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Abstract 

In this paper we used MATLAB simulation to simulate the hybrid combinations of short range automotive radar 
(SRR) operating at frequency 24 GHz and long range automotive radar (LRR) operating at frequency 77 GHz. 
We obtained the velocity, the range and the time of scanning target. The objective of this work is to get the 
advantage of both SRR and LRR covering short and long distance with high resolution from 1m to 200m range. 

Keywords: Automotive radars, Short range radar, Long range radar and the hybrid combinations 

1. Introduction 

Radars are already on the market as the active safety system to protect the driver and minimize damage of all road 
vehicles. The radar sensor systems are one of important elements in automotive technology, because these are 
virtually unaffected by harsh environmental conditions such as weather and light. Radars are especially effective 
and presently on the market as the safety systems for high performance automotive applications (Herman Rohling, 
Marc-Michael, 2001) 

In work ( Yahya S. H. Khraisat, 2010), we simulated 24GHz Short Range Wide Band Automotive Radar. In this 
paper we simulated the hybrid combination of both SRR at 24 GHz and LRR at 77GHz by establishing six sensors 
added to the car according to figures 1 and 2. 

2. Overview of FMCW 

There may be different forms of the FMCW waveform. The one we consider in this section is linear FM where the 
fly back portion is also chirped. This waveform is conceptually a normalized linear periodic signal m (t) which is 
frequency modulated onto a carrier.  

Figure 3 depicts the frequency deviation of the waveform under consideration. If tfb = τ the resulting signal may be 
called “triangular” FMCW. If the ratio of tfb/τ is small, or zero, the waveform might be called “saw-tooth”. M (t) is 
frequency modulated onto a carrier such that the maximum excursions about the carrier will be ±0.5Bc, as shown in 
figure 4. Thus the FMCW signal’s frequency varies linearly over a range of Bc centered on the carrier, chirping up 
in frequency in a time of τ, and chirping back down again in a time of tfb. A critical consideration in this analysis is 
that the signal is constant envelope. Any amplitude weighting would affect the spectrum, and must be considered 
in a separate analysis. 

To facilitate the analysis we break this signal down into the convolution of two waveforms as shown in the figure 
5 a and b. 

3. Mathematical Model  
Using the properties of the Fourier analysis we know that the spectrum can be obtained by multiplying figure 5a 
and b. Since the spectrum of a series of delta functions in time separated by period T is a series of delta functions in 
frequency separated by 1/T, the resultant will be the Fourier Transform of Figure 6 as a function of line spectra 
spaced by 1/(τ+tfb). 
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Fig. 5 consists of a forward and return chirp both spanning the same frequency range, but at different rates (Hz/s). 
We condense these into one figure where the forward chirp occurs between –τ and 0, and the return chirp occurs 
from 0 to tfb.   

The following is a general expression of the voltage versus time waveform x (t) for FM modulation, where m (λ) 
varies between ±1: 
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Performing the integration of (1) for a positive chirp (using figure 6) gives the following: 
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Differentiating the argument of (2) with respect to time shows the instantaneous frequency 
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Applying -τ ≤ t ≤ 0 to (3) shows that the frequency varies between Fo – 0.5Δω/π and Fo + 0.5Δω/π. Since we want 
it to vary between ±0.5Bc, this means that Δω = πBc. The final form for the positive chirp is the following: 
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Where –τ ≤ t < 0 

For the negative chirp it is: 
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Where 0 ≤ t < tfb. 

3.1 Implementing Continuous Phase (CP) FMCW 

The FMCW waveform is continuous frequency because of the chirped fly back. The waveform is 
continuous-phase (CP) across the high frequency chirp transition because of the way the equations are written; but 
there is not necessarily phase continuity across the lower end. Because it has been suggested that phase 
discontinuities will broaden the spectrum, this section derives adjustments to FMCW that will force phase 
continuity across the periodic waveform.  

The derivation is straightforward and begins by setting the arguments of (4) and (5) equal to each other. 
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The 2πn term is added because adding any integer multiple of 2π does not change the value of a sine wave.  The  
term is added for analyzing the non-continuous-phase (NCP) case to ensure that phase differences are the same 
across different waveform periods. 
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Last equation shows that CP (corresponding to  = 0) is achieved simply by ensuring that the product of center 
frequency and waveform period is an integer. For computer analyses, setting Fo to 0 is the simplest way to achieve 
CP. For NCP, equation (10) allows one to fix the amount of phase discontinuity so we can compare resulting X dB 
bandwidths across a number of different waveform periods. This also allows one to research whether bandwidths 
change depending on the amount of phase discontinuity. One might guess that smaller phase discontinuities would 
lead to smaller bandwidths. 

Figures 7 and 8 show a single period of an FMCW waveform as implemented by (4) and (5), where the center 
frequency is adjusted according to (10) to achieve NCP and CP, respectively. 

3.2 Rectangular FM chirp 

It may be helpful to note that the FMCW waveform is the same as a rectangular FM pulse whose duty cycle is set 
to 100%. Figure 7 shows a rectangular pulse centered at 10 MHz, which chirps up a total of 10 MHz in 1 μsec, and 
down again in 1 μsec, with a duty cycle of less than 100%. Figure 8 shows how FMCW is formed simply by raising 
the same signal to a 100% duty cycle. In the frequency domain the continuous function of the Fourier Transform of 
a single pulse is sampled with frequency elements spaced apart by the PRF, ensuring that one of them coincides 
with the fundamental frequency. Although the spectrum appearance varies with duty cycle, the envelope of 
rectangular FM pulse spectrum is independent of duty cycle unless the duty cycle is exactly equal to 100%. This is 
due to the effect of pulsing on the FM chirp, which convolves the spectrum with that of the pulse shape. This effect 
abruptly goes away when the signal is no longer pulsed and indicates that the FM pulse bandwidth formulas cannot 
converge (with increasing duty cycle) to those we choose for FMCW. 

4. Simulation 

77GHz and 24 GHz radars are already on the market as the active safety system to protect the driver and minimize 
damage of all road vehicles. The radar sensor systems are one of important elements in automotive technology, 
because these are virtually unaffected by harsh environmental conditions such as weather and light quality. The 
77GHz FMCW radars are especially effective and presently on the market as the safety systems for high 
performance automotive applications (Herman Rohling, Marc-Michael, 2001), (Yahya S. H. Khraisat, 2010) and 
(Karl M. Strohm and others, 2005). In FMCW radar, a typical approach to extract range and velocity is to analyze 
the Fourier spectrum of the received beat signal. The Fourier spectrum is usually determined by digital method 
using the beat signal sampled by ADC (Analog Digital Converter). 

4.1 Assumptions 

The range beat frequency rf and Doppler frequency df can be obtained by signal processing, and then the distance 
and velocity of the target can be estimated. We simulated this algorithm using MATLAB. The detail properties of 
FMCW radar, such as the transmitted bandwidth, the carrier frequency, the chirp period, the PRI (Pulse Repetition 
Interval), and the modulation frequency, are shown in Table 1. The sampling frequency of ADC is 2 MHz because 
the maximum range is 200 m and the maximum beat frequency is 533 kHz. 

4.2 Main Results:  
In this paper we used the following equations to obtain range, Doppler shift, velocity and time of the scanning 
targets.  

ܴ ൌ
஼ൈఛൈி௥

ଶ஻
                                (4.1.1) 
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                                 (4.1.5) 

Where 

R is the range between the target and radar. 

C is speed of light which is equal 3×108 . 

߬ is chirp period (half of PRI) and it approximate 2 ms. 

Fr is the range beat frequency. 

 .Speed of target ݒ

݂݀ is the Doppler shift. 

݂ܿ the carrier frequency (24GHz & 77GHz) 

 .is wave length ߣ

4.3 Targets Detection  

In this part we showed how targets are detected at the two types of radars. The first type is the Short Range Radar 
(24 GHZ), which can detect targets with range less than 30 meters. Targets at range more than 30m can’t be 
detected by this radar. We need to use the second type; Long Rang Radar (77 GHz) which has range reaches to 200 
meters. Targets more than 200 meter can’t be detected by both types (SRR & LRR). 

Figure 11 shows the GUI (graphical user interface). On this part we will fill the block to operate the results. 

 T1 which function is already prepared on Mat Lab, used to generate oscillation frequency. Assumption equal 
0.2 s as shown in Figure 12. 

Rf 1 is 24 GHz 

Rf2 is 77 GHz 

 Ranges 1,2 and 3 are ranges of target needed to be detected 

 We assumed Range1 less than 30 meters so it can be detected by 24 GHz and can’t be detected by 77 GHz. As 
shown in Figure13 ( R = 21 meter ) 

 Range 2 less than 200 meter so it can be detected by 77 GHz radar, as shown in figure 14. 

 Range 3 more than 200 meters so it can’t be detected by earthier 24 GHz or 77GHz.  

 On Figure 14 we can note that at 21 meter the target detected as line not as peak value of power. This is 
because of the short range compared with 122, so we used tool on Matlab to zoom this line and show the results on 
figures 15 and 16. 

 Also we will show the relationship between Doppler shift and (θ) depend on the velocity. The maximum 
velocity of car is 62 m/s, so using equation 4 and depending on the operating frequency (24 GHz or 77GHz).  

 Using equation 5 we calculated wavelength (λ) for each frequency:. 

For 24 GHz ߣ ൌ 0.0125݉ 

and  

For 77 GHz ߣ ൌ 0.00389 ݉ 

4.4. Determining Range, Operating Frequency, Velocity and Time Scanning 

In this part we simulated in Matlab to determine range, operating frequency, velocity of target and time of scanning 
target. We assumed that received samples are in the range between 15 samples and 534 samples by 
troubleshooting. Fig19 shows the input and output of this part. Number of samples and Doppler frequency are 
inputs. These equations are used to obtain the outputs. 
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Assumptions: 

T=0.5 ms 

C=3*10^8 

B=200*10^6 

Doppler frequency is calculated by using maximum velocity of car which is 62 meter per second. Using equation 
5, set theta to zero to get the maximum Doppler frequency. 

Doppler frequency for 24 GHz is in the range from 3 KHz to 10 KHz and for 77GHz Doppler frequency is in the 
range from 3 KHz to 31 KHz. 

5. Conclusion 

This paper proposed method to improve the range and velocity for both short and long range target for the FMCW 
automotive radar. For the target in the long and close distance, the range is extracted and the peak appears as a 
number of possible targets.  

The second part dealed with the calculations for range and time to detect and retreat the signal. It can be 
summarized as: 

 Enter number of sampling  

 Compute range 

 Provide the operating frequency using the following function 

If R < 30 

    F_C=24e9; 

else if R > 30 && R <200 

    F_C=77e9; 

else 

    F_C=0; 

end 

 Compute the time to detect target and retreat.  
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Table 1. FMCW radar Parameters 

 

 

 

 

Figure 1. Short range and long range radar’s location 

 

 

Figure 2. Short range and long range radar’s location 
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Figure 3. Saw-tooth waveform 

 

 

Figure 4. FMCW is a carrier whose frequency varies linearly between Fo ± 0.5Bc in time τ 

 

 

 

Figure 5. a. forward and return chirp  
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Figure 5. b a sequence of delta functions 

 

 

 

Figure 6. m (λ) truncated to an interval –τ ≤ λ ≤ tfb 

 
 

Figure 7. Example of phase discontinuity across periods 

 
Figure 8. Fo adjusted according to (10) to achieve phase continuity 
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Figure 9. a forward and return chirp convolved with a sequence of delta functions 

 

 

 

Figure 10. Delta function spacing matches width of forward and return chirp 
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Figure 11. GUI 

 

 

Figure 12. Oscillation frequency 

 

 

Figure 13. Short Range Radar; target on 21 meter are detected by 24 GHZ 
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Figure 14. Long Range Radar; targets on 21& 122 meters are detected by 77GHz 

 

 

 

Figure 15. Tools help to show SRR detection 

 

 
 

Figure 16. target on 21 meter is detected by 77 GHz. after zooming 
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Figure 17. Maximum Doppler effect at 24 GHz 

 

 

 

Figure 18. Maximum Doppler effect at 77GHz 
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Figure 19. Inputs and outputs shows at GUI 

  


