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Abstract  

We derive an equation of the energy of a particle equal to Planck h times the frequency plus/minus the 
Heisenberg uncertainty energy as based on our previously constructed “combined spacetime four-manifold.” At 
the same time, we provide more details to our spacetime geometry, in particular, that of the “wave universe.” 
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1. Introduction 

This paper seeks to derive a single equation that explains the energy of a particle equal to that as accounted for 
by the Planck frequency formula plus that as accounted for by the Heisenberg uncertainty principle.The 
significance of the Planck formula lies in its therein contained Planck constant ݄ ൌ 6.62606957ሺ29ሻ ൈ
10ିଷସܬ · ܵ(CODATA 2010) (for a recent theoretical derivation of h, cf. (Brodsky & Hover, 2011]). Historically 
the formula, E=hv, arose from Planck’s derivation of the energy density u(v)of the blackbody radiation in 1900 
(cf. [Longair, 1984], pp. 201, 205-206 for an elaboration on the analysis in [Planck, 1901]), when Planck related 
E (Equation (6), ibid.)to thev in Wien’s equation (cited by Planck as Equation (10), ibid.) through a joint 
expression of u(v)in:  
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Here we can see that there is a discrepancy of the extra term of (-1) in the denominator in equating E with hv. 
[Einstein, 1905] gave another derivation of E=hv, where he made use of the quantity (in his Section 4), 
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here again, had Einstein used  Plancku  , he would not have been able to obtain the above expression of 1T  

needed for the conclusion of E=hv. It must be stressed however that Einstein did note the readers about the 
limitations of E=hv. (“Wirlegendiese Formelunseren Rechnungenzugrunde, behaltenaberim Sinne, dassunsere 
Resultatenurinnerhalbgewisser Grenzengelten.” Ibid., Section 4.) Yet from our literature research the validity of 
this equation has never been examined (cf. e.g., [Zeidler, 2006], p. 141, for how firmly and universally this 
formula has been established), and additional derivations of the formula do not appear to exist (except for a 

recently proposed generalization by [Jou & Mongiovi, 2011]).  

Coincidentally, we encountered a similar situation in our previous article (Light, 2011, APR), where we found an 
extra term 

jÊ  added onto  1
jh  to account for 

jÊ , and this 
jÊ originated from the term of 1 in our 

previousequation, 

 
         

.
4

1

2

2
1

5

122

4

22
2

11
c

EG

c

EG
g jj

j

j 





                     (1.2) 



www.ccsenet.org/apr                    Applied Physics Research                    Vol. 4, No. 1; February 2012 

Published by Canadian Center of Science and Education 139

We had conjectured that this 
jÊ  was the Heisenberg’s uncertainty energy (see [Samuel, 1927] for an earlier 

inquiry), and indeed here we will present a proof to confirm our conjecture. 

In the ensuing Section 2.1, we will derive our “Planck + Heisenberg” energy formula. We note that the 
background of this section will be the spacetime before the Big Bang, composed purely of electromagnetic 
waves in a universe referred to as  2M  in our previous article. Then in Section 2.2, we will essentially cast the 

recognized post-Big-Bang universein our model and derive 
t

E
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1 . Then in Section 2.3, we will prove a 

lemma that is actually involved in our energy formula. Finally in Section 3 we will conclude with some summary 
remarks.  

2. Analysis 

2.1 A single electromagnetic wave   by Maxwell Equations in a universe  2M  devoid of matter 

Let a reference frame S with a parameter domain     31,,, Rzyxt be given, and assume that relative to S 
there exists an electromagnetic field made up of 
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varying with coordinate systems {byartificial spatial-temporal translations but otherwise Lorentz 
(geometrically) invariant with all inertial framesand  
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with the resultantPoynting vector 
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Here we note that the superscript of an asterisk as attached to the permittivity constant denotes its pre-Big Bang 
value and that such superscript representations will consistently be adopted in the sequel, with their relationships 
to the present laboratory values clarified in Section 2.2. 

We now solve the equation   tkx  for x: 
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Identifying 0  to form a quotient space as referenced by a frame ሚܵ traveling with [0, λ], we have 
  1,0 S , a circle with radius 




2
, or 

    .2,0,sin
2

,cos
2

,1









 






zyzyS                (2.4) 

Since 

 
,:

3
2*

0
2,0

max 

















 m

joule
unitofA

c

S




                   (2.5) 

we have 2*
02

1
A  the average energy density over   YS  ,01 . Thus,   carries a total energy of   
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Since to represent E as a point mass 
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Note that it is here in Equation (2.7) that we pass the frequency ߱ as referenced by frame S in Equation (2.0) to 

frame ሚܵ.Identifying     2,,0   to form a quotient space in 1S , we have m move in a simple harmonic 
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with the associated potential energy 

  ,coscoscos
2

2
2

1

2

1 222
2

222 tEtmctmmPE 

 






            (2.9) 

implying in particular that the average potential energy .
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Denoting the Lorentz factor by L , we conduct a Lorentz transformation of the above equation: 
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Thus, form-invariance is observed, and  carries a fixed amount of energy of  ./2 * sh  (Here we note in 
passing that the relativistic mass Lm  in the above Lorentz transformation (2.14) is valid only for slow moving 
inertial frames; for all inertial frames the relativistic mass should be m divided by the smaller of the two 
eigenvalues of the Lorentz transformation, i.e., a replacement of 

L with the inverse of the smaller eigenvalue of 
the Lorentz transformation everywhere in (2.14) to result in the generally correct Lorentz transformation of the 
frequency ; cf. [Light, 2011, InTech].)  
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= the heat energy in   + a heat converted mechanical energy that is lost for upholding the same constant 
oscillation frequency v, where *k  Boltzmann constant and T Kelvin temperature. Thus, 
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This energy E in Equation (2.16), in accordance with the moving frame ሚܵ, is identical to the energy E in 
accordance with the frame S of the originating Maxwell Equations by virtue of sharing the same frequency ߱as 
specially noted after Equation (2.7). That is, measuring frequency linearly along the x-axis by the multiple of the 
wave length λ is identical to wrapping λ around a circle on the (y,z)-plane and counting the number of rotations. 
Applying the (time x time) component of the metric tensor g in Einstein Field Equations, we proceed to examine 
the gravitational effect of E on the boundary of   in the universe  2M , which has a large gravitational constant 

 2G  ( [Light, 2011, APR]) so that  
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i.e., an agreement between electromagnetism and gravity. (Cf. Lemma below in Subsection 2.3; here we also 
note that chronologically the above Equation (2.17) should be placed in the next Subsection 2.2 of the 
post-Big-Bang era, when the ratio of the proper time in  2M  to the proper time in  1M  becomes imaginary.) 

2.2 The transformation of E of  into     21 , EE  of a photon-wave 

Since   resides in aspacetimewith 011 g ,   is in a black hole B of  2M  and is attracted to the center of B 

by gravity. We hypothesize that at the center, the infinite gravity transforms   into a particle-wave of energy 
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Here we draw the reader’s special attention to the above formulas of conversion that convert any 
laboratory-measured quantities (as denoted by an overhead carat) to their true quantities in  iM , i = 1, 2. Thus, 
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Now since E
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1  remains in  2M , we have a revised (cf. Equations (2.17), (2.18)) 
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here (see [Light, 2011, APR]) the gravitational constant recognized in the laboratory is 
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For the Poynting vector, we have 
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withE and B staying the same, and     SSS ˆ4.0ˆ22  . The wavefunction is then 
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Here, we note that as an inertial frame moves away from a light source with speed approaching c, the wave 
length of the light approaches infinity; therefore, a photon is to appear within any wave length  with probability 
1. To be complete, the probability current density is then 
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We hypothesize that any representative point mass m in  xx,  of energy  3EE   in  2M  may find itself 
immersed in  1M  as well as  2M , revealing itself as a photon   in  1M  and that   emerges from   xxx ,*  
into  1M  in accordance with the probability densities   2

0,0,, xt  of Equations (2.24) and (2.25). Furthermore, 
Equation (2.23) has an average of Ŝ5.0 over  xx, . This implies that if the photon γ carries an average 
energy density of  (5/16)ε0

*A2  over  xx, , then it must travel (c second) in one second; however, if γ 
carries an average energy density of  ε0

*A2  over  xx, , then it only travels [(5/16)c second] in one second 
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but this must mean (5/16) second. That is, the time duration of γ in  xx,  of  1M  is a random variable 
߬ఊ א ሾሺ5 16⁄ ሻ, 1ሿ(λ/c). As a result, our later derived Equation (2.32) of the Heisenberg uncertainty energy ΔE 
becomes an inequality: ΔE ൒ ሺ1 2⁄ ሻ(ħ/Δt). 

Now   has Schwarzschild radius in the combined universe  3M , 
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identified with one single point in a quotient space. As such, the radius of   for calculating  2E becomes 
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 , a statement that will beformally established in the following Lemma. 
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.                         (2.30) 

By the symmetry in simple harmonic motions, 

t

h
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1
,                                (2.31) 

or in terms of  2 , 

t
E






2

1
                                 (2.32) 

(cf. e.g., [Zeidler, 2009, p. 477] for the statement that harmonic oscillators achieve the Heisenberg energy lower 
bound, and also, [Toscano, 2006] and [Jizba, 2003] for uncertainties on small scales and examinations of the 
lower bounds). 

2.3 A lemma 

We prove the following Lemma: 
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Proof. Let     21 , jj EE  be given, where the subscript j indicates the reference to a particular frame. Define 
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Change variable r to ;sr e  then ,s dr
dr e ds and ds

r
   where s denotes the relativistically invariant 

multiple of radians and r  is in the unit of 
e
j

2


 (cf. [Moghimi-Araghi& Rouhani, 2000] and [Rovelli, 

1991] for spacetimeparametrizations). Then we have 
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(2.35) 

Define the average z(r) to be 
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Thus, the nonlinear-terms related quantity NLT in the derivative is: 
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Since 
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 we have NLT = 0if and only if 1
2

 e
j , which is now derived as follows: 

Let an electromagnetic wave   relative to all reference frames be given. Assume that   has a radius 
mmeterr 1  (where the misspelling is intentional, to mean actually “a unit of space distance”) and energy 
jjouleeE 1  (again, with the intentional misspelling to mean “a unit of energy”). Denote the average energy 
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relative to reference frame j. 

Thus,  
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and  has a radius .1~  er  

As such, we have provided a treatment of the pervasive problem of (1/r) (cf. a recent study by [Gralla, 2011]). 

3. Summary Remark 

In this paper we have contributed an integrated formula of the energy of a particle as based on our previous 
model of a combined spacetime four-manifold  3M : 

.ˆ
j

jj
h

hE






                                  

(3.0) 

We thus present the above equation as a test of our model, e.g., substituting it into the Planck formula in 
Equation (1.0). Otherwise, we have provided additional details of the involved geometry of our model. In 
particular, we surmise that the ratio  e2/  in the above Lemma may have to do with the fine-structure constant 
(cf. e.g., [Bouchendira, 2011] and [Tomilin, 1999]). Overall we have augmented the quantum probability setup 
withour combined four-dimensional spacetime geometry, and by providing a clearer temporal-spatial structure of 
our world we hope to facilitate a future development of quantum mechanical engineering. 
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