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Abstract 

It is well known that the local kinetic energy density can be negative in quantum field theory. This is a “quantum 
effect” that is in contrast to classical physics where the kinetic energy density is always non-negative. It has been 
proposed in the literature that there exist “quantum inequalities” which place limits on this negative energy 
density. In this paper we will examine a type of quantum inequality call the spatial quantum inequality. The 
spatial quantum inequality is a lower bound on the weighted average of the kinetic energy density. It will be 
shown that for a massless scalar field in 1-1 dimensional space-time we can formulate a quantum state which 
violates the quantum inequality. In addition, we will look into the quantum interest conjecture. The quantum 
interest conjecture states that a negative energy pulse must always be closely associated with a positive energy 
pulse of greater magnitude. It will be shown that the quantum interest conjecture is violated. 

Keywords: Spatial quantum inequality, Quantum interest conjecture 

1. Introduction 

In quantum field theory the kinetic energy density can be negative over some region of space (Epstein et al., 
1965). This is a “quantum effect” that is in contrast to classical physics where the kinetic energy density is 
always positive. One possible consequence of this is that the existence of negative energy could give rise to 
exotic phenomenon such as traversable wormholes (Morris et al., 1988) and violations of the second law of 
thermodynamics (Ford, 1978).  

There are a number of papers that claim to show that there are limits on this negative energy density (Ford et al., 
1998; Flanagan, 1997; Fewster et al., 1998; Ford, 2010; Bostelann et al., 2009; Fewster et al., 2008; Eveson et 
al., 2007; Fewster, 2005; Ford et al., 1998; Pfenning et al., 1998). These limits are called the quantum 
inequalities. The quantum inequalities provide a lower bound on the weighted average of the kinetic energy 
density integrated over some region of space and time. They apply to “free field” systems, that is, systems where 
all external potentials are zero. It is argued that the presence of the quantum inequalities eliminates the 
possibility of the exotic phenomenon mentioned above.  

The spatial quantum inequality will be the focus of the discussion of this paper. The spatial inequality is the 
proposition that there is a lower bound to the weighted average of the kinetic energy density integrated over 
some region of space at a given point in time. It has been claimed to apply to a massless scalar field in 1-1 
dimensional space-time (Flanagan, 1997).  

I have proposed in a number of papers that one can formulate counterexamples to the quantum inequalities 
(Solomon, 2010; 2011A; 2011B; 2011C). The basis of these counterexamples will be described as follows: 
Consider a massless scalar field in 1-1 dimensional space-time and assume that all external potentials are zero. 
Next consider some finite region in space a x a   . Call this region I. Region II will be a region outside of 
region I consisting of R x a  and a x R    . If the kinetic energy density is zero in region II and if the 
average kinetic energy density is negative inside region I then the spatial quantum inequality will be violated if R 
is sufficiently large.  

Basically the spatial quantum inequality will be violated if a “free field” quantum state exists which includes an 
“isolated” region of negative kinetic energy density. By “isolated” we mean that the region of negative kinetic 
energy density is a sufficiently large distance away from any positive kinetic energy density that may exist. In 
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this paper we will demonstrate the existence of a “free field” quantum system for which a region of negative 
kinetic energy density is “isolated” and violates the spatial quantum inequality. 

2. Spatial Quantum Inequality 

In this section we will show that a system that contains an isolated region of negative kinetic energy density can 
violate the spatial quantum inequality. According to Flanagen (1997) the spatial quantum inequality is expressed 
by the following equation, 

        00 ,min,R ST x t x dx  




             (2.1) 

where  00 ,RT x t  is the renormalized kinetic energy density and  x  is a positive weighting function which 

satisfies, 

      1x dx




                              (2.2) 

and, 

      
 

2

,min

1

24S

x
dx

x


 

 






                         (2.3) 

where    x d x dx   . It will now be shown that an isolated region of negative kinetic energy density 
violates the spatial quantum inequality. Define the weighting factor  x  according to, 

     2

1 for 

cos  for 

0 for 

x a

x N f x a R x a

x R





      


                 (2.4) 

where  1N R a   and    2f R a  . Note that  x  has finite support which is allowed according 
to Flanagan (1997). Use this in (2.3) to obtain, 

         
 ,min 2 2

1 1

6S
R a


 
  
  

                            (2.5) 

Assume that the kinetic energy density is zero in the region R x a   and the average value of the kinetic 

energy density in the region x a  is given by 00 ,R aveT    where 0  . For this situation the negative 

energy density is isolated. That is, the region of negative kinetic energy density is separated from any positive 
kinetic energy density that may exist by a minimum distance of R a . Use this along with (2.4) to obtain, 

     00

2
,R

a
T x t x dx

R a









                           (2.6) 

If the spatial quantum inequality holds then Eq. (2.1) must be valid which implies, 

    
   2 2

2 1 1

6

a

R a R a

     
   

                           (2.7) 

This in turn yields, 
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   2 2

2 1 1

6

a

R a R a

  
 
   

                           (2.8) 

For sufficiently large R this equation will not be true. Therefore the spatial quantum inequality can fail if we can 
formulate a system which contains an isolated region of negative kinetic energy density.  

3. Isolated Negative Kinetic Energy Density 

In this section we will examine the kinetic energy density for a massless scalar field in 1-1 dimensional 
space-time with the goal of trying to demonstrate the existence of a quantum state for which includes a region of 
negative kinetic energy density which is isolated. This is easy to do if we allow for the presence of a non-zero 
scalar potential. 

It can be shown that one can produce an isolated region of negative kinetic energy density for scalar fields in the 
presence of an external scalar potential. For example, Mamaev et al. (1981) considered a massless scalar field in 
1-1 dimensions in the presence of the scalar potential given by, 

        2 2V x x a x a                                (3.1) 

where   is a non-negative constant which can be set equal to zero to turn the potential off (Also see Solomon, 
2011A; Mostepanenko et al., 1997; Mamaev et al., 1981) show that for this system the renormalized kinetic 
energy density,  00RT x , is given by, 

    00

if 2

0 if 2R

x a
T x

x a

 



                            (3.2) 

where   is a positive constant. Therefore  00RT x  is negative in the region between 2a  and 2a  and 

zero elsewhere.  

Another example is given in Solomon (2011B) which derived an expression for the kinetic energy density of a 
quantum state in the presence of a static scalar potential  0V x  where  0V x  is an inverse square well 

potential given by, 

      0
0

 for 

0 for 

V x a
V x

x a





                              (3.3) 

where 
0V  is a positive constant and   is a positive constant that can be set to zero to turn off the potential. It 

was shown for this situation that  00 0RT x   for x a  and that in the region x a  the average value of 

 00RT x  is negative. 

It is evident in both these examples that the negative part of the kinetic energy density is isolated. This would be 
a violation of the spatial quantum inequality except for the presence of a non-zero scalar potential. This is due to 
the fact that the spatial quantum inequality only applies to the “free field” case where the scalar potential is zero. 
This problem will be dealt with in Section 5. Meanwhile, in this rest of this section, we will briefly review the 
discussion in Solomon (2011B) where the kinetic energy density was determined for the massless scalar field in 
the presence of the scalar potential given by (3.3). 

We will operate in the Schrödinger picture. In this case the field operators  ˆ x  and  ˆ x are time 
independent and obey the commutation relationships, 

        ˆ ˆ,y x i x y                                 (3.4) 

with all other commutations equal to zero. The kinetic energy density operator is given by, 

           
00

ˆ ˆ1ˆ ˆ ˆ
2

d x d x
T x x x

dx dx

 
 
 

    
 

                       (3.5) 
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The field operators are given by, 

       , , ,
,0

ˆ ˆ ˆ
2

k k k

dk
x a a x

k

  
  



 





 

                          (3.6) 

       , , ,
,0

ˆ ˆ ˆ
2

k k k

k dk
x i a a x

k

  
  



 





 

                          (3.7) 

where the  ,k x
  are real with  ,k x   representing the symmetric solutions and  ,k x   representing the 

anti-symmetric solutions. These are given in Solomon (2011D). The 
,ˆ ka


  and 

,ˆ ka


 are the creation and 

destruction operators, respectively. They obey the commutation relationships  , ,ˆ ˆ,k ka a k k 
     

        with 

all other commutations being zero. The  ,k x
  are solutions of, 

         
2

,2
, 0 ,2

0k
k k

d x
k x V x x

dx


 

 


                            (3.8) 

where, 

    , , 0k kdx x x  


 




  and      , ,
,

2k kx x dx k k 
 



  



  

            (3.9) 

The state 0  is defined by, 

   ,ˆ 0 0ka
    and 0 0 1                              (3.10) 

The “unrenormalized” kinetic energy density expectation value of the state 0  is given by, 

      00 00
ˆ; 0 0 0T x T x                              (3.11) 

Use (3.6), (3.7), and (3.10) in the above to obtain, 
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2 ,2
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1
; 0
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d xdk
T x k x dk
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


 









 

    
             

              (3.12) 

The problem with this result is that it is infinite. In order to “regularize” this quantity we proceed as in Graham et 
al. (2003) and introduce a counter term to compensate for the cosmological constant. This involves subtracting 
off the term, 

        2

2 0,2
00 0 0,

,0

1
; 0

2 2
k

k

d xdk
T x k x dk

k dx













 

    
             

              (3.13) 

where, 

   0, cosk x kx    and    0, sink x kx                        (3.14) 

Note that  00 0; 0T x  is derived from  00, ; 0T x 
 by setting 0  .  00 0; 0T x  may be thought of as the 

unregularized kinetic energy density when the scalar potential is zero. 

The regularized kinetic energy density is, then, 
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 
 





 

      
                     

 (3.15) 

Referring to Solomon (2011B) we find that in the region x a , 

     00 ; 0 0R
x a

T x  
                             (3.16) 

As for the region x a  define, 

     00 ; 0
a

KE R

a

E T x dx





                            (3.17) 

From Solomon (2011B) it is shown that, 

   2
0

2
0

2 cosh 2 sinh 2

4KE

a a aV
E d

D

  


 

    
    

                    (3.18) 

where we have set 1   and, 

       2 22 cosh 2 sinh 2D a a                               (3.19) 

where 2
0V    . The integrand in (3.18) is non-negative for all 0  . Therefore 0KEE  . The result of 

this is that the total kinetic energy is negative in the interval a x a    and the kinetic energy density is zero 
outside of this region.  

Therefore the average energy density in the region a x a    is, 

 00 , 0  for 
2

KE
R Ave

E
T a x a

a                            (3.20) 

where we have used KE KEE E   since 
KEE  is negative. This is done to emphasis the fact that  00 , 0R AveT 

 

is negative. 

4. The Translation Operator 

At this point we have demonstrated the existence of a quantum state for which the negative part of the kinetic 
energy density is isolated. This would be a violation of the spatial quantum inequality except for the fact that this 
quantum state exists in the presence of a non-zero scalar potential given by (3.3). For the quantum inequalities to 
apply the scalar potential must be removed. 

In two papers by the author (Solomon, 2011A; Solomon, 2011B) it was argued that the kinetic energy density 
was continuous with respect to a sudden change of the scalar potential. If this is true then the scalar potential 
could be instantaneously set to zero without producing an instantaneous change in the kinetic energy density. 
Using this procedure it was shown that we can produce a free field system in which the kinetic energy density 
violates the spatial quantum inequality. 

In this paper a somewhat different approach will be used. Consider the kinetic energy density  00 ; 0RT x 
 

determined in the last section. As was shown above this will be zero in the region x a  and its average value 

will be negative in the region x a . Next assume that there exists a spatial translation operator 
L̂P  and 

consider the state vector 
0

ˆ 0LP   . It will be shown that the renormalized kinetic energy density of the state 

0  is, 

       00 0 00; ; 0R RT x T x L                            (4.1) 
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Therefore the kinetic energy density of the state 
0  is equal to the kinetic energy density of the state 0

 

shifted by the distance L  in the negative x-direction. The state 
0  will therefore contain an isolated region 

of negative kinetic energy density in the region a L x a L     . The kinetic energy density outside of 
this region is zero. For L   this region of negative energy density will be an infinite distance away from 

the non-zero scalar potential located in the region x a . Therefore the sudden removable of this scalar 

potential cannot effect the negative energy density region associated with the state 
0  because it an infinite 

distance away. This fact will be used to show that the state 
0  violates the spatial quantum inequality. 

In the following discussion we will specify the translation operator 
L̂P . Start by defining the operator, 

          
ˆ ˆ1ˆ ˆ ˆ

2

x x
C x x dx

x x

 
 
  

  
  

                      (4.2) 

Using the commutation relationships (3.4) we obtain, 

   ˆˆˆ ,
x

x C i
x




    
 and    ˆˆˆ ,

x
x C i

x




    
                  (4.3) 

The translation operator will be given by, 

    
ˆˆ iCL

LP e                                      (4.4) 

Use the fact that †ˆ ˆC C  to obtain, 

    
ˆ†ˆ iCL

LP e                                     (4.5) 

Next use the Baker-Campell-Hausdorff (Greiner et al., 1992) relationships to obtain, 

           
2 2

† ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ, , ,
2L L

i L
P x P x iL x C x C C   

                        (4.6) 

Use this and (4.3) to obtain, 

           
2

† 2
2

ˆ ˆ1ˆ ˆˆ ˆ ˆ
2L L

x x
P x P x L L x L

x x

 
  

 
     

 
             (4.7) 

where the last step is based on the Taylor’s expansion of the quantity  ˆ x L  . Similarly we can show that, 

       †ˆ ˆˆ ˆL LP x P x L                               (4.8) 

From the above we obtain, 

       †
00 00

ˆ ˆ ˆ ˆ
L LP T x P T x L                        (4.9) 

where we have used †ˆ ˆ 1L LP P  . 

Next, define the state, 

    0
ˆ 0LP                           (4.10) 

The unrenormalized kinetic energy density of this state is, 

       †
00 0 0 00 0 00 00

ˆ ˆ ˆ ˆ ˆ; 0 0 0 0L LT x T x P T x P T x L               (4.11) 

This allows us to write, 
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      00 0 00; ; 0T x T x L                       (4.12) 

Using the regularization procedure of Section 3 we obtain the renormalized kinetic energy density of the state 

0  as, 

      00 0 00; ; 0R RT x T x L                      (4.13) 

Therefore by using the results from the end of Section 3 we obtain,  

    00 0; 0 for RT x x L a                      (4.14) 

and, in the region x L a  , the average value of  00 0;RT x   is, 

   00 , 0  for  
2

KE
R Ave

E
T x L a

a
                    (4.15) 

5. Removing the Scalar Potential 

In the last section we defined the state 
0

ˆ 0LP   . The kinetic energy of this state would be considered as 

violating the spatial quantum inequality if the scalar potential was zero. Therefore we want to determine what 
happens to the kinetic energy density of the state 

0  when we remove the scalar potential  0V x .  

In order to do this we have to consider the time evolution of the system as the scalar potential is removed. We 
start by defining the initial state of the system at time 0t  . At this point in time the scalar potential is the static 
potential  0V x  defined in (3.3). This allows us to specify the state 0

. Using the translation operator we can 

then specify the state 
0

ˆ 0LP   . The kinetic energy density of the state 
0  is the same as the kinetic energy 

density of the state 0
 except that it is shifted in the negative x-direction by the amount L . 

Next let L   and divide up space into two regions. Region A consists of all points for which 2x L   and 

region B consists of all points where 2L x  . The inverse square well potential is located in region B per Eq. 

(3.3). For the state 
0  the negative part of the kinetic energy density is located in region A per (4.15). Next 

we want to determine how the kinetic energy density of the state 
0  changes as we remove the scalar 

potential. Assume that the scalar potential is reduced to zero during the time interval 
10 t t   where 

12L t . 

To make this happen let the scalar potential be given by    0t V x  where, 

      1 1

1

1 for 0

1  for 0

0 for 

t

t t t t t

t t




   


                         (5.1) 

Now the removal of the potential in Region B cannot possibly effect any changes in the kinetic energy density in 
Region A because any disturbance caused by the changing potential cannot travel faster than the speed of light. 
The kinetic energy density in region A evolves in time independently of the removal of the potential for all time 
t  such that 2L t . Therefore the details of the removal of the potential will not impact the kinetic energy 

density in region A. The negative kinetic energy density, which at time 0t   is confined to the region 

x L a  , will simply spread out from this region at the speed of light during the interval from 0  to 
1t . At 

1t  

the negative energy density in region A will be confined to the region 
1x L a t   . The result will be a region of 

negative kinetic energy density surrounded by an arbitrarily large region where the kinetic energy density is zero. 
As was shown in the Section 2 this violates the spatial quantum inequality. The above analysis will be proven in 
the following discussion. 

The time evolution of the quantum state 
0

ˆ 0LP    for 0t   is given by the Schrödinger equation, 
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 

      0

0 0 0
ˆ ˆ

t
i H t V x t

t


 
  


                      (5.2) 

The dual equation is, 

  
 

      0

0 0 0
ˆ ˆ

t
i t H t V x

t


 
   


                    (5.3) 

where 0Ĥ  is the free field Hamiltonian operator and is given by, 

     0 00
ˆ ˆH T x dx                                    (5.4) 

and, 

          0 0

1ˆ ˆ ˆ
2

V x V x x x dx                           (5.5) 

The initial condition at 0t   is, 

    0 0
ˆ0 0LP                                 (5.6) 

Use the commutation relationships (3.4) to obtain, 

      10
0 00

ˆ
ˆ ˆ,

T x
H T x i

x


     

                         (5.7) 

where  10T̂ x  is defined by, 

           10

ˆ ˆ1ˆ ˆ ˆ
2

x x
T x x x

x x

 
 
  

  
  

                     (5.8) 

Use (3.6) and (3.7) in the above to obtain, 

   10 10
ˆ; 0 0 0 0T x T x                            (5.9) 

Note that  10
ˆ0 0T x   does not require a regularization step. It is finite as defined. 

Using the commutation relationships along with (5.2) and (5.3) we obtain, 

           

           

0 00 0 0 10 0

0 0 0

ˆ ˆ

1
ˆ ˆ                                           

2

t T x t t T x t
t x

t V x t x x t
t

  

 
    

 


   


            (5.10) 

and, 

           

           

0 10 0 0 00 0

0 0 0

ˆ ˆ

1
ˆ ˆ                                           

2

t T x t t T x t
t x

t V x t x x t
x

  

 
    

 


   


            (5.11) 

Now consider the quantity      0 00 0
ˆt T x t   in the above equations. Technically this quantity is infinite and 

undefined. The process of renormalizing this quantity involves subtracting off an infinite constant as discussed in 
Section 3. Since the derivative of this infinite constant is zero we can write, 
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          00 0 0 00 0
ˆ;RT x t t T x t

t t

 
   

 
               (5.12) 

Similarly, 

          00 0 0 00 0
ˆ;RT x t t T x t

x x

 
   

 
               (5.13) 

Also define, 

           10 0 0 10 0
ˆ;T x t t T x t                   (5.14) 

Use the above to obtain, 

     
           00 0 10 0

0 0 0

; ; 1
ˆ ˆ

2

RT x t T x t
t V x t x x t

t x t
  

    
    

  
    (5.15) 

and, 

     
           10 0 00 0

0 0 0

; ; 1
ˆ ˆ

2

RT x t T x t
t V x t x x t

t x x
  

    
    

  
    (5.16) 

From this we obtain, 

     
           

           

2 2
00 0 00 0

0 0 02 2

0 0 0

; ;
ˆ ˆ

ˆ ˆ                                                       

R RT x t T x t
t V x t x x t

t tt x

t V x t x x t
x x

  

  

                
        

 

(5.17) 
Next consider the situation in Region A (where 2x L  ). Since  0V x  is zero throughout this region. we 

obtain, for Region A, 

  
     2 2

00 0 00 0

2 2 2

; ;
0

R R

x L

T x t T x t

t x 

   
 

 
                (5.18) 

As long as 2L t  we don’t have to consider the contribution from Region B. Therefore we will use (5.18) 
to determine the time evolution of the system in Region A for all times t  where 2L t . Recall that we have 
set L   . The solution to (5.18) is, 

         00 0;RT x t T x t T x t                         (5.19) 

where the function  T x t  is determined from the initial conditions at 0t  . The initial conditions at 
0t   are, 

       00 0 00 0; 0 ;R RT x T x                         (5.20) 

and, 

        10 0

00 0

; 0
; 0R

T x
T x

t x

 
 

 
                   (5.21) 

where  00 0;RT x   is given by (4.14) and (4.15). Also, we have, 
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        10 0 10 10
ˆ; 0 ; 0 ; 0 0LT x T x P T x L                (5.22) 

where we have used Eq. (5.9) to obtain the final result. Therefore, at 0t  , 

     00 0; 0 0RT x
t


 


                          (5.23) 

Using this we find, in Region A, that, 

         00 0 00 0 00 0

1
; ; ;

2R R RT x t T x t T x t                  (5.24) 

According to this result there are two pulses of negative kinetic energy that originate in the region 
a L x a L      at 0t  . One pulse moves in the positive x-direction and the other pulse moves in the 

negative x-direction. Both pulses are isolated. That is, they is they are separated from any positive kinetic energy 
density that may exist in Region B by the distance 2L  where L  .  

At time 1t t  the kinetic energy density that was confined to the region x L a   at time 0t   has now, 
at 1t t , spread out and is contained within the region 1x L a t   . The average kinetic energy density 
within this region is given by, 

      00, 0 1 1
1

 for  
2

KE
Ave

E
T t x L a t

a t
     


            (5.25) 

The kinetic energy density outside of this region is zero, within the region A. Therefore the spatial quantum 
inequality is violated.  

6. Violation of the Quantum Interest Conjecture 

Based on the results of the last section it is also evident that the quantum interest conjecture is violated. 
According to the quantum interest conjecture (Ford et al., 1999; Pretorius et al., 2000; Fewter et al., 2000; Teo et 
al., 2002; Abreu et al., 2009) any pulse of negative energy must be associated with a larger pulse of positive 
energy which follows or precedes it. These pulses must be close enough so that any exotic effects due to the 
negative energy pulse can be compensated for by the associated positive energy pulse. For example if a negative 
energy pulse fell into a black hole the entropy of the black hole would decrease causing a violation of the second 
law of thermodynamics. However if a larger positive energy pulse immediately followed the negative energy 
pulse into the black hole then this violation of the second law would only occur for short enough time to be 
consistent with the uncertainty principle.  

In Region A we have two negative kinetic energy pulses that are moving in opposite directions at the speed of 
light. With L   these pulses are an infinite distance from any positive kinetic energy density that might 
exist in Region B. Therefore the quantum interest conjecture fails. 

7. Summary and Conclusion 

It has been shown that we can formulate a quantum state that violates the spatial quantum inequality. We start by 
determining the renormalized kinetic energy density for the state 0

 in the presence of an inverse square well 
scalar potential. We show that this state includes a region of negative kinetic energy density. This would result in 
a violation of the spatial quantum inequality except for the fact that the scalar potential is non-zero. Next we act 
on the state 0

 with the translation operator 
L̂P  to produce the state 

0
ˆ 0LP   . The effect of this is to move 

the region of negative kinetic energy in the negative x-direction by the amount L . If we let L   then this 
region of negative energy density is an infinite distance away from the non-zero scalar potential so that the 
removal of the scalar potential cannot affect the time evolution of the system in the region of the negative kinetic 
energy density. This is easily shown to lead to a violation of the spatial quantum inequality. 

It is also shown that when the time evolution is considered there will be two pulses of negative kinetic energy 
density moving in opposite directions at the speed of light. This will result in a violation of the quantum interest 
conjecture. 
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