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Abstract

Multidimensional space-times are represented as curved surfaces embedded in higher dimensional flat spaces.
The embedding of each surface is based on geometrical principles. According to these geometrical principles, we
use variable separated coordinates so that the coordinates parameters become an orthogonal curved coordinates
system for each space-time surface. In this way, we obtain that the universe expands and that the expansion is
accelerated. By using co-moving coordinates and assuming that there is at least one geodesic which represent a
straight line in the curved multidimensional space-time surface (this is a kind of "equivalence principle" of a new
type), we obtain the curved multidimensional space-time surface's equation, its metric and accelerated expanded
three-sphere surface's particles that also explains the accelerated expansion of the universe.
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1. Introduction

The study of multidimensional space-times started with the Kaluza and Klein (T.Appelquist, et al.,1987) (Paul K.
Townsend and N.R. Wohlfarth,2003), who studied 5D space-times when the extra-dimensions are compact.

In recent years more general types of space-times have been considered, like multidimensional space-times
which are De-Sitter multidimensional-sphere surfaces considering the energy density of the vacuum (Y.B.
Zeldovich, 1967) (Paul K. Townsend and Mattias N.R.Wohlfarth,2003) (Mauricio Bellini, 2006).

Also, 5D curved space-time surfaces with a finite and an infinite extra-dimensions was studied (Y. Kim,et al.,
2002) (E.A. Bergshoff, et al., 2005) and 5D flat space-times with an infinite extra-dimension, based on De-Sitter
metric considering the energy density of the vacuum, as Wesson,s model (P.S. Wesson, 1999) (Tomas Liko and
Paul S. Wesson, 2005).

Other explanations to the universe accelerated expansion are based on interacting a scalar field with
non-negative potential often referred to as “dark energy” (E.I. Guendelman and A.B. Kaganovich, 2004).
different 5D space-time model is Carmeli’s accelerating universe model (S. Behar and M. Carmeli, 2000) (M.
Carmeli, 2002) (J. Hartnett, 2005) in which the extra-dimension is the radial velocity of the galaxies in the
expanding universe.

A five dimensional FLRW type Kaluza-Klein cosmological model with static extra-dimension has been studied
in Ref. (K.Purohit, Bhatt and Yogesh, 2011).An inflationary model in 6D super-gravity has been constructed in
Ref. (L.V. Nirop and C.P. Burgess, 2011), based on explicit time-depended solutions to the full
higher-dimensional field equation, back-reacting to the presence of a 4D inflation rolling on a space-filling
co-dimension-2 source brane.

In our opinion, the best explanation for something that is unknown, is by using extra-dimensions. Therefore, we
explained the universe accelerated expansion by using extra-dimensions (E. Guendelman and H. Ruchvarger,
2004).

In (E. Guendelman and H. Ruchvarger, 2004), we explain the universe accelerated expansion by defining a
general orthogonal multidimensional variable separated coordinate system based on a three-sphere surface.

In (E. Guendelman and H. Ruchvarger, 2004), we find the extra-dimensional metric component by a new
equivalence principle that is an additional principle to Einstein's equivalence principle.
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But by that new equivalence principle, we find only the first extra-dimensional metric component and to explain
the universe acceleration expansion by an orthogonal multidimensional variable separated coordinate system, we
need at least two extra-dimensions.

In this article, we find the orthogonal multidimensional variable separated coordinate system that represents the
embedded curved multidimensional space-time surface,

by a special form of equations for the coordinates, based on geometrical principles.

By this orthogonal multidimensional variable separated coordinate system, we obtain that the universe expands
and that the expansion is accelerated, without the need of considering the energy density of the vacuum as in
other studies (Y.B. Zeldovich,1967) (Paul K. Townsend and Mattias N.R.Wohlfarth,2003) (Mauricio Bellini,
2006) and (P.S. Wesson, 1999) (Tomas Liko and Paul S. Wesson, 2005) .

By this orthogonal curved multidimensional space-time surface coordinates, we also obtain the three-sphere
surface coordinates, the metric components of all dimensions, including the extra-dimensions and the curved
multidimensional space-time surface equation, for all the extra-dimensions that we want to use.

2. Geometrical principles for the curved multidimensional space-time construction
The multidimensional space-time is represented as a curved surface embedded in a flat space

4 n
dSy, =—dX[ +) dX] +) +dX; (1)
i=1 j=5
and defined by an orthogonal variable separated coordinate system.

Each additional coordinate after the first two coordinates x, and x, , depends only on an additional parameter

while the former coordinates depend on the former parameters and on the additional parameters too, according to
the following form

X2 =Hp2n1(.f;11) s Xk =Hpkm(fm) s k =173743t,576,""n (2)
m=1 m=k

The form (2) is explained by the following geometrical principles:

The coordinates X;, X, X3, X, are the embedding of the curved 3D surface in the curved 4D space-time surface,
the coordinate X; is a function of time and the coordinates X5, ... X, represent the extra-dimensions.

The two horizontal axes X; and X, represent horizontal planes in the multidimensional hyper-plane. Therefore,
the coordinates X; and X, depend on an horizontal angle ¢ .

The axis X; does not depend on these horizontal planes and therefore does not depend on the horizontal angle ¢,
but depends on a new parameter that is the vertical angle &. The axes X;, X, and X; represent 3D hyper-planes.

The axis X, does not depend on these 3D hyper-planes and therefore does not depend on the angles ¢ and &
in these 3D hyper-planes, but depends on a new angle y that is perpendicular to the angles ¢ and 6. The
axes X;, X, X3 and X, represent 4D hyper-planes including the curved 3D surfaces represented by the angles ¢

>

6 and y

The axis X, does not depend on these 4D hyper-planes and therefore does not depend on the angles ¢ 6 and

y in these 4D hyper-planes, but depends on the time ¢ that is a new parameter. The time ¢ is orthogonal to
the curved 3D surfaces that are represented by the angles ¢ 6 and y . Thus, ¢ is orthogonal togp 6 and

x The axes X;, X5, X5 X, and X, represent 5D hyper-planes including the curved 4D space-time surfaces
represented by the angles ¢, @, y and to the time ¢.

The extra-axis X, does not depend on these 5D hyper-planes and therefore does not depend on the angles
@ ,0,y and on the time ¢ that are the curved 4D space-time surfaces parameters, but depends on a new
parameter f; . The parameter f; is orthogonal to the curved 4D space-times that are represented by the angles
¢, 0,y andthetime f.

Thus, f, is orthogonal to ¢, , y and to f. The axes X;, X5, X; X,, X, X; represent 6D hyper-planes

including the curved 5D space-time surfaces represented by the parameters @ , 8, y , ¢, f5 and so on for the
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additional extra-dimensions.

Thus, the parameters of the coordinates are the curved orthogonal coordinates of each multidimensional
space-time surface, means that the metric of each space-time surface will not have off-diagonal components
(Appendix A).

3. The multidimensional coordinate system according to the geometrical principles

According to the geometrical principles represented by (2), we define the curved multidimensional surface's
coordinate system as follows

X, = ]i[plm(fm) =pu(D) P, () Pip(0) P, (@) ]i[plm(fm) ,
X, = ﬁpzm (f,) = pz,(t)~pzl(;()‘pze(ﬁ)-pzq,((p)-l’_l[pzm f.)

X, Hpgm(f )= (- 3y (1) oo (@) T [ s (f) (3)

m=>5

X, = Hp4m(fm) =p4,(t)-p4l(z)-]_[p4m(f) ,

m=3 m=5
X, =[1r.(f)=p.0-T]Pu(f)
m=4 m=5
and

Xj:ﬁpjm(fm) (4)

m=j

where p=f, , 0=f, , y=f, , t=f, and j2=5.

According to the geometrical principles that we assume, the coordinates parameters represent a curved
orthogonal coordinate system for the curved multidimensional space-time surface. Thus, the curved
multidimensional metric will not have off-diagonal components, which means that

8y, =8p = 8oy =890 = 8y, zgé’t:gex:gfmzzgtzzo )
foreach m > 5.

By the variable separate coordinates (3) and by (5), we obtain the following equations

P20 = P1o = Po s P3y =Py =Py =Py > Py =Py =Pu=Pu="P >
Hp4m Hp3m _Hp2m lem Hpm s (6)
m=5 m=5
_ _ 2 _ .2
_Pz(p—qu;_l > _Psg—Pe—l > —Piy=p, 1

(Appendix B) in which each curved 3D space surface becomes a three-sphere surface
4

=p;( ) pif) 7
2 X H

i=1

with the radius

> X2 =p,0)[1p,/) ®

and the following coordinates
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X, = p,(#)-sin(y) -sin(0) - cos(p) - Hpm(f )=p,(0)x, - Hpm(f )

m=>5

X, = p,(1)-sin(y) -sin(0) - sin(p) -Hpm (/) =D (1) x, 'Hpm (fw)

)
= p,(t)-sin(y) - cos(0)- Hpm(f )=p, () x5 Hpm(f )
Xy ZP,(f)-COS(Z)-HPm(fm) =p,0)-x, 'Hpm(fm)

inwhich: 0<¢@<27r , 0<<7wr and 0L y<rm (Figl).
4. The explanation for the universe accelerated expansion

According to the coordinates parameters that represent a curved orthogonal coordinate system for the curved
multidimensional space-time surface, we obtain

_ _zzaX oX, ,0X, OX,

(10)
ot 6fm ot
foreach m > 5
By (3),(6) and (10), we obtain for each m > 5 , the following equations
n n
2 2 2 2
Py :Ct'pz _Bt > Cz'Hptm :Hpm an
m=5 m=

and the coordinate
X, =p, 'Hptm = \lpzz - K, 'Hpm (12)
m=5 m=5

B
where B, =const. , C, =const. and K, = F’ (Appendix C) .

t

Thus, by (3),(6) and (11), time's metric component becomes as follows

s (ox, ) (ex, .
R R R CoRi
2 2 2 (dp, b
+P, Py P i 'Hp pz pw Hpm
m=5

(13)
dp,\' 4 . dp o dp 1 (dp o
+ 2 . _t . tt . _ t _ [t . —

_(@jz.l_ G- p, T, Kf (
dt C pt 5pm _Kt

j Hpm(f)

m=>5
in which
K, -dp]
_dtz _ t t . 2 . 14
gtt ptz—Kt JHSP/(f]) ( )
K, -4
By defining —]; =dT* , p! =K, cosh(x) and integration, we obtain
b — 5Ky
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-y
KtT %:K, jg — K, -cosh™!| £ =de:r (15)
J& AP K, 0 \/Z 0
Thus,
p, = Kt-cosh[ij , Kt:L (16)
K, H,

By substituting (16) in (8), each three-sphere surface’s radius, becomes

/ZXZ \/?cosh( ]Hp /) (17)

that represents for each constant value of H P, (f j) , a three-sphere subspace’s accelerated expansion. By
j=5

n
substituting (16), (17) in (12), we obtain for each constant value of H pi , a four-Dimensional space-time

m=5
universe embedding infinite three-sphere surfaces represented by (18) (Fig.2):

X, = |K,- cosh[ j K, Hpm , :K,-coshz[KLjH -K,- Hpm—

m=5 m=5 (18)

4

:inz_Kt'll[pri > iXiz_thth'ﬁpri
m=5 i=1 m=5

i=1

Thus, by a special form of the equations (3) and (4) for the curved orthogonal multidimensional surface
coordinates, based on (2), we show the universe accelerated expansion (17) without the need of considering the
energy density of the vacuum.

Also, in order to obtain the universe accelerated expansion, we have to use at least two extra-dimensions in
which the curved multidimensional space-time surface is at least

a curved 6D space-time surface.
5. Extra-coordinates, extra-metric-components and curved multidimensional surface equations

For more than 6-dimensional space-time surface, according to the curved orthogonal coordinate system we
obtain that g, . =0, foreach j>6.
151

By (4),(6),(12) and (16) we obtain the first extra-coordinate

X, =\FK ) - K1 T, () (19

(Appendix D) and

- 2
8X Kt 'KS 'llpj
2 = 2 2
gfsfs df‘S _Z( j fg K _ij dpS :gP5175 dp5 (20)
5 5

s

For more than 7-dimensional space-time surface, according to the curved orthogonal coordinate system we
obtain that g, , =0, foreach j>7.
]

By (4),(6),(12),(16) and (19) we obtain the second extra-coordinate
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X, =\FK, K 1 p2()-K [ p, () e
=7
(Appendix E) and by defining fromnow onthat K, =1 foreach j =5, we obtain

K 12

K, j

de G =——"5—dp;=g,, -dp; (22)
l_ps

oX,
gff)fé .dfﬁz - 2[ af
6

In this way we can go on and obtain more extra-coordinate equations and extra-metric component equations in
which according to (20) and (22), the extra-parameters f° ; can be changed into p j

By (18), (19) and (21) where K ;= 1 and for each j > 5 the curved multidimensional space-time surface's
equation becomes

sz X} =K, - Hpj.=$X§+K,'Hp_§=¢X§¢X§+K,-Hpj=
j=5 j=6 J=7
) - (23)
XK, p = FS X F X P g
j=3 ’ coom j=5 ’ " K, 'p;f +B, C

where according to (19) and (21), we can write foreach 5 < j > n—2 the following coordinates equation
n
2
=JEK, -A=-p))- T]p. (24)
m=j+1

and

:\/¢(p5—1_1)'(Kt'pn2+Bn) > Xn:Xn(pn) (25)
inwhich B, , B, are constant values (Appendix F).

The metric's equation for 7> 7 becomes

dS? =K, -dt*- Hpj +K, -cosh’ (—) dQ; HPJ +ngp dpj +

Jj=5 Jj=5 Jj=5

2 2
&y pey WPn1 & pp, APn

(26)
where
K -T]en
g = t ml——/[ﬂ g :n_l(aXi ] _Kt'pj"'Bn'pi—l @7)
p;pj l _ pj2 ’ Pn-1Pn-1 pr ap’171 1 _ p571
and
»(ox.\' K, -B -p: +K:-p* (dx \
gp"pn — Z[ i ] — t n n—zl t n i( n J (28)
i=1 apn Kt'pn—i—Bn dpn

6. The last extra-coordinate and the final curved multidimensional surface equation by the equivalence
principle

According to the geodesic equations in multidimensional space-time surface, for a local point on a symmetric
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sphere surface and 7 —2 co-moving coordinates of each # —1 dimensional space-time surface embedded in
a n dimensional space-time surface

Where Xisi234 = const.and Diss, n1 = const., we obtain that

dzt +i.dp” ﬂ

=0 29
dc’> p, dr dr @)
or
-1
d,
(ﬂj .d(ﬂj _ 4. (30)
dr dr D,
that by integration becomes
ﬁ = £ - 1 31)
dr  p? " dp>
n 2 pn
\/Kz 117 -3,,, "
=5
or
- 2 pn
, K 'Hpj T2
dpn J=5 C
r = (32)
dt Ep.p,

We assume that there is at least one geodesic which represent a straight line in the curved multidimensional
space-time surface (this is a kind of "equivalence principle" of a new type (E. Guendelman and H. Ruchvarger,
2006), in which
d’X
2" =0 (33)
dr

Thus, by (30), (31), (32) and according to the co-moving coordinates of # —2 dimensional space surfaces
embedded in the 7 - dimensional space-time surface, we obtain that

2 2
dx \ (dx. d dX d
K = L = LN Py = _"&% (34)
dr dp, dr dp, dt p,
2 2 2 2
[anj _Bn.pn—l+Kt.pn K.Kt.pn
- 2 ) a1 -
SRS AN § R O
=5 (35)
_Bn'K"_'_Kt'pj KKtpj

Kt'pj+Bn KI'CZ-K’—(IiK)'pj

and

B -K"+K, - p?
an:JK-K[- 5 " 2f ﬂp” =P, -dp, (36)
[K,-p,+B ] [K, -C"-K'-(1xK)-p;]

where K , K' and K" are constant positive values (Appendix G).

For K" =1, we obtain by the integration of (36), the last extra-coordinate as follows:
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Py

TdX,',:XnZ KK | p, - dp, _
0

CJWJK, C*-K'—(1£K)- p;?
1+K

(37)
A K- K
g JK, -C*-K'-(1£K)-p?
1+ K
and
K,-K'-C* 1+K
p, == - X (38)
1K K-K,
Thus, by (23) and (38), the final curved multidimensional surface's equation becomes:
4 =2 A -4, X! A-4,-X;
ZXiZ_Xt2:$ZX?$Xj—I. 1 2 no 2 n
- - A, —A,- X A
i=l Jj=5 3 2 n 4 (39)
and the curved 6-dimensional surface's equation, becomes
4 A -4, X A -4,-X;
ZXI.Z—Xf:?XSZ- 1 2 6 2 6 (40)

p A, -4, X} 4,
Where 4, =K -K)-K'-C* |, 4,=K,-1+K)* , A4,=A4+B,-K-K,-(1£K)
or A, =4 +B,-K-K, - (1£K) and 4,=K-K,-(1£K).
7. Velocity and acceleration of 3D particles by the equivalence principles

According to Einstein’s equivalence principle in general relativity, we obtain the differential equation of the
geodesic

@_C (42)
dt 7 .»
[1»
j=3
where ¢ = const. and C =c* = const.> 0.
By (17), (42) and according to the new version for the equivalence principle (33) ,
we obtain for particles with a geodesic constant C , the following equations:
d /iX 2 k- H pf
L:k.£:L>O (43)

dt dt C

and

4

d2 ZXiZ
o B 12 (44)
dt2 C i J C2 i J

where k , B are constant values and k > 0 (Appendix H) .

Thus, the 3D particles velocity represented by (43) is an expanding velocity and according to (44), there are
accelerating expanding 3D particles that explains the universe's accelerated expansion.
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8. Conclusions

Multidimensional space-times are represented as curved surfaces embedded in higher dimensional flat spaces.
The embedding of each surface is based on geometrical principles.

Each new coordinate depends on a new parameter and does not depend on the former parameters. Thus, each
coordinate depend on the parameters as separated variables.

Each new parameter is an inverse function of the new coordinate and orthogonally of the former coordinates
parameters, means that the curved multidimensional metric will not have off-diagonal components and this gives
a condition on embedding functions.

By using variable separated coordinates and orthogonal parameters as curved coordinates, equations are obtained,
solving the metric components and we obtain that the universe expands and that the expansion is accelerated. By
using co-moving n-2 coordinates in each n-1 dimensional curved space-time surface, in the n-dimensional
curved space-time surface assuming that there is at least one geodesic which represent a straight line in the
curved multidimensional space-time surface (this is a kind of "equivalence principle" of a new type), we obtain
the curved multidimensional space-time surface's equation, its metric and accelerated expanded three-sphere
surface's particles that explains the accelerated expansion of the universe, based on geometrical principles rather
than specific dynamical equations.

In our opinion, the best explanation for something that is unknown, is by using extra-dimensions. Therefore, we
explained the universe accelerated expansion by using extra-dimensions (E. Guendelman and H. Ruchvarger,
2004).

In (E. Guendelman and H. Ruchvarger, 2004), we explain the universe accelerated expansion by defining a
general orthogonal multidimensional variable separated coordinate system based on a three-sphere surface.

In (E. Guendelman and H. Ruchvarger, 2004), we find the extra-dimensional metric component by a new
equivalence principle that is an additional principle to Einstein's equivalence principle.

But by that new equivalence principle, we find only the first extra-dimensional metric component and to explain
the universe acceleration expansion by an orthogonal multidimensional variable separated coordinate system, we
need at least two extra-dimensions.

In this article, we find the orthogonal multidimensional variable separated coordinate system that represents the
embedded curved multidimensional space-time surface, by a special form of equations for the coordinates, based
on geometrical principles.

By this orthogonal multidimensional variable separated coordinate system, we obtain that the universe expands
and that the expansion is accelerated, without the need of considering the energy density of the vacuum as in
other studies (Y.B. Zeldovich,1967, Paul K. Townsend and Mattias N.R.Wohlfarth,2003, Mauricio Bellini, 2006)
and (P.S. Wesson, 1999, Tomas Liko and Paul S. Wesson, 2005).

By this orthogonal curved multidimensional space-time surface coordinates, we also obtain the three-sphere
surface coordinates, the metric components of all dimensions, including the extra-dimensions and the curved
multidimensional space-time surface equation, for all the extra-dimensions that we want to use.

According to (40) ,for each last space-like extra-dimension comparing with (E. Guendelman and H. Ruchvarger,
2006) where 7 =35 ,we obtain a very similar solution as follows:

K, (K, -C’-K'-p}) A(C=f) _A4(C =)
? gﬁ‘ =0 2 = 2 2 ’ A>1
C*—(B+D)-f*> C*-A-f

Sn K CT K —(1+K) !

Thus, for each last space-like extra-dimension comparing with (E. Guendelman and H. Ruchvarger, 2006) where
n =15, we obtain a very similar solution.
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Figure 1. A hyper-sphere or a three sphere surface represented by the coordinates:

x, =sin(y)-sin(f)-cos(p) , x, =sin(y)-sin(f)-sin(p)

x; =sin(y)-cos(d) and x, =cos(y)

X

t

Figure 2. Hyperbolic four-Dimensional space-time universe embedding infinite three-sphere surfaces represented

by equation (18)
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Appendix A-Proof that surface's metric, represented by a curved orthogonal coordinates system, has no
off-diagonal component

For a curved multidimensional surface represented by curved coordinates (u,v,) and embedded in a

higher-dimensional hyper-flat space with a orthogonal coordinate system X, each point is represented by the

vector
F= Zn:xi (u,v,...)x, (45)
i=1
in which the vector
dr = Zn:dxi (u,v,..)x, (46)
i=1

is tangential to the embedded surface.

Vectors, tangential to the embedded surface in the parameter direction, means d7 (1) in the parameter
direction where except of # all other parameters are constant and d7 (V) in the parameter Vv direction
where except of V all other parameters are constant, are represented by

di(u) =Y dx,(u)- %, = Z%du ‘%, 47)
i=1 i=1 ou
and
~ - . = Ox, .
dr(v) = dei v)-x, = Za—’dv - X, (48)
i=1 i=1 OV

The angle between the vectors is solved by the equation

Zn:axi du-x, .iﬁxi dv-x,

cos(u,v) = éﬁg?f;ﬁivi = —- ov ==
7 (u)|-|dr (v n n
Z% dul - Zﬁxi dv
o Ou i OV
(49)
’2 ox; Ox, o ox”
— i=l au 8V — ﬂaﬁ au av — 8w
o Y (o) ox® ox” ox® ox” \/guu "
Z i . z i naﬁ . 'naﬁ .
~ du ~ by ou Ou ov oOv
Thus,
dr(u) Ldr(v) < cos(u,v)= cos(%j < g,=0 (50)

which means that the metric of a surface represented by curved orthogonal coordinates, will not have
off-diagonal components.

Appendix B- 3D space coordinates components equations, calculated by variable separate coordinates and
metric without off-diagonal components

By (3) and according to the orthogonal coordinate system, we obtain for each m > 5, the following equations

120 ISSN 1916-9639  E-ISSN 1916-9647



www.ccsenet.org/apr Applied Physics Research Vol. 3, No. 2; November 2011

oX, X,
Sy =8n =8, =0=g,= 2Za¢ 0"
dp,, d,
=2pf,-pfl-pw-pw-ﬁ-ﬂ-l_[plm (51)

in which

p12z 'plz;( *Pig APy lezm

-d,
s _ P dpzq’ = const. =1 (52)
2 2 2 by, ap
Py Pary Pao ~dp,, 'szm 0 10
m=5
that by integration becomes
= P1p = DPip | (53)
and also
S o
plt'pl;('lem p dp
m=d =420 y 20 = const. =1 (54)
2 2 2 Do -ap
p2t.p21.1_[p2m 10 10
m=5
in which
Prog =Py > Py =Py > Py =Pu (55)
and

17 =117 (56)
m=5 m=5

In the same way, by (3) and according to the orthogonal coordinate system, we obtain for each m > 5, the
following equations

oX, 8X
=0= ggl—2z

oy 00
dp,, dp
zzpft'pla’pll’d_;'_w’( 1o pztp) lem (57)
dp,, d n
+2p32z "P3, P T;%Hpim
m=5
in which
plzt.pll.dpll'l_[plm d
m= = Pao’ ;3‘9 = const = (58)
Py sy dpy, [ 1o P00
m=5
that by integration becomes
- p329 = p120 -1 (39)

Published by Canadian Center of Science and Education 121



www.ccsenet.org/apr Applied Physics Research Vol. 3, No. 2; November 2011

and also
=3 =213z y 2 = const. =1 (60)
p22t ’ H p22m Pre @by
m=5
in which
P3, =Py > Py = Pu (61)
and

12 =11r0 (62)
m=5 m=5

In the same way, by (3) and according to the orthogonal coordinate system, we obtain for each m > 5, the
following equations

_ 4%,6)(1' dplz dp,,

2 2 T 2
g,,=0=g,= 2i:1 o7 E: 2py, Py, 'W'?'(pw +p35)"1n1p1m + o
dp,, dp
+2 A 2
Py Py d dt ’1;! 4m
in which
Py - dp, 'lem P, -dp
m=d =4 y 2 = const =1 (64)
Da, - dpy, 'Hp4m Pry " Pay
m=5
that by integration becomes
— P, =i, -1 (65)
and also
T 2
lem d
m= = Pat \Pus _ copgt, =1 (66)
Hp22m Py, - dpy,
m=5
in which
Pa = Py (67)
and

[1r5 =11r (58)
m=5

m=5

Appendix C- 4D space-time coordinates equations, calculated by variable separate coordinates and metric
without off-diagonal components

According to the orthogonal coordinate system and by (3),(6), in the same way as we obtain the former
coordinates, we obtain for each m > 5 the following equation
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o0X, @X 6X oX dp 0
= O 2 L. 4 = 2A . 2 . . 1t ——_ 2 +
gy, z o afm o Py Py i of, l:!:plm
dp 0 dp, 0O -
+ 2 2 . . 4 Y 2 _ 2A . . oY 2 — 69
PPy oL 172, P a gpm (69)

:2p -dpt i - p2 — .p . dpﬁ .iﬁ 2

"odt of,, ms " “odt of,, mss

that becomes

8f,,, [[pm P -dp,,-p..- || P

-d,
= 2 = Pu dp L =const.=C, (70)
Hp,m Pudpy-pn-T1es 0"
afm m=5 m=5
and for each k,m > 5, becomes
Po AP, PuPi ] Pn 2
m=5 Ct “Pu
; = ——=const.=Cy (71)
Po-dp,ph-pi [P T
m=5
By integration of (72) and by (73), we obtain the following equations
pzzt :Ct'ptz_Bz > C szm Hpm (72)

m=5
where B, = const. .

Appendix D-First extra-coordinate calculated by variable separate coordinates and metric without
off-diagonal components

According to the orthogonal coordinate system and by (3), (6), (12), (16), in the same way as we obtain the
former coordinates, we obtain for each j > 6  the following equation

oX, 0X, <&oX, oX, oX, oX

gs.:0:2_ . t+ . m o4 5. 51—
&l ofs o, Z of, o,  ofs o,

o n (73)
i 2K, - p; P -gpm | dp5 | dpj . 2pss “Ps; -gpm _dpss . dij
p; dfs df, s dfs  df,
that becomes
& P .dpj .pszj .llpi _ Pss " dpss
— =+ =C, = const. (74)
ij’dpsj"pjz"Hpszm ps - dp:

m=6

and for each i, j > 6, becomes
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Kt P 'dpj 'p52j 'pszi Hpri

2
- n= = (C, % =C,, = const. (75)
ps;-dps, - p;-p! [ ]ps, /
m=6
By integration of (74) and by (75), we obtain
F Pis(f5)=Cs - ps(fs) - B; (76)

and

n ) n )
K [Tpa(£)=Cs Tpsn(£,) 77)
m=6 m=6
By substituting (76) and (77) in (4), we obtain the first extra-coordinate

X, = (1) T s, (1) ~FK 192 () =K1 T T2, () )

B
where B = const. and K, = =

C

W

Appendix E-Second extra-coordinate calculated by variable separate coordinates and metric without
off-diagonal components

According to the orthogonal coordinate system and by (3),(6),(12),(16),(19), in the same way as we obtain the
former coordinates, we obtain for each  j > 7, the following equation

oX, X, &aX, oX,  oX, dX, oX, X,
gf6f' — — 2 _ . + . i . i .
el s o, wmos o, I, o, o I,

2K, [ r2 2K, p:-K,-K)-[]pr2
_ Zl——! dps dpj c [ ’ g dpe dpj

Ps P df, dfj Ps P df df_;
n n n (80)
2[ 1 ren 2K, K] ] P 2] 1 ren
n g ’ .dpsé_dpfxi _ o g .dpé_dpji :rln:|6: ’ _dp66.dp61 _
Pes " Ps; df, dfj Ps D; df dfj Pess " Ps; df, dfj
2K -K.-p. - T 2 2 . T,
K P gpm b, b, Pes gpém dpy, s,
p; dfs dfj Ps; df s dfj
that becomes
Kz'KS'pézj'pj'dpj'Hpi

-d,
m=1 _xPe "o _ C, = const. (81)

D " Apy

p:-ps;-dpe; [ [ Pen

m=7

and for each i, j =7, becomes
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K, K- pg,-dp,-pe-[]ra ,
m=7 zcé.i

p;-pe; - pl | Pen pi

m=7

By integration of (81) and by (82), we obtain that
2
F Py (fo) =Cs - ps (f5)— By

and
K, -Ks-[]pa(f)=Co-11Pen(f)
m=7 m=17

By substituting (83) and (84) in (4), we obtain the second extra-coordinate

>-=C,, = const.

X, = U TP () =VF K K L PG =K [T o, ()

B
here B, = const.and K, =0

6

(82)

(83)

(84)

(85)

Appendix F-The calculation of two last extra-coordinates and the space-time expected surface equations

Refers to (23), in order to obtain pffl . pj as a function of the coordinates X, | and X, , we can decide

that n =7 and according to the orthogonal coordinate system in which

0X, 0X, <&0X, 8 I 8X 8X
gPeP7 = =2 - ) + Z -
ops p, = e O, S 8p6 ap;
dp dp
=2K, p5 - ps P —2K, (ps =1 ps P £2pg = Peg = - =
dps dp,
dp dp
=2K, - ps-p, £2pg; - 66'1766' o
dp, dp,

we obtain by the separated variable coordinates in (86), the following equations

K -p.-d -d,
" P7ap; :;p% Pss = C, = const.
67'dp67 p6.dp6

By the integrations of (87), we obtain the following equations

:Psze =C 'pé_Bs

and
K, 'P72 =C; 'p627 - B;
By substituting (88) and (89) in (4), we obtain the coordinate
X = Des " Per :\/i(pé -1)- (K, '1772 +B;)

and the curved 7D space-time surface's equation
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iX - X = Z+X2+K Hpm—+X2+K ‘Pep; =
i=1

m=6
=+X5+X6 _B7'p6+Kx'p7+B7:+X5+X6_B7’(P6_1)+Kt‘p72= on
B, -X: K -p?
SFX2F X4 7—6+Kt~p72=$X52¢X62~’—2p7+Kt-p72
K, p:+B, K, -p;+B,
where B, = const. and
7
X, =Hp7j(pj) =p5(P;) 92)
=7

Appendix G- Last extra-coordinate as function of last curved coordinate, calculated by assuming
co-moving coordinates and by the equivalence principles

By substituting (28) in (32), we obtain

K TTe- K 17 -
dpn Jj=3 _ j=5
> = A 5 (93)
dt gpnpn Kt .Bn .pn—l +Kt .pn + dX”l
K, -p,+B,  \dp,
According to the new version for the equivalence principle (33) and by (34),(93),
we obtain
(P (X, dp,) _(ax, dp, CY _
L dr dp, dt dp, dt p’
p
K p n
ax 1,_! / C?
- . 2 2 2 2T ©9)
d.) K, -B,-pr+K:-p; (dX,) P
K, -p,+B,  \dp,
K, -C*.
_(an]Z Hpj pn
dp” Kt Bn p3—1+Kt2 p;f 2+p2‘ an ’
K, p, +3B, " Ldp,
2 2 2 2
(anj _Bn'pn—l—‘th.pn K'Kt.pn
- 2 ) ] -
P Kevnr B g o [[p2-p2 %K !
J=5 95)
_Bn'K”_{_Kt'pj KKtp:
Kt.pj-’_Bn KzCZK’_(liK)pj
and
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[Kt pi +Bn]'[Kt 'Cz K'_(liK)pn]
where K, K' and K" are constants .
By (28) and (96) , for K" =1 we also obtain that

e B -K"+K, -p’
an: KKt\/ s : p” 2 .pn.dpn

2
n(ox, K-K, -p? K, -C*.K'-p?
gPP :Z XI :Kti 2 t pn 2 =Kf t2 p” 2
op, K, -C*K'-(1+K) p K, -C*K'-(1+K) p

i=1 n

(96)

97)

Appendix H- Velocity and acceleration of 3D particles in extra-dimensions, calculated by the equivalence

principles

According to the new version for the equivalence principle (33) and by (8), (9),(16), (31), we obtain for particles

with a geodesic constant C the following equations

n 4
d*| K, -x; -Hpj -cosh() | x,-d? ZX"Z
0o X _ = _ =

- dr? - dr? dr? -
4

> x?

A NG | ar
"odt dt dr | dr

4 4
dZ/ x? d > x? 49
. le (dt]erx_ Z:ll \de) dr

=X

i 2 dr di di dr

d [H P/‘]
L~cosh(r)+
dr

d

sinh(¢)

n

Hp,-

J=5

a dr

= +— K, - x; -cosh(?)

2
j=5

where x, , i=1234 are constants.
Thus,
) N o S dt
d> > X, d > X! d (
-1 dt -1 dr
—2 p— + . = 0
dt dr dt dt
and
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4 4
d > x? d > X}
gl = -ﬂ+#-d(ﬂj (100)

=0
dt dr dt dr

that by integration becomes

d | 24: X;
d i=1

dt 4
d > X} d (‘”)

I T = :_I dr) _ (101)
£ dt dt
d ;X,. s
dt
= —1nﬂ +In(k) = 1n(k : drj
dr dt
Thus, the 3D particles velocity is an expanding velocity, according to
4 n
d > X} p k-T1r:
L _p At s (102)
dt dt C
and the 3D particles acceleration becomes
4 n
d? /ZXiZ .y d(Hij
i=1 J=5
_v= -7, S (103)
dt’ C E”f dt

where k = constant and k > 0.

By (98) we also obtain that,

n dT n
a’| [1p, d p-j
(H "J c’ . (H ). (104)

(105)
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and

n n ) n )
d(l—!pjj ‘spj .\/C +2B'1_!pj L 2B -

J= — 4 /= =+ R | iy 2 106
- c [1p; 1+ [17] (106)

J=5

By substituting (106) in (103), the 3D particles acceleration becomes

4

d? / X?
,Z:l: ' _+2k L p2 2B
dl2 - s J

n n 2B n
1+==[]p; =t2K-[]p;- 1+=]]r; (107)
" s Jj=s C* s

where B = const..
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