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Abstract 

According to the quantum interest conjecture any negative energy pulse must be associated with a positive 
energy pulse of greater magnitude than that of the negative energy pulse. In this paper we will demonstrate a 
counter-example to this conjecture. We will show that, for a massless scalar field in 1-1D space-time, it is 
possible to generate an “isolated” negative energy pulse. 
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1. Introduction 

According to the quantum interest conjecture any negative energy pulse must be associated with a positive 
energy pulse of greater magnitude than that of the negative energy pulse. That is, an “isolated” pulse of negative 
energy cannot exist. The quantum interest conjecture was originally proposed by (Ford & Roman, 1999). This 
idea has been further developed and commented on by a number of others (Pretorious, 2000; Fewster & Teo, 
2000; Teo & Wong, 2002; Abreu & Visser, 2009). The quantum interest conjecture is closely associated with the 
concept of quantum inequalities (Flanagan, 1997; Ford & Roman, 1997). The quantum inequalities are lower 
bounds on the weighted average of the energy density. It has been shown that the quantum interest conjecture 
can be derived from the quantum inequalities (Fewster & Teo, 2000). Counter-examples to the quantum 
inequalities have been claimed in three previous papers by the author (Solomon, 2010A; Solomon, 2011; 
Solomon, 2012) 

In this paper we will demonstrate a counter-example to the quantum interest conjecture. In the following 
discussion a massless scalar field in 1-1 dimensional space-time in the presence of a time varying delta function 
potential will be examined. The field operator  ˆ ,x t  obeys the Klein-Gordon equation, 

   
       

2 2

2 2

ˆ ˆ, ,
ˆ, , 0

x t x t
V x t x t

t x

 


 
  

    
    (1.1) 

where  ,V x t  is the scalar potential. For this discussion  ,V x t  is given by, 

        , 2V x t t x          (1.2) 

where  x  is the Dirac delta function and  t  is non-negative and is specified by, 

      
0  for 0

for 0  

0 for 

t

t t t T

t T


 


  


       (1.3) 

During the interval 0 t T  ,  t  is assumed to continuously decrease from its initial value 0  at 0t   
to its final value which is zero at t T . It will be shown that during this interval a negative energy pulse is 
produced. The pulse is isolated and is not associated with a positive energy pulse.  

2. Mode Solutions 

In this section we will solve Eqs. (1.1) where  ,V x t  is given by (1.2). The solutions are given by, 

      † †ˆ ˆ ˆ, , ,x t a f x t a f x t   


          (2.1) 
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The â  and †â  are the annihilation and creation operators, respectively. They obey the usual relationship 
†ˆ ˆ,k j jka a      and all other commutators are equal to zero. The modes  ,f x t  satisfy, 

   
         

2 2

2 2

, ,
2 , 0

f x t f x t
t x f x t

t x
 

 
 

  
 

      (2.2) 

There are both odd and even solutions to this equation. The odd solutions are of the form  sini te x  . These 
solutions do not interest us due to the fact that they are not affected by the delta function scalar potential. This is 
because they are equal to zero at 0x  . Therefore they do not contribute to the change in the energy and will 
not be considered further.  

Solutions to (2.2) are considered in (Mamev & Trunov, 1982). It is shown in Appendix 1 that, using the results 
of (Mamev & Trunov, 1982) the even solutions are given by, 

      , cos
2

i xi t A
f x t e x B t x e  
 


         (2.3) 

where A  is a normalization constant and the function  B t  is given by, 

   
        

dB t
t i B t t

dt


            (2.4) 

Initially, when 0t  ,   0t  . For this initial static case  B t  is a constant and will be written as 0,B  . It 
is evident from (2.4) that,  

 
0

0,
0

B
i


 



         (2.5) 

Therefore the initial solution, for 0t  , can be written as, 

   , i tf x t e x
 

         (2.6) 

where, 

       0,cos
2

i xA
x x B e 

  


         (2.7) 

In addition to this assume the boundary conditions  2 0L    where L  . From these boundary 
conditions we obtain   /2

0,cos 2 0i LL B e 
   . This yields, 

      0cos 2 sin 2L L            (2.8) 

The solutions to this equation are given by, 

  0, 0,
2 2 1

 where  with 0,1, 2,
2

n
n n n n n

L L

          
 

      (2.9) 

Use this in (2.8) along with some trig identities and the fact that  0cos 2 0L   to obtain, 

    0sin cosn n n            (2.10) 

The normalization constant A  is given by solving the normalization condition, 
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      (2.11) 

From this we obtain, 

 

1

2 0
2 2
0

22
1A
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

 


 
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        (2.12) 

3. Kinetic Energy Density 

The kinetic energy density operator is given by, 
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T x t
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       (3.1) 

The kinetic energy density operator is the same as the energy density operator at any point in space where the 
scalar potential is zero. This is due to the fact that the energy density operator includes a term containing the 
scalar potential. For the problem we are considering the scalar potential is zero everywhere except at 0x  . 
This means that the kinetic energy density and energy density operators are identical except at this point. When 
t T  the kinetic energy density and energy density are identical everywhere because, from (1.3), the scalar 
potential is zero. 

In order to calculate the kinetic energy density expectation value, the state vector on which the field operators act 
must be specified. This state vector will be designated by 0  and is defined by the relationship ˆ 0 0a  . 

From the above discussion the kinetic energy density expectation value is, 

       00 00
ˆ, 0 , 0T x t T x t         (3.2) 

This can be shown to be equal to, 

       00
0

, ,
n

n

T x t x t




         (3.3) 

where, 

        2 2
, ,1

,
2

f x t f x t
x t

t x
 


    
  
 

       (3.4) 

and where   is the kinetic energy density of a given mode.  

There is a problem with evaluating (3.3) which is due to the fact it will be infinite. However we are not really 
interested in the total energy density but only the change in the energy density with respect to the unperturbed 
vacuum state. To achieve this result we will use mode regularization. The kinetic energy density of each mode 
will be given by, 

        
0, 0,, ,R x t x t             (3.5) 

with 
00,  being the kinetic energy density of the unperturbed state and is given by 

00, 0 2L  . The total 
regularized kinetic energy density is given by summing up the change in the kinetic energy density of each mode 
to obtain, 

       00, ,
0

, ,
nR R

n

T x t x t




        (3.6) 

Use (2.6) and (2.7) in (3.4) to obtain, 

    2
2

0, 0, 0,, 1 2
4

A
x t B B B

   


           (3.7) 

This equation is derived in the Appendix 3. Note that  ,x t  is both space and time independent. Therefore 
we will drop the explicit dependence on x  and t  in the rest of this section.  

Next, use (2.5) in the above to obtain, 

    
2

4

A



           (3.8) 

The “regularized” kinetic energy of each mode is, then, given by, 
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L



 

           (3.9) 

Use this in (3.6) to obtain, 
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



         (3.10) 

In the limit that L  we can use 0

0 0
2

n

Ld






   to obtain,  

    00, , 0

0
2 nR R
L

T d 




         (3.11) 

This is evaluated in Appendix 2 to obtain, 

     0
00, 2RT

L




          (3.12) 

The total kinetic energy, KE , is the kinetic energy density, 00,RT , integrated over all space to obtain, 

    

 

 2

0
00,

2
2

L

K R

L

E T dx







          (3.13) 

From the above results we see that the kinetic energy density, 00,RT , is effectively zero everywhere in the limit
L  . However the total kinetic energy, KE , is positive.   

4. Generating a Negative Energy Pulse 

At this point we have established the initial state which is valid for 0t  . Between 0t   and t T  the scalar 
potential decreases to zero. In the following discussion we will show that this reduction in the scalar potential 
results in the launching of a pulse of negative kinetic energy density. To see why this makes sense consider the 
expression for the total kinetic energy  t  associated with a given mode. This is just the kinetic energy 
density of the mode integrated over all space. Referring to (3.4) and (3.5) we obtain,   

       
0

2 2

, 0,

, ,1
,

2R

f x t f x t
t x t dx dx

t x
 
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              

     (4.1) 

where integration from 2L  to 2L  is implied. Take the time derivative of this expression and use (2.2) to 
obtain, 

             
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 

                       


 

 (4.2) 

This yields, 

   
   

  2
0,f tt

t
t t

 


 
 

       (4.3) 

where we have used the boundary condition  2 0L   . Next consider what happens when  t  
decreases from 0  at 0t   to zero at t T . The total change in the kinetic energy of the mode during this 
time interval is given by integrating the above quantity to obtain, 

      
  2

0

0,
0

T f t
T t dt

t


 


   

       (4.4) 

What might this energy be? Assume that  t  decreases quasi-statically. That is, we reduce  t  slowly 
enough so that  0,f t  is approximated by the static solution given by equation (2.6) and (2.7). Technically 
this assumption must be verified but for the moment let us assume that it is “reasonable”. Use (2.6) along with 
(2.7) and (2.5) and replace 0  by  t  to obtain, 
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 
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
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  


     (4.5) 

Therefore, 

   
   

  
 

2 2

222

0,f t t A d t
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t
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 


 

 
      (4.6) 

Use this in (4.4) to obtain, 

      

  
 2 2

222
0

0
T

t A d t
T dt

dt
t




  


 
  


      (4.7) 

Due to the fact that  t  is decreasing the quantity  d t dt  will be negative which means that  0 T   
will also be negative. The change in the total kinetic energy is summation of the change in the kinetic energy of 
each mode. This yields, 

       0 0
nK

n

E T T            (4.8) 

This is negative because each  0
n

T   is negative. 

What happens to the energy density during this time interval? Note that at t T  the energy density in the 
region outside of x T  cannot have changed because the effect due to the changing of the scalar potential 
cannot travel faster than the speed of light which we have taken to be equal to 1. Therefore all the energy 
generated during the interval 0T t   is contained within the region x T  at the time t T . This means 
that the average energy density within the region x T  is negative. 

Next what happens for the time t T  for which   0t  ? Referring to (4.3) the total kinetic energy density 
can no longer change. Therefore the negative energy that was produced during the time interval 0T t  will 
move out at the speed of light and not be followed by a pulse of positive energy since, for t T , no further 
energy (negative or positive) is being generated. The result is an isolated region of negative energy moving away 
from the origin at the speed of light. One half of the negative energy moves in the positive direction and other 
half moves in the negative direction.  

These results are based on the validity of the quasi-static approximation. They will be verified in the next two 
sections when we consider exact solutions. 

5. An Exact Solution I 

In this section we will show that a negative energy pulse is radiated for the case where  t  is given by, 

    
0

0

 for 0

2  for 0

0 for 

t

t t T

t T


 


  


       (5.1) 

Define, 

       1C t B t           (5.2) 

Use this in (2.3) to obtain, 

    0,
2

i t A
f t e C t 
 

        (5.3) 

Use this result and (5.1) in (4.4) to show that the change in kinetic energy during the interval 0t   to t T  
for a given mode is given by, 

 
 

    
22 2

2 20 0

0

0 0
2 22 2

T C tA A
T dt C T C

t

 
  

 


 

   
               (5.4) 
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From (2.4) we obtain, 

    
      

dC t
t i C t i

dt


             (5.5) 

For 0t   the mode solutions are given by (2.6). For this case   0,B t B   where 0,B   is given by (2.5). 
Therefore for 0t  , 

    0, 0, 0
0

1
t

C t C B i i     

            (5.6) 

For 0t   the solution to (5.5) is, 

          

0

0
t

F t F ti t i tC t e e C i e e dt 
    

 
  
 
 

      (5.7) 

where   0,0C C   and, 

       
0

t

F t u du          (5.8) 

For the interval 0T t   we use   0 2t   in (5.7) to obtain, 

      
0 2

0,
0 0 02 2

ti t

T t

i i
C t C e e

i i


 
 

   


 

            
    (5.9)  

Consider the case where 0100T  . In this case 0 2 50Te e  . Use this in (5.9) to obtain, 

       0 2

i
C T

i


 



       (5.10) 

Use this in (5.4) to obtain, 

     

2 22
0

0 0

0
4 2

A i i
T

i i



  
    

 
     
  
 

     (5.11) 

Rearrange terms to obtain, 

   
   

22 2
00

22 2 2
0 0

3 2
0

4 2

A
T 


 


    

 
 

     
  

 

     (5.12) 

Therefore during the interval from 0t   to t T the change in the kinetic energy of each mode is negative. 
For t T  when   0t  , there is no additional change in the kinetic energy. The result is a pulse of negative 
energy moving out at the speed of light. This can be seen by direct examination of the kinetic energy density. 

Using (2.3) and (2.4) in (3.4) the kinetic energy density of each mode, for 0t   and 0x   is, 

             2
22 2, 2

4

A
x t i x t C x t C x t x t C x t

      


           (5.13) 

The details of this calculation are given in Appendix 3. The regularized energy density of each mode is, 

       
0, 0,, ,R x t x t             (5.14) 

Use (5.13) to obtain, 

       , ,R x t t x               (5.15) 

where, 
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    
      
   

2

224 2

i t x C t x C t xA
t x

t x C t x

 







 

     
         

    (5.16) 

and, 

    
2

0

4 2
nA

L



 

           (5.17) 

  is identical to the kinetic energy density of a mode in the static case (see Eq. (3.9)). Since, from the 
discussion in Appendix 2  21O L   (see Eq. (8.5)) it can be removed from the equation in the limit 
L  . Therefore we obtain, 

       , ,R x t t x            (5.18) 

As can be seen by this expression each mode consists of energy radiating out at the speed of light. Recall that 
expression applies to the positive half-plane. There is an analogous expression for the negative half-plane.  

Using this result the total kinetic energy density is, 

       00, 0

0

,
2R
L

T x t t x d 




         (5.19) 

We can drop all  21O L  terms from the integrand in the above expression. This allows us to write  ,x t  
as  

0
,x t . That is, we can replace   by 0 . Thus we obtain, 

       00,

0

,
2R
L

T x t t x d 




         (5.20) 

where we have replaced the dummy variable 0  with   to simplify notation. Note that for this case, in the 
limit L  , 2 2A L   in (5.16).  

6. An Exact Solution II 

In this section we will solve for the energy density for the case where the scalar potential decreases continuously 
to zero. Let  t  be given by, 

      
0

2
2 0

2

 for 0

for 0
1

0 for 

t

f
t f t T

f t

t T



 



    




      (6.1) 

where, 

 
 

0

2 2 0

T
f f







        (6.2) 

Note that  t  decreases continuously from 0  at 0t   to zero at t T . Use (6.1) in (5.8) to obtain, 

       2 3ln 1F t f t f t          (6.3) 

where 3 2 0f f   . Use this result in (5.7) to obtain, 

           
3

2

0  for 0
1

f ti te e
C t C i G t t T

tf



     


     (6.4) 

where,      0, 00 1 0C B i i         and, 

   
 

   
 

 
3 3

2
2

3 3 3

1
1

i f t i f tfe te
G t f

i f i f i f

 

  

                  
    (6.5) 

As discussed in the previous section energy will be radiated during the time that  t  is reduced to zero during 
the interval 0 t T  . At time t T  this energy will be located in the region for which x T . 
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What is the total kinetic energy at time t T  between points 0x   and x T ? In the previous section we 
have used (4.3) to determine the energy per mode that is generated when the potential is decreased. Here we will 
calculate the energy directly be integrating the energy density at time t T ,  00, ,RT x T , between 0x   and 
x T . We obtain, 

   00,

0

0 ,
T

RE T T x T dx          (6.6) 

Use (5.20) in the above to obtain, 

      
0 0

0
2

T
L

E T dx T x d 




           (6.7)  

Making the substitution u T x   we obtain, 

      
0 0

0
T

E T du u d 


           (6.8) 

where    
2

L
u u  


   . Refer to (5.16) and substitute 2 2A L   in the limit L   we obtain, 

               221
2

4
u i u C u C u u C u     


        (6.9) 

We use this result in (6.8) which is evaluated using numerical integration as discussed in Appendix 4. Some 
results are shown in the following table. 

 

2f  0   0E T  

 1 1 2  0.0134  

 2  1 2  0.00413  

 2  1  0.0268  

 4 2  0.0536  

 4  3  0.155  

 

It can be seen that  0E T  is negative which is consistent with the analysis of Sections 4 and 5. T  can be 
found by using the above values in (6.2).  

The above result has been obtained by setting 0x   in (5.13). However the same result would is obtained for 
0x  . Therefore at this point we have found that at t T  the total energy in the region T x  is negative. 

The average energy density in the region is  0E T T  and is negative. In the region x T  the energy 
density is effectively zero.  

When t T  the quantity   0t   as specified in Eq. (6.1). The result of this is that no additional energy is 
produced. The kinetic energy density for the region t x T   is zero for the half space where 0x  . This can 
be seen by referring to (5.16) which shows that the kinetic energy density of a given mode is zero when 
  0t x    is zero which will be the case when t x T  . There is an analogous result for the half space 

0x  . 

At this point we will summarize the above results. For 0t   the kinetic energy density is effectively zero over 
all space. By “effectively” we mean it goes as 1 L  as L  . From 0t   to t T  the scalar potential is 
decreasing to zero and a negative energy pulse is being radiated and propagating outward at the speed of light. 
For t T there is no further change in the total kinetic energy because   0t   for t T . The final result for 

ft t  where ft T  is that the kinetic energy density is effectively zero over the region fx t  (because in 
this region 0ft x   and the radiated pulse hasn’t reached here yet), it has an average negative value over the 
region f ft x t T    (because in this region 0 ft x T    and  ft x   is decreasing), and it is zero 
in the region ft T x   (because in this region ft x T   and, therefore,  ft x   will be zero). This 
means that an isolated pulse of negative energy is moving in the positive x-direction at the speed of light and an 
equivalent negative energy pulse is moving in the negative x-direction. 
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In conclusion we have shown that it is possible to violate the quantum interest conjecture and generate a pulse of 
negative energy that is not associated with a positive energy pulse.  
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Appendix 1 

In the following discussion we refer to Eqs. 5.4 and 5.5 of (Mamev and Trunov, 1982). We have made some 
modifications to be consistent with the notation of the present paper. 

According to Eq. 5.4 of (Mamev & Trunov, 1982). for the zero mass scalar field considered here  ,f x t  is 
given by, 

          , cos 0,

t x

i tf x t N e x f d
      






        (7.1) 

where 2N A   . (Note – there is a minor error in (Mamev & Trunov, 1982) which is corrected here. In 
(Mamev & Trunov, 1982) the upper limit is the integral is t x . The correct value is t x ). Set 0x   in the 
above and take the derivative with respect to time of both sides of the equation to obtain, 

         0, 0,i td
f t N e t f t

dt


           (7.2) 

Use this in (7.1) to obtain, 

          , cos 0,
i t xi tf x t N e x f t x N e


           
 

    (7.3) 

where we have used     0, 0if N e 
 

    . Define,  

   0, i tf t N C t e 
  

       (7.4) 

and use this in (7.2) to obtain, 

k 
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      

C t
t i C t i

t


  


   


       (7.5) 

Use (7.4) in (7.3) to obtain, 

         , cos 1 i xi tf x t N e x C t x e 
         

    (7.6) 

Define   ( ) 1B t C t    and use this in (7.5) and (7.6) to obtain (2.3) and (2.4).  

The same result is also obtained in (Solomon, 2010B) using a different approach. 

Appendix 2 

To evaluate (3.11) we will first expand , nR   in terms of 1 L . To do this refer to (2.12) to obtain, 

   
   2 3

2 2 2

2 4
1A O L

L L




 
  


       (8.1) 

Use this in (3.9) to obtain, 

      30
, 0, 2 2 2

0

1
1

2n

n
R n n

n

O L
L L


 

  
 

 
      

     (8.2) 

Use (2.10) to obtain, 

    0 0

2 2 2 2
0 0 0,

arcsin arcsin 1n

n n

O L
 


   

  
            

    (8.3) 

From this and (2.9) we obtain, 

    20
0,

2 2
0 0,

2
arcsin 1n n

n

O L
L


 

 

 
      

     (8.4) 

Use this in (8.2) to yield, 

    0, 30 0
, 2 2 2 22 2

0 0,0 0,

1
arcsin 1

n

n
R

nn

O L
L L


 


  

               

     (8.5) 

Use this in (3.11) to obtain, 

 20 0 0
00, 02 22 2

0 00 0 0

1
arcsin 1

2RT d O L
L

  


   

                  
     (8.6) 

To evaluate this first note that the integrand goes to zero sufficiently fast as 0    to obtain, 

0 0 0
00, 02 22 2

0 00 0 0

1
arcsin

2RT d
L

  


   





                  
      (8.7) 

where the  21O L  term has been dropped. The first term in the integrand can be evaluated using integration by 
parts to obtain, 

0 0 0 0
0 02 22 2 2 2

0 00 00 0 0

arcsin arcsind d
   

 
   

                         
      (8.8) 
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Use this in (8.7) to obtain, 

   0 0
00,

2 2
0

arcsin
2 2RT

L L

 
 

    
   

      (8.9) 

Appendix 3 

Calculate the kinetic energy density for a given mode in the region 0x  . The energy density  ,x t  is 
given by (3.4). In order to determine this in the region 0x   refer to (2.3) to obtain, 

       
cos

2

i t
i xB t xf A e

i x i B t x e
t t


  

  


    
            

    (9.1) 

and, 

       sin
2

i t
i xB t xf A e

x i B t x e
x t


  

  


    
           

    (9.2) 

where we have used    B t x x B t x t        . Use (2.4) to obtain, 

   
        1

dB t x
i B t x t x B t x

dt


  


             (9.3) 

Use this in (9.1) and (9.2) to obtain, 

        cos 1
2

i t
i xf A e

i x t x B t x e
t


 

  


        
     (9.4) 

and, 

        sin 1
2

i t
i xf A e

x t x B t x e
x


 

  


        
     (9.5) 

Use these in (3.4) to obtain, 

             2
22 2, 2 1

4

A
x t i x t B x t B x t x t B x t

      


             (9.6) 

Define    1C t B t    in the above to obtain Eq. (5.13). 

For the static case, where 0dB dt  , refer to (9.3) to obtain,  0, 0 0,1i B B    . Use this and make the 
substitutions   0x t    and   0,B x t B    to obtain (3.7). 

Appendix 4 

Below is the Mathematica source code that is used to evaluate Eq. (6.8). Here the dummy variable of integration 
is ‘t’ instead of ‘u’. The quantity eE stands  0E T . The quantity energy[w,t]stands for  u   where 

 u  is defined in (6.9). Also cC[w,t] stands for  C t  which is specified in (6.4). In addition cC0[w] 
stands for  0C  and gG[w,t] stands for  G t


 which is given by (6.5). The upper limit of the integral has 

been truncated to 100 (from infinity) because the integrand converges sufficiently fast. 

(* Counter-example to the quantum interest conjecture*) 

(* Sept 8, 2010*) 

Clear[f2];Clear[lamb0];Clear[w];Clear[t]; 

f2=2; lamb0=1; 

lambda[t]:= (f2/(1+t*f2))-(f2-lamb0); 

tT=lamb0/(f2*(f2-lamb0)); 

f3=( f2-lamb0); 
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aa[w]:=I*w + f3; 

exp[w,t]:= Exp[-aa[w]*t]; 

gG1[w,t]:= ((1-exp[w,t])/aa[w])*(1+(f2/aa[w])); 

gG2[w,t]:= f2*(t*exp[w,t])/aa[w]; 

gG[w,t]:= gG1[w,t]-gG2[w,t]; 

cC0[w]:=I*w/(I*w-lamb0); 

cC[w,t]:=(Exp[aa[w]*t]/(1+t*f2))*(cC0[w]-I*w*gG[w,t]); 

conjC[w,t]:=Conjugate[cC[w,t]]; 

energy1[w,t]:=-lambda[t]*I*w*(cC[w,t]-conjC[w,t]); 

energy2[w,t]:=2*(lambda[t]^2)*cC[w,t]*conjC[w,t]; 

energy[w,t]:=(1/(4*w))*(energy1[w,t]+energy2[w,t]); 

eE = (1/Pi)*NIntegrate[energy[w,t],{t,0,tT},{w,0,100},WorkingPrecision ->15] 

  

  


