elements in their periodic classification in a natural way. Now we can build Table 4. Up till now, 
chemistry has considered atoms to be made up of sub-shells with 2, 6, 10, 14 electrons and, currently, the great 
number of electrons, 14, in sub-shells f creates some problems in the formation of the sixth and seventh periods. 
Instead, Table 3 and Table 4 show that we can consider only sub-shells with 2, 6, 10 electrons, to achieve a better 
ordering of the heavy metals. Hence, Ni, Pd, and Yb have been drawn up in columns in the new periodic 
classification of elements, and Ytterbium could be proposed as an optimum material for cold fusion. 

The last column of Table 3 shows some real numbers. This is in accordance with Milan Perkovac’s considerations 
on equations (100) - (104) of (Perkovac, 2010). It is possible to go deeper into Perkovac’s model in (Perkovac, 
2002; Perkovac, 2003). 
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Table 3. Sequence of the sub-shells filling up, according to the increase in energy 

Sub-shells Transitions 

Number 

Atomic Numbers 

of the Elements 

in each sub-shell 

Elements 

of the 

sub-shell 

Energy 
2 2

,A l jn a   

of the B=∞ A 

Transition  

1s 2 Z = 1 – 2 H He 1.000000 

2s 2 Z = 3 – 4 Li Be 4.000000 

2p 6 Z = 5 – 10 B C N  

O F Ne 

5.530507 

3s 2 Z = 11 – 12 Na Mg 9.000000 

3p 6 Z = 13 – 18 Al Si P 

S Cl Ar 

12.32801 

4s 2 Z = 19 – 20 K Ca 16.00000 

3d 10 Z = 21 – 30 Sc Ti V Cr Mn 

Fe Co Ni Cu Zn 

17.17438 

4p 6 Z = 31 – 36 Ga Ge As 

Se Br Kr 

21.79214 

5s 2 Z = 37 – 38 Rb Sr 25.00000 

4d 10 Z = 39 – 48 Y Zr Nb Mo Tc 

Ru Rh Pd Ag Cd 

30.13389 

5p 6 Z = 49 – 54 In Sn Sb  

Te I Xe 

33.92294 

6s 2 Z = 55 – 56 Cs Ba 36.00000 

4p2 6 Z = 57 – 62 La Ce Pr 

Nd Pm Sm 

40.98833 

5d 10 Z = 63 – 72 Eu Gd Tb Dy Ho  

Er Tm Yb Lu Hf 

46.69335 

6p 6 Z = 73 – 78 Ta W Re  

Os Ir Pt 

48.72039 

7s 2 Z = 79 – 80 Au Hg 49.00000 

5p2 6 Z = 81 – 86 Tl Pb Bi 

Po At Rn 

57.11912 

5s2 2 Z = 87 – 88 Fr Ra 64.00000 

7p 6 Z = 89 – 94 Ac Th Pa 

U Np Pu 

66.18450 

6d 10 Z = 95 – 104 Am Cm Bk Cf Es 

Fm Md No Lw Ku 

66.85278 

6p2 6 Z = 105 – 110 Ha … 75.91658 

6s2 2 Z = 111 – 112 … 81.00000 
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Table 4. New periodic classification of the elements. It is interesting to notice the blue column-sequence Ni Pd 

Yb (No) and to consider Ytterbium for cold fusion experiments 

H                               He 

Li Be                         B C N O F Ne 

Na Mg                         Al Si P S Cl Ar 

K Ca       Sc Ti V Cr Mn Fe Co Ni Cu Zn         Ga Ge As Se Br Kr 

Rb Sr       Y Zr Nb Mo Tc Ru Rh Pd Ag Cd         In Sn Sb Tc I Xe 

Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 

Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lw Ku Ha              

 

3. Calculation of the Spectral Wave Lengths of Hydrogen 

Now we can calculate all the wave-lengths of the Hydrogen spectrum by using the following formula (18) of 
first approximation, derived from (14) (White, 1934): 

     
2 210

, 2 2

10 A B
A B

B A

n n

R n n




 
  

 
        (18) 

where: R∞ = 1.097 373 12(11) 107 m-1.    

nA
2, nB

2 are the values shown in the last column of Table 3.   

They correspond to the B  A transition. 

Table 5 shows the most important wavelength that could form the Hydrogen spectrum. But in equation (18) a 
greater number of Hydrogen spectrum rows were computed compared to the fundamental ones obtained in 
Quantum Mechanics. This result has to be confirmed by means of a dynamic experimental check. In fact, in all 
induced mechanical vibrations, the contribution of high order eigenvectors vanishes quickly and only the main 
eigenvectors, that correspond to the spectrum rows joined to l=0 (s sub-shells), are present in the stationary state. 
As in Quantum Mechanics, now the whole values of nA

2 (see Table 3) correspond to l = 0. Hence, we can obtain 
the normal rows of emission spectrum of Hydrogen by equation (18). On the other hand, spectrum rows joined to 
l =1 ( p sub-shells) and to l =2 (d sub-shells), that correspond to the non-whole nA

2 values, are present only in the 
transient of Hydrogen atoms excitation. But the presence of either a transient or a stationary state can only be 
justified when it is possible to consider each Hydrogen atom as a continuous function of energy in a space 
domain; in other words: when each Hydrogen atom can be considered as an e.m. standing wave. And this 
condition complies to the fundamental hypothesis of this article. Of course this approach allows for the 
quantization of energy, since the wave equation eigenvectors can take on different discrete values of energy (see 
Figure 2).   

Then it seems that the traditional idea, i.e. the rows of atomic emission spectra are produced by quantum jumps 
of the electrons between two different energy levels, has to be formulated in a different way. 

 

Table 5. The most important rows of Hydrogen spectrum expressed in nm 

6s2 1s 92.26579  6p2 1s 92.34309 
 6d 1s  92.5105  

7p 1s  92.52469  5s2 1s 92.57317 
 5p2 1s 92.75052  

7s 1s  93.02518  6p 1s  93.03631 
 5d 1s  93.12102  

4p2 1s 93.40554  6s 1s  93.73034 
 5p 1s  93.89459  

4d 1s  94.25456  5s 1s  94.92365 
 4p 1s  95.50946  
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3d 1s  96.76073  4s 1s  97.20182 
 3p 1s  99.17108  

3s 1s  102.5176  2p 1s  111.2407 
 2s 1s  121.5023  

6s2 2s 383.4423  6p2 2s 384.7807 
 6d 2s  387.7044  

7p 2s  387.9537  5s2 2s 388.8073 
 5p2 2s 391.9551  

7s 2s  396.9075  6p 2s  397.11 
 5d 2s  398.658  

4p2 2s 403.9255  6s 2s  410.0702 
 5p 2s  413.2329  

4d 2s  420.2975  5s 2s  433.9367 
 4p 2s  446.4547  

3d 2s  475.1783  4s 2s  486.0092 
 3p 2s  539.582  

6s2 2p 540.9091  6p2 2p 543.5764 
 6d 2p  549.4294  

7p 2p  549.9302  5s2 2p 551.647 
 5p2 2p 558.0052  

7s 2p  568.0965  6p 2p  568.5116 
 5d 2p  571.6896  

4p2 2p 582.5843  6s 2p  595.4535 
 5p 2p  602.1456  

4d 2p  617.2642  5s 2p  647.1366 
 3s 2s  656.1123  

4p 2p  675.3772  3d 2p  743.3515 
 4s 2p  770.2026  

3p 2p  914.0169  6s2 3s 922.658 
 6p2 3s 930.4459  

6d 3s  947.7274  7p 3s  949.2184 
 5s2 3s 954.3452  

5p2 3s 973.5361  7s 3s  1004.672 
 6p 3s  1005.971  

5d 3s  1015.964  4p2 3s 1050.889 
 6s 3s  1093.521  

5p 3s  1116.304  4d 3s  1169.402 
 5s 3s  1281.469  

3s 2p  1307.336  2p 2s  1317.15 
 6s2 3p 1325.086  

6p2 3p 1341.208  6d 3p  1377.413 
 7p 3p  1380.565  

5s2 3p 1391.437  4p 3s  1397.156 
 5p2 3p 1432.611  

7s 3p  1501.068  6p 3p  1503.969 
 5d 3p  1526.416  

4p2 3p 1606.637  6s 3p  1708.466 
 3d 3s  1723.116  

5p 3p  1764.739  6s2 4s 1816.926 

 
 



www.ccsenet.org/apr Applied Physics Research Vol. 4, No. 3; 2012 

150 
 

0 1 2 3 4 5 6 7 8 9

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 *

0,1,2

l lR w r

l 

 

r / a0 

 
  1s    2s    2p    3s     3p    4s    3d    4p    5s     4d     5p    6s    4p2    5d    6p     7s    5p2    5s2    7p    6d     6p2 

l = 0 l = 1   

l = 2 

 

Figure 2. Sequence according to the increase in energy in the sub-shells filling up, in order to reproduce the 
Periodic Classification of the Elements 

 

4. Conclusions 

In this paper, we have considered the electron of Hydrogen as a three-dimensional e.m. spherical standing wave 
concentrically superimposed onto the e.m. standing wave of the proton. By hypothesizing a fractals form for the 
Hydrogen structure, it was possible to obtain a new periodic classification of the elements. Up till now, 
chemistry has considered atoms to be made up of sub-shells with 2, 6, 10, 14 electrons and, currently, the great 
number of electrons, 14, in sub-shells f creates some problems in the formation of the sixth and seventh periods. 
Instead, in this paper we considered only sub-shells with 2, 6, 10 electrons, to achieve a better ordering of the 
heavy metals. Then Ni, Pd, and Yb have been drawn up in columns in the new periodic classification of the 
elements. So it is possible to propose Ytterbium for the cold fusion experiments. Moreover, in accordance with 
Milan Perkovac’s analysis (Perkovac, 2010), we obtained many fast decaying new theoretical e.m. wave-lengths 
of Hydrogen Spectrum. Do any appropriate tests exist for validating this? If so, the proposed approach to 
Hydrogen atomic structure (a superposition of the e.m. spherical standing waves of electron and proton) will 
have made a worthy experimental contribution.  Furthermore, it is interesting to note that equations (7) are 
solutions of either the wave equation (1) (being applied to the Hydrogen atom) or the dynamic bi-Laplacian 
equation (Bellotti, 2009) that analyses the Hydrogen nuclear properties. Could this mathematical link be used in 
establishing a theory of cold fusion?   
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