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Abstract 

A comprehensive resume on the soliton solutions obtained by studying the Raman Effect on nonlinear 
propagation of optical pulses is presented. Additionally, we show the powerful method for studying the complex 
nonlinear differential equation that describes the Raman waves, by means of the mechanical analogy method.  
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1. Introduction 

As is well known, when a monochromatic radiation with determined frequency 
1

w  insides on optical active 

media most of it is transmitted without any change but additionally some scattering of the radiation could occur. 
In the scattered radiation there will be observed not only the frequency 

1
w  associated to the incident radiation 

but also pairs of new frequencies like
1 r

w w . The scattering without change of frequencies is called Rayleigh 

scattering and that scattering that occurs with changed frequencies is named Raman scattering or Raman effect. 
In synthesis it could be said that Raman scattering is the inelastic scattering of light. Thus the incident photon is 
exchanged for a photon of slightly different energy or frequency. This energy exchange corresponds to a 
quantum transition within the medium, which is usually rotational or vibrational in nature. In the first stage of 
the process, a molecule accepts an incoming photon, and is excited to one of the virtual levels. In the second 
stage, the molecule decays from the virtual level to the second level, with the emission of the outgoing photon.  

This process can be subdivided into three separate phenomena a) Stokes scattering when the final frequency is 
less than the incident photon. b) Anti-stokes scattering when the final photon acquires more energy or frequency 
and the photon is blue shifted. In contrary the ground states of optical media suffer opposite effects. Stimulated 
Raman scattering (SRS) of high energy Laser pulse when insides in two-level medium has been intensively 
studied these by many authors , for example see review (Raymer & Walmsley, 1991) . 

Great efforts have been also developed to study the nonlinear processes linked to the interactions of powerful 
ultra short pulses with active optical media. One of the important processes is the so named stimulated Raman 
self scattering (SRSS) of femtosecond optical solitons. This effect takes different names in scientific literature, 
for example it is often called intropulse stimulated Raman scattering (ISRS) or soliton Raman Self Frequency 
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shift (Serkin, et al., 2003).  

Various experiments were performed on the coherent pulse propagation in nonlinear media cooperative 
scattering. As is well known, there is a case when radiation pulse can travel through the resonance medium 
without absorption. . Under the influence of laser pulse the ensemble of two level atoms transforms to a coherent 
excited state under the action of first half of the pulse (from pulse) and coherently relax t the ground state under 
the action of the second half of the field (back of pulse) . Thus the radiation will not be absorbed although the 
pulse passing the medium. The interactions of pulse with medium are represented only by the exchange of 
energy to and back the pulse. This effect is named self transparency effect (Allen & Everly, 1978).  

It is well known that the SRSS can play a destructive as constructive influence in different applications. The 
destructive role of this effect can be found in solitons communications lines and femtosecond soliton lasers due 
to the constriction of the pulse duration by taking the radiation spectrum out of gain line profile. To prevent this 
negative influence there are several techniques. In relation of the positive effect of SRSS we can mention the 
frequency tuning of ultrashort pulses that permits the control of parameters of femtosecond laser systems.  

One of the crucial moments in nonlinear optics was the inclusion of the nonlinear dependence of the refractive 
index optical material and particularly of a single-mode glass optical fiber in dependence on the light intensity

0 2( )n I n n I  . Here 0n  is the refractive index in the linear approximation and 2n  represents the nonlinear 
refractive index). This new approach was proposed to achieve effective control over the frequency - time 
envelope of laser light.  

The stimulated Raman scattering (SRS) laser pulses of high energy two-level half medium has been intensively 
studied in recent years (see e.g. Raymer & Walmsley, 1991). Several experimental results (Drauhl et al., 1983) 
show peaks of the pumping radiation (Raman peaks) emerging spontaneously in pumping depletion zone, see 
also (Gakhovich et al., 1993). This effect of nonlinear Raman amplification was used then as a tool to observe 
the macroscopic fluctuations of the phase Stokes initial vacuum (Englund & Bowden, 1986).  

On the other hand, intense works was dedicated to the non-stationary interaction of ultrashort pulses of light with 
matter. This particularly was done in the process of interaction of two photons in the inelastic scattering of 
excitation in crystals (Karasik & Chunaev, 2007). This mentioned paper studied the coherence properties of non 
stationary stimulated Raman radiation in a crystal in the presence of amplification of spontaneous noise and 
intense, broadband radiation. Broadband Stokes super luminescence appearing in the fluoride crystal undergoes 
non stationary Raman amplification in the oxide crystal. The theory of the finding results is still under 
construction but the main experimental aim was successfully obtained.  

Some simplifications of the SRS equations have a pair of Lax and therefore theoretical and experimental work 
were dedicated to finding the proposed Raman solitons supporting the integrability of the equations. In particular, 
it was thought that the peak pumping radiation observed in (Drauhl et al., 1983) is a soliton. However, it has 
been shown that the Raman peak is not an observed soliton, but simply is a manifestation of the continuous 
spectrum (Claude et al. 1995).  

In this resume we will try to review the appearance of multipeaks my means of an appropriated review of 
method of the strong analog to the well studied case of the dynamics of single particle in mechanics. Specifically, 
it was demonstrated that after separating, the SRS intrapulse cause fundamental solitons continually reduce 
frequencies through the Raman effect. Therefore, the division of the pulse, along with RSFS eventually leads to 
the total disintegration of a high order soliton, which will emit a flow of fundamental solitons, one after another.  

According to the equations, the solitons expelled earlier have higher amplitudes, shorter duration, and hence, 
demonstrating strong SFSR. This leads to a sequence fundamental solitons with different carrier frequencies, 
which constantly increase their temporary separation during spread due to the effect of RSFSR.  

We devote the next section to the discussion of the main peculiarities of the stimulated cooperative scattering and 
solitons. The third section we display with some details the method of mechanical analogy applied to nonlinear 
optics. Finally some discussion issues are displayed in the final section.  

2. Raman effect and its regimes 

Let us say some words about the mathematical model and classification of regimen of SRSS. Major details can 
be found in well devoted books Agrawal (Agrawal, 1995) and Hasegawa (Hasegawa, 1989), and papers (Serkin, 
et.al. 2003, Karasik & Chunaev, 2007). There are two possible SRSS regimes. The first one is the dispersion 
non-soliton regime and the second one is called the soliton regime of Raman scattering in optical fibers. This last 
regime need to be satisfied the condition of negative group velocity dispersion.  
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The equation for description of propagation of an intense wave packet through a nonlinear Raman active 
dispersion medium in the quasi classical approximation can be written as  

2

2

2

1
(1 )

2
i Q

z

  
    


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With Q  being the amplitude of molecular vibrations (Raman contribution) and is described by the second part 

in the nonlinear wave equations (2). This equation describe the complex envelope of the total electric field ψand 
is given in terms of dimensionless soliton variables in a conventional way. The parameters are given as 

1

0 2 2( 2 )( ) 1 ( )
t r r

r

nl

GT
T rT      

       . Here 
t

  is the resonance Raman frequency and the time 
2 r

T  is related to 

the line width of spontaneous Raman scattering, 
1r

T  is the relaxation time of vibrational excitation. The   

parameter contains the main information on the nonlinear regime of radiation in SRS and on the medium 
parameters which can be directly measured. The case 0   is the well known system NSE completely 

integrable. The parameter 
nl

  represents the strength of the nonlinear phase incursion of the wave induced by 

the Kerr Effect and G  is the total increment of SRSS amplification of the pulse across the length of the 
medium.  

The equations (1, 2) were solved numerically and obtained the regimes of validation of the SRSS effect (Serkin 
et al., 2003). The first dispersion less regime corresponds typical for organic crystals while the Kerr contribution 
is vanished. The result of computer experiments shows that: as the center of gravity of the pulse shifts to the 
Stokes domain, in the pulse there occur no noticeable frequency changes at all (in the neighborhood of the peak 
of the envelope), as was the case in the non soliton SRSS regime, i.e. the spectrum of a soliton pulse 
continuously drifts as an entity to the red domain, while the non soliton self-scattering regime is accompanied 
with breakdown of the spectrum into separate Stokes components. When the study of the same system is made 
with a more accuracy, i.e. when one considers the generation dynamics of ultra short pulses during SRSS in 
optical fibers taking into account the high order approximations of the dispersion theory, the equation (1) 
transforms to the next one  

2 2 3 4

2

3 42 3 4

1

2
i

z
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   

     
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               (3) 

with 2  . The central frequency of the pulse during its propagation in the frequency representation falls to 
different dispersion regions of a medium, determined by the interrelation between 

i
 . The detailed description 

of passing from Eqs. (1,2) to the eq. (3) can be found in the work of (Dianov et al., 1992).  

The perturbation theory for solitons describes correctly the Stokes frequency shift and the shift of the center of 
gravity of a soliton under the action of cubic dispersion (2). Meanwhile this approach cannot describe the 
process of the soliton self-compression appearing during the shift of its spectrum. Self-compression appears 
during the shift of its spectrum (Mitschke & Mollenauer 1986, Gordon 1986). Indeed, two additive terms (third 
and fourth in Eq. (2), acting simultaneously, should cause the self-compression of a colour soliton (i.e., moving 
in the frequency representation) when its spectrum will fall to regions with a gradually decreasing total 
dispersion. Computer experiments for solving the equations were performed and it has been found that the 
soliton saturation appears. When the soliton spectrum approaches the zero-dispersion point, the Stokes wing 
appears due to four-photon mixing, which prevents the further shift of the spectrum to the Stokes region and, 
hence, prevents the shortening of the soliton duration. This saturation effect occurs because the continuous 
Stokes shift of the soliton frequency becomes impossible, and the energy is transferred to the region of the 
positive group-velocity dispersion, which is forbidden for the soliton (Serkin, V.N. et. 2003b).  

3. Mechanical analogy method 

The mechanical analogy method is actually an effective method to study the nonlinear behavior of static 
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solutions of nonlinear field differential equation. Now, in general terms we describe the method. Let us have a 
scalar field ( )x t   whose Lagrangian has the form  

 2 21 1
/ ( ) ( )

2 2
L dx t U        

  
                       (4) 

With the potential ( )U   bounded from below. Instead a finite discrete number of degrees of freedom now we 
have a continuous range, so the number of degrees of freedom is infinite, i.e. the field value   at each point x . 
So, the Lagrangian density can be written as  

[ ] [ ]L T V                                   (5) 

with the kinetic energy  

2
1

[ ]
2

T dx
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and the potential energy  

21
[ ] ( ) ( )

2
V dx U    
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                            (7) 

while the Euler - Lagrange equation takes the form  

2

2
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For the 1 1  dimensional case, the equation of motion (8) for the static field configuration one obtains  

 ,, ( )U 





 


                              (9) 

This relationship is a differential equation of second order. Now, if we make the variable x  plays the same role 
of "time"  , and the field   plays the "coordinate" role of a particle   of unit mass, consequently, the 
equation (9) represents the Newton’s second law of motion for the movement of certain "Particle analog"   in 
a given potential ( )U  . In other words, what we do is the following mapping:      x     . Unlike 
the Newton’s equation of classical mechanics, the Eq. (9) has a positive sign in its right hand side. So, the 
evolution of field configuration problem now is reduced to the study of a single analog "particle" that is much 
easier for treatment. Similar reduction can be done in the studies of shock or multipeaks pulses in optics related 
to Raman soliton states as explained below.  

The experimental observation of the Raman multipeak states (Podlipensky et al. 2007, Podlipensky et al. 2008) 
and by the early numerical findings (Allen & Everly 1978), report some features of Raman multipeak states 
predicted before. The qualitative explanation will be done on the base of the powerful concept of gravity-like 
potential introduced in Refs. (Allen & Everly 1978, Akhmediev et.al. 1996). This approach will provide the 
possibility of forming Raman soliton states with more than two peaks in PCFs, thus leading to a complete 
violation of the soliton splitting law of Eqs. (1-2), and to new ways to manipulate SCG in micro structured fibers 
by controlling exotic states of light in the fiber.  

In the paper of (Truong et al. 2010) was studied the short version of the equation (3) for 0
i
  .  

2 21
( ) 0

2
z tt R t

i                                (10) 
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In Eq. (10),   is the envelope of the electric field, scaled with the soliton power
0 2 0

( )P t    , where 
2

  is 

the second order dispersion coefficient, i.e. the nonlinear coefficient of the fiber, and 
0

t  is the input pulse 

duration. The dimensionless propagation length z  is scaled with the second order dispersion length 
2

2 0 2D
L t     . The temporal variable t  is scaled with

0
t . The last term in Eq. (10) represents the Raman Effect, 

and
0R R

T t   , where 
R

T  about 100-200 fs in silica is the Raman response time. The Eq. (10) is written in the 

anomalous dispersion regime. This because in the absence of Raman term
R

 , bright solitons are expected to 

appear.  

Next, it is necessary to introduce the Gagnon-Belanger Phase transformation (Gagnon & Belanger 1990, Allen & 
Everly 1978). For some details on this transformation we recall here the main results obtained in the cited papers. 
Let us start with the Eq. (10) with delay time

R
 . By using the symmetric transformation method, indeed the one 

parameter ( )  symmetric group of Eq. (10) one can concludes that this equation keeps its form under the 
transformation  

  2

2

g
z z t gz t  

 
                             11) 

2 2
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With a b  and   are real free parameters. The infinitesimal generator of this point transformation is  
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The brackets contain the symmetry generator of the phase translation 
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with constants 
0 0 0

z v  . As it is demonstrated, this is also a symmetry transformation of Eq. (10). By using this 

symmetry it is possible to derive the accelerating like frame transformation that could reduces the Eq.(10) to a 
friendly ordinary differential equation. This method is known as the symmetry-reduction method of partial 
differential equation and is based on the characteristics of invariant quantities. The invariants for Eq.(10) are 
possible to find by using the following variable transformations 

2

2

3

2
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and also the conjugate f  . Thus, supposing that there are intense accelerating soliton, in this frame we use the 
Gagnon-Belanger transformation (15) with 2 2t gz     and 

232 15
R

g a  . The resulting nonlinear 
Schrödinger equation is  

2 21
) 0

2
(

z R
f g f f f f f fi a                             (16) 

For the first simple case when ignoring all nonlinear terms, the equation (16) would correspond to the stationary 
Schrödinger equation for a unitary mass particle of energy q  subject to a gravitational potential ( )U g  . 
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On the other hand, the division of the pulse is a well known process that occurs in the initial moments of the 
pulse propagation in nonlinear optical fibers. According to the most authoritative theory of the division of the 
pulse in the femtosecond regime, higher-order solitons are affected by stimulated Raman scattering (SRS) and 
higher-order terms, the dispersion became unstable and eventually break down into several fundamental solitons 
(Tai et al., 1988, Kodama & Hasegawa, 1987). This was done meanly because of the results obtained in 
experiments on Raman multi peaks states (Mitschke & Mollenauer 1986, Gordon 1986). Their approach was 
based on the so named gravity like potential factor. This is the possibility of forming multipeaks Raman soliton. 
Indeed by computer experiments they found multiple peaks for the equation. As a rule the central peak is more 
robust than satellites and is quite stable. In contrast to this, the other peaks are not stable. If the solution supports 
more peaks they are less robust and the smaller the propagation length required for them to collapse.  

We will follow the paper (Conti et al. 2010) by presenting some main results, more detailed explanation could be 

found in the cited work. First, the equation (16) is transformed via the standard hydrodynamical ansatz 

 ( )f exp i   after which it is easy to find two equations 

( ) 0
z

v                                    (17) 
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Next, it is defined the new variable that is the instantaneous frequency inside the pulse and named as velocity 

field v   . Deriving again the Eq. (18) with respect to   it is obtained  
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This potential was also introduced by (Gorbach &. Skryabin, 2007). The equation (19) can be easily transformed 
to that one that is common in dynamical systems by standard methods  

d
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The previous system can be reduced to the form of the motion of a particle with trajectory ( )z  in the potential 
U and can be rewritten as a single Newton-like equation 
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Using this mechanical analogy it was possible to find at least numerically several important conclusions. The 
first one concerned with shocks. These structures in the phase space ( )v   can display a vertical slope that is 

determined by the relation 0/d dv  . The geometrical interpretation of shocks could be outlined as following. 

A shock occurs when we face with multivalued function ( )v v   in the plane ( )v   for trajectories reaching 

the same position   at the same value z  with different velocities. It has been observed that when the Raman 

parameter 
R

  increases the shocks profusely appear. This phenomenon contradicts the perfectly regular 

oscillations of the soliton breathing when the Raman effect is absent (Agrawal 1995).  

4. Some results and discussion 

As an example of studying the nonlinear "mechanical" equation numerically, it is possible to provide the results 
of emergence 3 peak Raman solitons (Fig. 1) for the nonlinear equation (10) which was transformed into a 
mechanical system analog dynamic equation (Truong et.al. 2010). These solutions were found by solving the 
boundary value problem (BVP) by means of a shooting method with appropriate boundary conditions, for 

0 1
R

   . It is possible to observe that these solutions have Airy tails on the leading edge of pulses. This because 

of the tunneling of the solutions in the case of linearized Schrodinger equation. But quite surprisingly these tails 
are quite small when one uses the physically relevant parameters for example when the slope b  of the gravity 
like potential gets larger the Airy tails will be more pronounced. So we can see that using a simple but powerful 
mechanical analogy method one is able to obtain at least qualitative valid predictions on dynamics of coherent 
structures in nonlinear processes.  
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Figure 1. Profile of 3 peak Raman solitons obtained by using the gravital like potential ( )U   


