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Abstract 

To this purpose, one uses the result that quantum phenomena in the Euclidean formulation of the theory are due 
to a stochastic space-time background interaction, whose essence is the time derivative of the Wiener process. 
The problem of calculating both the transition probability, the path integral for the systems of four particles and 
factorization solution of Fokker-Planck equation are then solved. The transition probability solution of 
Fokker-Planck equation factorizes into a first component describing the system at its ground state and a second 
component characterizing its transition dynamics. The path integral for these system are then solved. 

Keywords: wiener process, Fokker-Planck equation, path integral, transition probability density, theorem of 
factorization 

1. Introduction 

Understanding the process of classical Euclidian theory is one of the major challenges in the last twenty years in 
the fields of Brownian motion dynamics and quantum mechanics. 

This interest can be explained by the fact that there is a close relationship between Brownian motion and 
quantum mechanics (Beilinson, 1959, 1982; Beilinson & Leal, 1993; Beilinson & Massou, 1996; Feyman & 
Gibs, 1965; Gelfand & Vilenkin, 1961; Glimm & Jeffe, 1987; Kac, 1959). Indeed, the solution of the 
time-dependent Schrodinger equation: 

      
,

,                              (1.1) 

can be obtained from the Bloch equation 

           
,

,                                (1.2) 

through analytic continuation of , , relative to variable t, up to the imaginary axis. Formally,  means the 
substitution of   by    and thus one gets the transition , , . 

It is known (Beilinson & Leal, 1993) that the strong interrelation between the Brownian motion problems and 
those of the quantum mechanics allows a simplified numerical solution of concrete quantum mechanics 
problems. Instead of solving numerically in a considerably simpler manner with a further time-analytical 
extension of the obtained results. In the Euclidean quantum mechanics (and, therefore, also in usual quantum 
mechanics), the quantum nature of the particles can be related, not with the particle itself, but with the stochastic 
space-time derivative of the Wiener process, used in the right hand side of Jacobi conjugate equation in classic 
Euclidean mechanics. This explains why these equations become stochastic. 

In this work we study such a limit problem, when the correlation is absolute between particles. We first consider 
a system of three stochastic equations 
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                                                          (1.3) 

 is the Wiener process with the measure (Gelfand & Vilenkin, 1961; Glimm & Jeffe, 1987). 

           ∏
√

                   (1.4) 

With the functions 

, 0; ,
2

2 , 

, 0; , 2                       (1.5) 

, 0; ,
2

2  

Associated to the corresponding classical Euclidean oscillators by time analytic continuation of the real axis by 
imaginary one. M, m and  are the masses of oscillators;  ,    their frequencies.  

In Euclidean Quantum mechanics, the problem we used to tackle involves three different independent Wiener 
processes ,  and  describing a system of noninteracting quantum oscillators in the form: 

                      

 

 

 

                                 (1.6) 

At the opposite, oscillator characteristics that are described by (1.3) and (1.1), interact each to other only through 
a single space-time function . This work aims to investigate this specific space-time nature of interaction 
between quantum oscillators. 

To a single Hamiltonian operator in Euclidean Quantum mechanics correspond an infinite number of stochastic 
equations, involving enormous computation difficulties, like equations (1.3). In this work we propose to consider 
another system of stochastic equations equivalent to the previous one and involving the same point of stochastic 
space-time background for the quantum oscillators as:  

 

                                 (1.7) 

 

 

Where , , and     are frequencies of oscillators.  

This article is organized as follows. In section 2, a brief description of the four particle case based on the 
equations (1.7) in given to set up the transition probability, corresponding Fokker-Planck equation the path 
integral and the factorization theorem involved. 

2. Four Particle Case 

2.1 The Transition Probability and the Fokker-Planck Equation 
Let now consider a system four oscillators possessing the masses m1, m2, m3, and m4 and frequencies  ,  ,  ,  
located at the same point of the stochastic space-time background accordingly to the following system of 
equations: 
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                                   (2.1.1) 

 

 

and to the measure (1.4) of the Wiener process. 

Using Duhamel integration method, the solutions of (8) can be settled up: 

2  

     2                    (2.1.2) 

2  

2  

Such that the probability density of simultaneous realizations of the values  

 , ,  and  

of these functional coincides with the transition probability associated to (2.1.1) as: 

, , , , 0; , , , ,  2

  2   2

2                (2.1.3) 

With the following initial condition 

0 0 
Following the integration process (Beilinson & Massou, 1996; Massou & Olatunji, 2002), one can rewrite 

, , , , 0; , , , , ⁄                        (2.1.4) 

Where 

  0   
    

 

   

  

 

 

With the diagonal elements obtained as: 

2   2

0

1 1
t

t se d    
1

2
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The off diagonal elements are symmetric and involve the cross product of integrals as  

2 2   

0
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                                                            (2.1.5) 

From (2.1.4), after some calculations we obtain the following relations: 

lim  
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lim  

lim  

lim  

lim lim lim lim  

lim lim lim  

lim lim                       (2.1.6) 

So, the searched Fokker-Planck equation takes the form: 

                          (2.1.7) 

2.2 The Path Integral 

Since (2.1.4) is a function of causality, then the following relation is verified: 

   0 0 0 0 1 1 1, 1 1
1

1 1 1 1 1 1 1 1

, , , , 0; , , , , , , , , , , ,
n

j j j j j j j j j
j

n n n n

W x y z N x y z N t W x y z N t x y z N

dx dy dz dN dx dy dz dN



    


   

 




     (2.2.1) 

We suppose that ( , , , , ,n n n n j n

t
x x y y z z N N t j t t

n
       ) 

Using the Taylor power series expansion (Beilinson & Leal, 1993; Beilinson & Massou, 1996) and (Gelfand & 
Vilenkin, 1961), we write the determinants A and B occurring in the expression (2.1.4) as: 

∆ ∆ 0 ∆                          (2.2.2) 

With 

1
6!

24 2 12
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                                                                    (2.2.3) 
The coefficients   ( 1, … . . ,6  are given in table below. 

Using (2.2.2) and (2.2.3) in (2.1.4), we have : 
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                         (2.2.4) 

Passing now to the limit ∆ 0, we obtain: 
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, , , , 0; , , , ,

1

| | ⁄             

0    ; 0 ;    0 ;  0  

 ;        ;   ;    

The ’s values. 

Table 

                            1 1 1 1 1  

1 1 1  

                 1 1 1  

1 1 1  

        1 1 1  

1 1  

We have for the normalization condition probability transition: 

∆ 1 ∆ 0 ∆  

∆ ∏ 1 . exp                            (2.2.5) 

if ∆ 0 

Finally, the fundamental solution of (2.1.7) writes: 

, , , , 0; , , , ,

∏
| | ⁄                               (2.2.6) 

0    ; 0 ;    0 ;  0  

 ;        ;   ;    

2.3 The Theorem of Factorization 

The probability transition (2.2.6) can be rearranged and factorized as:  
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, , , , 0; , , , ,
, , ,

, , ,
. , , , , 0; , , , ,            (2.3.1) 

with, 

, , ,
1

 

, , ,
1

 

and  

, , , , 0; , , , , 2

2 2 2  

∏
| | ⁄                (2.3.2) 

0    ; 0 ;    0 ;  0  

 ;        ;   ;    

The integrals on (2.3.2) are calculated with respect to all the continuous paths with fixed extremities. 
Substituting relation (2.3.1) in the Fokker-Plank equation (2.1.7), one can easily show that z is the solution so the 
Bloch equation  

    ;     0 

With  given by the expression: 

² ² ² ² ² ²

 

                      (2.3.3) 

The coefficients  ; ; ; ; , 1,4  occurring in (2.3.3) are given as follows.  

Equivalently, ̃ is the solution of the corresponding time-reversed Bloch equation:  

̃
 . 

The specific interaction of quantum particles considered here, which takes place whenever particles stay close 
enough to one another for a sufficiently long time interval (a realization of such situation probably being 
particles confined into an atomic nucleus), can be illustrated by the interaction between four quantum oscillators 
with a potential energy 

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

  , 

 1 2 3 4 1m m m m      

Conversely, in the usual quantum theory, these oscillators, in general, do not interact. 

Under the conditions assumed in this work, an interaction arises between the oscillators that are due to the 
stochastic space-time background. In this way, , , ,  are not to be considered as normal coordinates, thus 
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leading to a shifting of their normal frequencies.  

3. Conclusion 
The quantum problem of three and four particles in a small region of dimension comparable to that of an existing 
background interaction is considered. 

Using the theorem of the factorization of the solution of the Fokker-Planck equation, we obtained the Hamilton’s 
operator  who cancels a function of state stationary , , , . 

The first component of the solution of Fokker-Planck equation describing the system at its ground state and a 
second component characterizing its transition dynamics.  
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