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Abstract

We report on a proof to the Heisenberg inequalities, for both vector-like and scalar-like variables, that is based
on statistical dependence of quantum events on appropriate Venn diagrams. A similar proof is provided for the
“energy-velocity” uncertainty principle of Haidar (2010).
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1. Introduction

Physical parameters of a particle, such as momentum p, position r, energy E and time t, are conceivable in
quantum mechanics as values of corresponding random variables that we shall denote respectively as P, X, E
and T. Their pertaining probability density functions fP(p), fX(r) , fE(E) and fT (t) satisfy the well known defining
condition ∫ ∞

−∞
f◦(γ) dγ = 1, (1)

∀◦ :P P, X, E,T, and for all corresponding γ :P p, r, E, t,where p = |p| and r = |r| .
The Heisenberg uncertainty principle (HUP), which is foundational in quantum mechanics (Fermi, 1961) is for-
mulated for the vector-like quantities in the form

△p △r ≥ ~
2
, (2)

and for the scalar-like quantities as

△E △t ≥ ~
2
, (3)

where ~ = 1.054 × 10−34 Js is the reduced Planck constant. The symbol △ represents, according to Kennard,
1927, the standard deviation of the quantity that follows it, i.e.

△γ =
{∫ ∞
−∞

(σ − γ)2 f◦(σ) dσ
} 1

2

. (4)

As much as in physics, the HUP turns out to hold also in mathematics (Blatter,1998) for any abstract function
ψ(x), that is Fourier-transformable to ψ̂(z), in the form

∥(σ − x)ψ∥
∥∥∥(ζ − z)ψ̂

∥∥∥ ≥ 1
2
∥ψ∥2 , (5)

where ∥ψ∥ =
{∫ ∞
−∞ ψ2(σ) dσ

} 1
2 .
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Comparison of ~,in the context of (2) or (3) with ∥ψ∥2 in (5) indicates that the sense of these closed inequalities
appears to be the uniting feature between their physical and mathematical aspects and not their right hand side
limits. This fact is supported further by Bohr’s reformulation (Fermi, 1961) of the HUP to the situation when
△ represents a rather unspecified generalized measure of size, and not necessarily the standard deviation as in
the work of Kennard,1927. Furthermore, it has recently been demonstrated by Haidar, 2010 (see also the review
of Matsuno, 2011), that the energy-time HUP collapses to an energy-velocity UP at transition between quantum
mechanics and classical mechanics.

Our aim in this communication is to provide a novel proof to the HUP, for both the vector-like and scalar like
variables, that can be based on quite elementary statistical arguments. We start by considering any of the previ-
ously mentioned four γ variables and assume for it an increase in its uncertainty △γ , as given by (4), subject to
satisfaction of (1). Such an increase is widely known (see, e.g. Blatter, 1998) to be associated with a flattening
reduction in the pertaining f◦(γ). In this situation, the probability of observing the particle momentum, say, within
a sphere A in R3, of radius G around p, which is

P(A) =
∫

A
fP(p) dp =

∫ G

0
fP(|σ − p|) d(|σ − p|), (6)

will obviously decrease. Subsequently △p v
[

1
P(A) − 1

]
and this can always be approximated for small enough G

by

△p =
Kp

P(A)
[1 − P(A)] , (7)

where Kp =
P(A)

[1−P(A)]△p , 0 constant that has the same units as p.

In a similar fashion, the probability of observing the particle position within a sphere B in R3, of radius R around
r, can be conceived as

P(B) =
∫

B
fX(r) dr =

∫ R

0
fX(|σ − r|) d(|σ − r|). (8)

Here also, an increase in △r, subject to satisfaction of (1) will lead to a reduction in P(B) expressible by △r v[
1

P(B) − 1
]

and

△r =
Kr

P(B)
[1 − P(B)] , (9)

where Kr =
P(B)

[1−P(B)]△r , 0 has the same units as r. It should be noted here that G and R can have the same
geometrical units in an abstract Venn diagram space (of arbitrary size) despite the fact that they represent different
variables in the real physical space.

2. Theorem 1

Statistical dependence of the events of observing a quantum particle with a momentum p and position r requires
that

△p △r ≥ 4 KpKr , (10)

where KpKr is a nonzero constant in Js units.

Proof. In classical mechanics, when ~→ 0 can formally be assumed in (2), the commutativity relations (Weaver,
2001) between p and r vanish due to an established perfect correlation between these variables for the same
particle. Consequently, A and B are statistically independent events, i.e.

P(A)P(B) = P(A ∩ B). (11)

In contrast, the existing commutativity relations between the p and r variables, as a result of their lack of corre-
lation in quantum mechanics, makes A and B dependent statistical events, for which
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P(A)P(B) , P(A ∩ B), (12)

and if we substitute (7) and (9) in (12) we obtain △p △r = KpKr

P(A)P(B) [1 − P(A)] [1 − P(B)] .

For quantum particles however P(A)and P(B) << 1, and

△p △r =
KpKr

P(A)P(B)
. (13)

Imagine further that A and B as two spherically shaped abstract events of a sample space S , of an arbitrary volume
within a three-dimensional Venn diagram, i.e. A, B ⊂ S ⊂ R3. Correspondingly

P(S ) = 1, P(A) =
4
3
πG3

V
, and P(B) =

4
3
πR3

V
. (14)

Making use of (14) in the substitution of (12) in (13) leads to

△p △r = KpKr
9V2

16 π2G3R3 . (15)

The minimal value physically and mathematically conceivable for V corresponds to a situation when V = 4
3π(G3+

R3).Substitution of this in (15) transforms it to

△p △r = KpKr

[
2 +

G3

R3 +
R3

G3

]
. (16)

Moreover, since G and R are very small numbers which are of the same order, if not equal, then it is physically
and mathematically quite reasonable to assume in (16) that G3

R3 +
R3

G3 = 2, and this yields the lowest limit

△p △r = 4 KpKr , (17)

for (15). Clearly then the arbitrariness of V for any fixed G and/or R means that △p △r is, as a must, in excess of
the limit in (17), and here the proof of the sense of the inequality (10) completes.

3. Remark 1

If KpKr =
1
8 ~ = 0.13175 × 10−34Js, then the result (10) of theorem1 becomes identical to the HUP (2).

The energy-time HUP can be analyzed in a similar but distinct fashion. Here the probability of observing the
particle energy within an interval I in R, of width 2a around E, is

P(I) =
∫

I
fE(E) dE =

∫ a

−a
fE(ν − E) dν, (18)

and the fact that △E v
[

1
P(I) − 1

]
allows, for small enough a, to write

△E =
KE

P(I)
[1 − P(I)] , (19)

where KE =
P(I)

[1−P(I)] △E , 0 constant that has the same units as E.

As for the time variable which is not an observable quantity in physics, the probability of existence of the particle
at a time within an interval J in R, of width 2b around t, is

P(J) =
∫

J
fT (t) dt =

∫ b

−b
fT (ν − t) dν, (20)

255



www.ccsenet.org/apr Applied Physics Research Vol. 4, No. 2; May 2012

and satisfies

△t =
Kt

P(J)
[1 − P(J)] , (21)

with Kt =
P(J)

[1−P(J)]△t , 0 having the same units as t. Here also a and b can have the same geometrical units in an
abstract Venn diagram space (of arbitrary size).

4. Theorem 2

Statistical dependence of the events of existence of a quantum particle with an energy E and time t requires that

△E △t ≥ 4 KE Kt , (22)

where KE Kt is a nonzero constant in Js units.

Proo f . The same ingredients of the proof of theorem1 are applicable in this proof as well. The lack of correlation
between the scalar-like variables in quantum mechanics implies that I and J are dependent statistical events with

P(I)P(J) , P(I ∩ J). (23)

Substitution of (19) and (21) in (23) leads to △E △t = KE Kt
P(I)P(J) [1 − P(I)] [1 − P(J)] .

Here also P(I), P(J) << 1, and

△E △t =
KE Kt

P(I)P(J)
. (24)

In relation (24) I and J are two segmental events of a sample space S , of an arbitrary length L = l(S ), within a
one-dimensional Venn diagram, i.e.

I, J ⊂ S ⊂ R. Correspondingly

P(S ) = 1, P(I) =
2a
L
, and P(J) =

2b
L
. (25)

We then make use of (25) in the substitution of (23) in (24) to obtain

△E △t = KE Kt
L2

4 ab
. (26)

The minimal value conceivable for L corresponds to a situation when L = 2(a + b),which upon substitution in
(26) transforms it to

△E △t = KE Kt

[
2 +

a
b
+

b
a

]
. (27)

Since a and b are very small numbers which are of the same order, if not equal, then it is physically and
mathematically quite reasonable to assume in (27) that a

b +
b
a = 2, and consequently

△E △t = 4 KE Kt , (28)

is lowest limit for (26).

As in the proof of theorem 1, the arbitrariness of L for any fixed a and/or b means that △E △t is, as a must, in
excess of the limit in (28), where the proof of the sense of the inequality (22) ends.

5. Remark 2

If KE Kt =
1
8 ~, then the result (22) of theorem 2 becomes identical to the HUP (3). We are able then to refer to

any of the previously mentioned events with the symbol A◦, i.e. A◦ : A, B, I, J, and to state for them the final
result that follows.
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Claim 1.

Kγ = P(A◦)△γ v
√

1
8
~,∀γ. (29)

Proof. By virtue of relations (7), (9), (19) and (21), and as a consequence of the validity of remarks 1 and 2.

At transition between quantum and classical mechanics it is possible to assume that p = m v , where m is a
nonrelativistic mass, in order to prove the ”energy-velocity” uncertainty principle (between scalar and vector
quantities) which was recently advanced in (Haidar, 2010). For the energy variable, as in (18)-(19), we have
△E = KE

P(I) [1 − P(I)] .

Moreover, the probability of observing the particle velocity v, within a sphere C in R3, of radius Q around v,which
is P(C) =

∫
C fV (v) dv =

∫ Q
0 fP(|σ − v|) d(|σ − v|), is accompanied by △v v

[
1

P(C) − 1
]

; and this can always be
approximated for small enough Q by △v = Kv

P(C) [1 − P(C)] , where Kv =
P(C)

[1−P(C)]△v , 0 constant that has the
same units as v.

6. Theorem 3

Statistical independence of the events of observing a particle with an energy E and velocity v requires that

△E △v = 0 . (30)

Proof. Here I and C are statistically independent events, i.e.

P(I)P(C) = P(I ∩C). (31)

Substitution of (31) in △E △v = KE Kv
P(I)P(C) [1 − P(I)] [1 − P(C)] = KE Kv

P(I)P(C) [1 − P(I) − P(C) + P(I)P(C)] , leads to
△E △v = KE Kv

P(I∩C) [1 − P(I) − P(C) + P(I ∩C)] , which, by the inclusion-exclusion principle, becomes

△E △v =
KE Kv

P(I ∩C)
[1 − P(I ∪C)] . (32)

Imagine further I and C as two abstract events of a sample space S , of

an arbitrary volume V = l(S ), with
P(S ) = 1 = P(I ∪C). (33)

Since I and C are not mutually-exclusive, then the required result holds regardless of the actual values of KE and
Kv. Here the proof ends.

In conclusion, the theoretical result (29) could be quite valuable in experimental particle physics for estimating
any one of its P(A◦) or △γ factors when the other one is known. Moreover, the simplicity of the reported proofs
for the HUP and for theorem 3 should have a methodological interest by themselves.
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