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Abstract
The particle limiting velocity solutions from the bicubic limiting velocity equation (Šoln, J., 2021.1.2, 2022) have been
very useful in carrying out parallel studies of ordinary and novel particles. This study is facilitated with the help of evo-
lutionary congruent parameters, ordinaryz1 ⪯ 1, novel z2 = 1/z1 ⪰ 1 and congruent phase-angle α ⪯ π/2. At smooth
matching point z1 = z2 = 1 and α = π/2, there is no physical difference between an ordinary and novel particle as
they have the same limiting velocities. At α = π/3 ≺ π/2, they have already different limiting velocities with different
other physical characteristics. Ordinary photon γ and novel doubly photon γN are indistinguishable at α = π/2, while
at α = π/3 ≺ π/2, they are already physically different. That applies to any other particle, ordinary proton p versus
novel proton pN , etc. Through trial and error, one finds that c3 the ordinary particle limiting velocity solution has ratio
value of 1 at the comprehensive congruent phase-angle αO = π/5.1 = 0.616 which an ordinary particle of velocity v can
satisfy at v ≃ c3, in fact, defining the value of c3. The quantum jump from the ordinary particle comprehensive congruent
phase-angle αO to the novel particle comprehensive congruent phase-angle αN = 2αO = 2π/5.1 = 1.232 yields novel
particle limiting velocity solution doubly Rc1,3 with ratio value of 1 which a novel particle velocity vN can satisfy with
doublyRc1,3 ≃ vN , simply defining the value of doubly Rc1,3. This comprehensive quantum jump with fixed comprehensive
congruent phase-angles αO and αN apply to any free and interacting ordinary particle (γ, e, ν,etc.) when connecting to the
corresponding free and interacting novel particle (γN , eN , νN , etc.). Concerning the Bohr’s atom, we wish to address the
question of negative energy electron e emitting positive energy radiation. To this end we simply substitute e with the
virtual novel electron eN with the same radius r and velocity v. This virtual eN , due to the Coulomb potential energy V
from the sitting proton p plus the centrifugal force, with the quantized orbital virtual novel electron angular momentum
yields the positive virtual novel electron energy in the bicubic formalism. The frequencies of emitted radiation from
virtual novel electron is practically the same as from the negative energy electron e.

Keywords: limiting velocity, energy, congruent parameter, novel, dark matter particle, quantum jump

1. Introduction

The astrophysical observations indicate that the Universe contains substantial fraction of dark mater or novel particles.
A large portion of this d.m. particles is in sub-GeV energy region (Adari, P. et al., 2023). Other gravitational studies
with empirical like methods further point to the existence of dark matter (Clowe, D. et al., 2006). The creation of
d.m. novel particles is believed to be caused also by creation of black holes (Curd, B. et al., 2024). In (Abe, S. et
al., 2023), one pursues a WIMP charged d.m. particle that would form a bound state with a nucleus with insignificant
results. Hence, it would appear that dark matter has only gravitational interactions even between themselves (the WIMP
d.m.weakly interacting massive particle contains neutral χ0 and excited charged χ−states). Other attempts to incorporate
novel (dm) particles into the Standard Model usually also yield nebulous results.For example, In the search for Light
Dark Photon (Yeong, G-K., et al., 2023) extend the Standard Model with the additional U(1) gauge field which with
another U(1) gauge field, after proper redefinitions yield the massless electromagnetic photon gauge field Aµ and massive
novel photon gauge field ANµ which as yet, it has not been obsereved. If this novel photon ANµ was available it would
manifest itself through the Feynman diagrams in the calculations of reaction γγ → e+e (Xu, I. et al., 2022), whose
predictions have not been yet observed. As long as one stays just with the novel (dm) particles, the gravitational studies
and empirical like methods can give the proof of the existence of dark matter (Clowe, D. et al. (2006). It appears that
novel or d.m. paticles simply cannot get adjusted partially or completely to the S.M. methodology when describing their
possible interactions. As we know the S.M. basically can describe the interactions with what we call the ordinary particles.
The bicubic formalism developed over some time, (Šoln, J., 2014, 16, 17), (Šoln, J., 2018.1.2), (Šoln, J., 2019, 20), (Šoln,
J., 2021.1.2), (Šoln, J., 2022.1.2) and (Šoln, J., 2023), carries out parallel studies of ordinary and novel particles through
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solutions of the bicubic equation for particle limiting velocities. Through these solutions we are looking for the simplest
kinematical relationships between ordinary and novel (dm) particles, reegardless whether they are free or interacting.
In this endeavor the most useful solutions are the ones from (Šoln, J., 2021.1.2; 2022.1.2; 2023). The description of
relationships between ordinary and novel (dm) particles,is carried out with the help of evolutionary congruent parameters,
congruent phase-angle α ⪯ π/2 plus respectively ordinary and novel congruent parameters z1 ⪯ 1 and z2 = 1/z1 ⪰ 1.
At smooth matching point z1 = z2 = 1 and α = π/2, there is no physical difference between an ordinary and novel
particle as they have the same limiting velocities.With the specific congruent phase-angle, say α(e) in (Šoln,J., 2022.1.2)
is described the individual quantum jump from an ordinary electron e to a novel matched electron eN , e −→ eN . Similarly
for other ordinary particles, such as ν, γ, p,etc. to matched novel particle νN , γN , pN ,etc.. Here, we generalize this to
comprehensive quantum jump, valid simultaneously for all ordinary and novel matched particles: Ordinary particles with
comprehensive congruent phase-angle αO = π/5.1 quantum jump to novel particles with comprehensive congruent phase-
angle αN = 2αO = 2π/5.1 = 1.232. Already at this level, being able evaluating a novel particle velocity only from the
point of view of an ordinary particle, we see that in order to see effects of novel particles we have to take into account
similarities, differences with substitutions causing interrelationships between ordinary and novel particles. For example in
Bohr atom (see Eisberg, R. M., 1966, p.115)) we substituted the ordinary electron e with the novel virtual electron eN in
order to get positive electron energy at the end. At least theoretically, this suggest that novel (dm) particle could interact
not just among themselves but also with ordinary particles. In other words, the interaction involvement of novel particles
is facilitated by the presence of ordinary particles.

Because here we introduced few novel ideas, it is appropriate to show in some details how through solutions of the
bicubic equation for particle limiting velocities the simple kinematical relationships between ordinary and novel (dm)
particles, which may be free or interacting. Hence, we go directly to upgrading the relativistic kinematics by combining
the Einstein’s ”mass-shell” energy with the particle linear mornentum (Šoln, J. (2014-2023)) to end up with particle
limiting velocity c bicubic equation

(
c2

v2

)3

−

( E
mv2

)2 (
c2

v2

)
+

( E
mv2

)2

= 0 (1)

where c is particle limiting velocity, E is particle energy, m is real particle mass and v2 particle velocity squared. As in
(Šoln, J. (2021.1.2; 2022; 2023)), by relating the energy to real linear congruent parameter z we obtain the Energy and
Discriminant for (1) simply as:
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At this point we designate congruent parameters with kind of particle limiting velocity solutions from (1) (Šoln, J. (2023)):
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4 − 3 sin2(α)

. (5)

The relations (3), (4) and (5) involve real congruent evolution parameters, congruent phase-angle α, linear congruent
parameters z1(α) and z2(α). Relations (3) and (4) show how they are functionally related to each other, with z1(α) ≤
1, z2(α) ⪰ 1, and α ≤ π2 . In (5) z1(α) is numerically the same as in (4). It was derived by calculating E directly from (1)
involving novel limiting velocities and here it is listed for the sake of completeness.

Utilizing (3) and (4), we easily write down the discriminants associated with the ordinary and novel (dm) particles:
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Ordinary particles : D(z1(α)) ⪯ 0, α ⪯
π

2
, E(α) =

3
√

3mv2

2z1(α)

Novel(dm) particles : D(z2(α)) ⪰ 0, α ⪯
π

2
, E(α) =

3
√

3mv2

2z2(α)
(6)

The relation (6) together with (3) and (4) indicate that the solutions for ordinary and novel particle limiting velocities
can be given in terms of one evolutionary parameter, z1(α), z2(α) or simply phase-angle α. The energies in (6) are global
ordinary and novel particle energies. They are simple in a sense that they give the results if one knows for each of them the
particle mas m and particle velocity v which may even come from classical or quantum physics. Numerically the energies
are known with insertions of the congruent parameters z1(α) and 2(α). The more complex energy expressions utilizing
explicitly particle limiting velococities ( Šoln, J.(2016)) will not be used here.

The smooth matching point : D(z1(α) = z2(α) = 1) = 0;α =
π

2
(7)

At smooth matching point both limiting velocity solutions for ordinary and novel particles smoothly become equal. As
α ⪯ π

2 , these velocities diverge in different directions, indicating the difference between ordinary and novel particles.
Equally important matching will occur between similar ordinary and novel particles once we relate them with ordinary
particle comprehensive congruent phase-angle αO quantum jump to novel particle comprehensive congruent phase-angle
αN = 2αO. The numerical values of αO and αN will be given once the limiting velocity solutions are derived. These
comprehensive quantum jumps from αO to αN and reverse, between ordinary and novel particles apply to each ordinary
and matched novel particle either free or interacting. Mathematical details of smooth matching point are given in Section
3. with the explicit particle limiting velocity solutions from Section 2.

2. Details of the Bicubic Particle Limiting Velocity Solutions for Ordinary and Novel (dm) Particles

We start with the limiting velocity solutions for ordinary particles, satisfying (6), in the original form (Šoln, J., 2021.a.b;
2022; 2023):
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With the help of relations (3) and (4) we present the limiting velocity solutions for ordinary particles from (8) in form
emphasizing the congruent phase-angle α :
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Both solutions satisfy the Cardano’s relation c2
1(α)+ c2

2(α) + c2
3(α) = 0.
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The limiting velocity solutions for novel particles, satisfying (6), in the original form are in rather lengty expressions:
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The solutions (11) are good examples of consistent self-generating evolutionary system with z1(α), z2(α) and α which
appears quite naturally in c2

1,3(α)/v2 of (11) (compare with (3)). Utilizing (3) and (4) , changes (11) in to
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We can rewrite relations (12) to better emphasize the dependence on the congruent phase-angle α :
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At this point we wish to epmphasize the number of Cardano’s relations which follow from (11), (12) and (13)
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The importance of these relations for (8,10,11,12) comes from the fact that in each group the elements are comple-
ment physically to each other and, as such, can contribute to enclosed physical picture. For instance, c2

2(α)/v2 comple-
ments physically doubly Rc2

3,1(α)/v2, by giving maximal real novel particle velocities. Similarly c2
3,1(α)/v2, c2

2(α)/v2 and
Ic2
,3,1(α)/v together give unphysical fudge novel particle velocities that will be discussed later.
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3. Smooth Matching Point at the Congruent Phase-angle α = π/2

Next, using relations (3) and (4) together with ordinary and novel particle limiting velocity solutions (10), (11) and (12)
we wish to verify the smooth matching point between the ordinary and novel particles at α = π/2. The meaning of the
smooth matching point is very simple: There are no differences between the ordinary and novel particle limiting velocities
as particles have the same mass m and same velocity v at α = π/2. Physically they are the same. Beyond α = π/2 things
change dramatically, ordinary and novel particles disengage completely. Thus, using relations (5), (6) an (8), we wish to
verify the smooth matching point between the ordinary and novel particle limiting velocity squares at α = π/2 , where
one should notice that there are no imaginary contributions for novel particle limiting velocity squares. Next, in Tables 1
through 5, we give simple mathematical examples that as soon as the congruent phase-angle α moved from α = π/2 to
α = π/3, the limiting velocities of ordinary and novel particles move from their equalities to the distinct inequalities.

Table 1. Ordinary particle limiting velocity squares at smooth matching point of z1 = 1, α = π/2(
c2

1(α)/v2 c2
2(α)/v2 c2

3(α)/v2

1.5 −3 1.5

)
Table 2. Novel particle limiting velocity squares at smooth matching point of z2 = 1, α = π/2 c2

1(α)/v2

= Rc2
1(α)/v2 + i0 c2

2(α)/v2 c2
3(α)/v2

= Rc2
3(α)/v2 + i0

1.5 −3 1.5


Clearly, at the smooth matching point of α = π/2, limiting velocity squares of ordinary and novel particles have the same
values. To show how fast these values diverge away from α/2, we now take α = π/3:

Table 3. Ordinary particle limiting velocity squares at z1 = 0.371, α = π/3(
c2

1(α)/v2 c2
2(α)/v2 c2

3(α)/v2

6.436 −7.458 1.022

)
Table 4. Novel (dm) particle limiting velocity squares at z2 = 1/z1 = 2.695, α = π/3 c2

1(α)/v2

= Rc2
1(α)/v2 + iIc2

1(α)/v2 c2
2(α)/v2 c2

3(α)/v2

= Rc2
3(α)/v2 + iIc2

3(α)/v2

0.643 + i0.557 −1.286 0.643 − i0.557


It is immediately evident to the large differences in limiting velocities between the matched ordinary and novel particles
as we move away from α = π/2 to α = π/3. One should notice that at α = π/3 while for ordinary particles the limiting
velocities c1, c2 and c3 are all larger than the particle velocity v, the opposite is true for the novel particle limiting velocities
doublyRc2

1,3 which are smaller than v2 with exception for c2
2 which is larger tan v2. Next, in Table 5, we wish show how

the change in congruent parameters affect the Global ”pseudo-relativistic” kinetic energies from (6).

Table 5. The values of ordinary and novel Global particle”pseudo-relativistic” energies at α = π/2 and π/3 with fixed
mass m and velocity v

E(z1(α)) = 3
√

3mv2

2 (1/z1) , E(z2(α)) = 3
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3mv2

2 (1/z2) :
α π/2 π/3

E(z1(α)) 3
√

3
2 mv2 2.694 3

√
3

2 mv2

E(z2(α)) 3
√

3
2 mv2 0.371 3

√
3

2 mv2


These exemplary energy cases demonstrate dramatic change in energy from ordinary to novel particle if z2 ≫ 1.

4. Comprehensive Quantum Matching Jump Between Ordinary and Novel Particles

Before getting into details of comprehensive quantum jump let us list in Table 6 a sample of ordinary particles with
their masses that one should be able with the comprehensive quantum jump to kinematically connect to the existing
corresponding novel particles.
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Table 6. A sample of ordinary particles with their masses

Photon, γ,m(γ) = 4.5x10−15eV/c2;
Leptons : electron, e,m(e) = 0.511MeV/c2;

muon, µ,m(µ) = 105.7MeV/c2;
neutrino, νµ,m(, νµ) = 0.76−15eV/c2,

Baryons : proton, p,m(p) = 938.3MeV/c2;
neutron, n,m(n) = 939.4MeV/c2;

Lambda,Λ,m(Λ) = 1115.7MeV/c2,
eV/c2 = 4/3x10−33g

Ordinary masses are simply denoted with m If the novel mass is different from m we will denote that separately. Con-
cerning the mass of the ordinary photon ,m(γ) rather than zero, we chose the tiny mass of 6x10-48g = 4.5 × 10-15eVas
quoted in (Lin, H.-L., Tang, L., Zou, R., 2023) and in (Itzykson, C. and Zuber J.-B., 1980), 138). However, in (Frerick,
J., et al., 2023) through Lagrangian formalism, the derived dark matter (novel) photon γ′ is even smaller with limits of
4 × 10−19eV/c2 ≺ m( γ′) ≺ 3 × 10−17eV/c2.

In what follows, to simplify the notation any comprehensive ordinary particle from Table 6 is represented with compre-
hensive symbol d, while similarly, any corresponding novel particle is denoted with comprehensive symbol dN . In this
notation there is understanding that one can have d = γ, e, n, etc.; dN = γN , eN , nN , etc.,where they are distinguished by
their attributes. Again there is no prior reason that some or most dN not to be the same as d. Next, for a comprehensive
ordinary particle d we find through trial and error from (8) or (10) that c3(αo),the ordinary particle limiting velocity
solution has ratio value of 1 at the fixed comprehensive congruent phase-angle α(d) = αO = π/5.1 = 0.616. This the
comprehensive particle d can satisfy with velocity v(d) ≃ c3(αo), basically defining c3(αo) numerically for particle d.
Of course c3(αo) = v(d) = c3(d) will change from particle to particle in Table 6, which is all right as long as v(d) ⪯ c
the velocity of light, which empirically is always accepted. Likely, it is possible that an individual ordinary particle may
deviate slightly from the comprehensive congruent phase-angle of the representative ordinary particle d. Similar slight
deviations are expected for novel particles, to be yet discussed.

Table 7. The input comprehensive congruent parameters together with the values of limiting velocities for or a compre-
hensive ordinary particle d

α(d) = αO = π/5.1 = 0.616 z1(α(d)) = z1(αO) = 0.064322 z2(α(d)) = z2(αO) = 15.625(
c2

1(αo)/v(d)2 c2
2(αo)/v(d)2 c2

3(αo)/v(d)2

39.881619 −40.88228 1.0006

)
One can verify the correctness of solutions by adding them up: c2

1((α(d))/v2)+c2
2(α(d)/v2)+c2

3(α(d)/v2) = -8.6×10−6 ≈ 0,
satisfying the Cardano’s relation (for details, see (Šoln, J., 2014).

Next, we start with novel comprehensive novel particles represented by the symbol dN Here we utilize the verified
quantum jump from the ordinary d to the novel dN : α(d) = αO → α(dN) = αN = 2αO yielding the value α(dN) = αN =

2π/5.1 = π/2.55 = 1.232. The evaluation of the comprehensive novel particle dN limiting velocities utilizes solutions (11),
(12) and (13). Again, an individual novel particle may deviate slightly from the comprehensive congruent phase-angle of
the representative novel particle dN .

Table 8. The input comprehensive congruent parameters together with the values of limiting velocities for a comprehen-
sive novel particle dN

α(dN) = αN = 2π/5.1 = 1.232 z1(α(dN)) = z1(2αO) = 0.630 z2(α(dN)) = z2(2αO) = 1.587

doublyR(αN)c2
3,1/v

2(dN) c2
2(αN)/v2(dN) I(αN)c2

3,1/v
2(dN) c2

3,1(αN)/v2(dN)
1.002 −2.004 ∓0.5768 1.002 ∓ i0.5768

Regardless of the v(dN) value we can make different limiting velocity sums, each of them satisfying Cardano’s relation of
zero value: (a): c2

3(αN)/v2(dN) + c2
1(αN)/v2(dN) + c2

2(αN)/v2(dN) ≈ 0,

(b): I(αN)c2
3/v

2(dN) + I(αN)c2
1/v

2(dN) ≈ 0 and (c): doublyR(αN)c2
3,1/v

2(dN) + c2
2(αN)/v2(dN) ≈ 0. For example, the

importance of relation (a) and (c) is in the fact that these three velocities in them are real and measurable.
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As we see from Table 8, for doubly R(α(N)c2
3,1 ≃ v2(dN) is the maximum real physical squared velocity of the doubly

comprehensive novel particle dN , regardless what one might ”measure” eventually for a specific novel particle dN . What
is the value of the comprehensive maximum real physical squared velocity for dN? Because αN = π/2.55 ≺ π/2 we
may for this endeavor of the novel comprehensive particle look at doublyR(αN)c2

3,1 ≃ v2(dN) how it compares relative to
c2

3(αo) ≃ v2(d). Then from (8), (9) and (10) we evaluate:

c2
3(αo)

doublyR(αN)c2
3,1

=
v2(d)

v2(dN)
=

6S (αN)
z1(αN)

= 1.072593,

v2(dN) = 0.932320 v2(d), v(dN) = 0.965567v(d) ⪯ c (15)

Special Theory of Relativity is not violated by (15). Here are few examples from Table (6): Novel doubly photon γN :
v(γN) == 0.965567v(γ) = 0.965567 c; Novel doubly electron eN : v(eN) == 0.965567v(e) ≃ 0.965567 c; Novel doubly
neutrino νN : v(νN) = 0.965567v(ν) = 0.965567 c; Novel doubly proton pN : v(pN) == 0.965567v(p). What v(p) is
depends on the ongoing experiment. Quite often v(p) = 0. As we see, with certainty one knows the velocities of ordinary
photon v(γ) = c and ordinary neutrino v(υ) = c, while the ordinary electron may achieve v(e) ≃ c. This explains why these
three doubly novel particle velocities v(γN), v(νN) and v(eN) are so close to c. In fact, from last line in (15) one should
notice that v(dN) ≃ v(d). The comprehensive doubly novel particle velocity is practically the same as the comprehensive
ordinary particle velocity.

5. The Comprehensive Novel Particle Fudge Velocity

The comprehensive fudge velocity is unique to the novel particles as its imaginary portion is directly connected to the
comprehensive novel congruent phase-angle αN = α(dN) = 2αO = 2π/5.1. It is simply defined as an average of the total
c2

1,3(αN). With taking into account the average value .≺ (1 ± i
√

3 cos(αN)) ≻= (1 + 3 cos2 αN)
1
2 = 1.15). In Table 9, we

show the evolution of c2
1,3(αN) into the comprehensive fudge velocity doublyc2

1,3,F (dN)

Table 9. The evolution of comprehensive novel particle squared fudge velocity

(15) : doublyR(αN)c2
1,3 = v2(dN) = 0.93232v2(d)

(13) : c2
1,3(αN) = doublyR(αN)c2

1,3(1 ± i
√

3 cos(αN)),
≺ doublyc2

1,3(αN) ≻= 0.93232v2(d) ≺ (1 ± i
√

3 cos(αN)) ≻,
v2

F(dN) =≺ doublyc2
1,3(αN) ≻= 1.076v2(d)

The comprehensive novel particle squared fudge velocity v2
F (dN), although unphysical is numerically practically the

same as v2(d). So it looks like that all novel particle comprehensive velocities are very close to the ordinary particle
comprehensive velocity v(d). For novel photon, v2

F (γN) = 1.076 v2(γ) = 1.076 c2 which barely violates Special Theory
of Relativity.

6. Similarities, Differences With Substitutions and Selections Between Free Ordinary and Novel Particles

We start with listing the energy expressions with some substitutions of ordinary and novel particles which demand some
interrelationships between them in (16):

1 : E(d) =
3
√

3
z1(αO)

m(d)v2(d)
2

, E(dN) =
3
√

3
z2(αN)

m(dN)v2(dN)
2

2 : z1(αO) = 0.064322, z2(αN) = 1.587, v2(dN) ≃ v2(d),

3 : m(dN) = m(d) :
E(dN)
E(d)

=
z1(αO)
z2(αN)

≃ 0.04 =
1

25

4 : E(dN) = E(d) :
m(dN)
m(d)

=
z2(αN)
z1(αO)

= 24.67 ≃ 25 =
1

0.04
(16)

To begin with, as shown in Tables 7 and 8, as well as in (15) it is seen that to a good approximation, v2(dN) ≃ v2(d).
Even with this, one sees why it is so difficult to observe ordinary and novel particles together if expressions in (16)
hold; When particles have the same energies the masses diverge, and the oposite, when the masses are the same energies
diverge. The approximate equality v2(dN) ≃ v2(d) one may use to find some inter-relationships with substitutions and
selections between ordinary and novel particles at respective comprehensive congruent phase-angles of αO = π/5.1 and
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αN = α(dN) = 2αO = 2π/5.1. It is interesting to note that substitutions 3: and selections 4: are inversely symmetrical.
With v2(dN) ≃ v2(d), the point 3: in (16) with the assumed substitution m(dN) = m(d) becomes ”natural” to do further
explorations. In doing so, one has to be aware that the free energies are not the same any more and one has to make
selection choice between E(dN) and E(d). As there is no physical reason why a novel particle cannot participate in
interaction with ordinary particles, one simply has to be aware that to either selected E(dN) or E(d) one has to add
interaction energy. For instance, in the case of Bohr atom, we shall postulate virtual novel electron with substitution mass
m(eN) = m(e), and then to selected E(eN) adds interaction with the Coulomb field, which is consistent with space-time
connections of ordinary and novel particles (Šoln, J., 2022).

The point 4: in (16) with substitution of equal energy E(dN) = E(d) is not only interesting but also intriguing as it points to
changing mass values by means of comprehensive congruent parameters z1(αO) and z2(αN), when the energies are equal,
which is the case for γ and γN yielding different masses.

Although comprehensive quantum jump kinematically matches free and interacting ordinary particles to existing free and
interacting novel particles, one should not expect to be able straightforwardly to quantum jump a system of interacting
ordinary particles to a similar system of interacting novel particles, except in some special cases.

7. Bohr’s Atom With Positive Virtual Novel Electron Energy

Here we take the same model of the atom as done originally with,the usual electron (see Eisberg, R. M., 1966, 115) which
in the final ”state” ended up with negative energy. Since we know in advance that the sign of resulting energy of ordinary
electron is wrong, then because the space-time connections of ordinary and novel particles (Šoln, J., 2022), are applicable
also for the Bohr atom we use both of comprehensive congruent phase-angles, for ordinary particles αO = π/5.1 and novel
particles αN = α(eN) = 2π/5.1 in evaluation. Hence, assuming 3: from (16) we substitute ordinary electron e with the
virtual novel electron eN denoted as ”Novel” with postulated same mass as ordinary electron, m(eN) = m(e). It interacts
as original electron e; that is, it circulates around the fixed nucleus of mass M at radial distance r(eN) with perpendicular
to its velocity v(eN). The stability of the orbit is guarantied by the equality of Coulomb force to the Centrifugal force, as
shown in (17).

e2(M)
r2(eN)

= m(eN)
v2(eN)
r(eN)

(17)

m(eN)v2(eN) =
e2(M)
r(eN)

= −V((r(eN) (18)

Relation (18) with the negative Coulomb potential is the consequence of (17). Next in 1: of (16) we select the free
energy E(eN) of the virtual novel electron eN to which we add the (interacting) orbiting virtual novel electron eN energy
from Coulomb potential V = −e2(p)/r(eN) to obtain the total virtual novel electron energy, for simplicity also denoted as
E(eN) :

E(eN) =
3
√

3
z2(eN)

m(eN)v2(eN)
2

+ V =
3
√

3
z2(eN)

m(eN)v2(eN)
2

− m(eN)v2(eN) ≻ 0. (19)

E(eN) =
3
√

3
z2(eN)

m(eN)v2(eN)
2

− 2
m(eN)v2(eN)

2
=

 3
√

3
z2(eN)

− 2
 m(eN)v2(eN)

2
≻ 0. (20)

E(eN) =

 3
√

3
z2(eN)

− 2
 e2(M)

2r(eN)
= 1.27

m(eN)v2(eN)
2

= 1.27
e2(M)
2r(eN)

≻ 0. (21)

The positive virtual novel electron energy is represented in (19) and explicitly given in (20), and ealuated in (21) in two
equivalent expressions with the comprehensive linear congruent parameter z2(α(eN)) = z2(2α(e)) = 1.587 ≺

√
3. If the

comprehensive congruent parameter z2(α(eN)) were
√

3, E(eN) would simply be m(eN)v2(eN)/2 = e2(p)/2r(eN), which is
positive with the same absolute value as the negative original result (see Eisberg, R. M., 1966, 115). This example already
shows that the notions of ordinary and novel (dm) particles make sense, particularly if they can be interrelated.

Now we move to the Bohr’s quantization rules. Because the virtual novel electron angular momentum is constant it is
chosen for quantization involving the Planck constant h.

L(eN) = m(eN) v(eN) r(eN) = n ℏ, ℏ = h/2π (22)
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In separating dependences for v(eN) and r(eN), we relay on equation (18)

m(eN)v(eN) r(eN) =
e2(M)
v(eN)

= nℏ (23)

v(eN) =
e2(M)

nℏ
, r(eN) =

nℏ
m(eN)v(eN)

(24)

r(eN) =
n2ℏ2

m(eN)e2(M)
(25)

The rules (24) and (25) when respectively applied to (20) and (21) yield the same quantized virtual novel,electron expres-
sion with nucleus of mass M plus Z ionized atoms (Z=1, 2,3, etc=neutral hydrogen, singly ionized helium atom, doubly
ionized helium atom, etc.), reads now for the n energy level:

E(eN)n =

 3
√

3
z2(eN)

− 2
 Z2 e4(M) m(eN)

2n2ℏ2 , n = 1, 2, 3, .. (26)

z2(α(eN)) = 1.587 : E(eN)n = 1.27
Z2 e4(M) m(eN)

2n2ℏ2 =
E(eN)1

n2 , n = 1, 2, 3, .. (27)

In Table 10, we make simple comparisons with Z = 1 between the hydrogen atom energy levels calculated from (27) and
Bohr original negative energies ( Eisberg, R. M., 1966, 115):

Table 10. Comparison of hydrogen atom energy levels (eV = 1.596 × 10−12 erg)

n 1 2 3 4
E(eN)n 17.3eV 4.32eV 1.92eV 1.08eV
−En 13.6eV 3.4eV 1.52eV 0.85eV

We wish to point out that the comprehensive linear congruent parameter z2(α(eN) = 1.587 is very close to
√

3 = 1.732 at
which the upper and lower energy levels become equal. Next define the arbitrary energy difference for quantized virtual
novel, electron in Z ionized helium atom at some n ⪰ 1 :

∆E(eN ; ni, n f ) = 1.27
Z2 e4(M) m(eN)

2ℏ2

 1
n2

i

−
1
n2

f

 , ni ≺ n f

= Z227.6 × 10−12erg

 1
n2

i

−
1
n2

f

 = Z217.27 eV

 1
n2

i

−
1
n2

f

 , (28)

ν =
∆E(eN ; ni, n f )

4πℏ3 , k =
ν

c
=

1
λ
= 1.27

Z2 e4(M) m(eN)
c4πℏ3

 1
n2

i

−
1
n2

f


1
λ
= R(αN)Z2

 1
n2

i

−
1
n2

f

 (29)

R(αN) =
1.27e4(M) m(eN)

c4πℏ3 = 139290 cm−1 ≃ 140000 cm−1 (30)

The constant quantity R(αN) goes by the name Rydberg constant for the hydrogen so that one gets from (29) the wave
number k = 1/λ = ν/c for evaluation of number of spectral lines (wavelength ranges) for the hydrogen in the range:
ni ≻ n f :

k = R(αN)

 1
n2

i

−
1
n2

f

 , ni ≺ n f (31)

Relation (31) represents the wavelength ranges (number of spectral lines) for hydrogen series: Lyman: Ultraviolet ni =

1, n f = 2, 3, 4; Balmer: Ultraviolet-Visible, .ni = 2, n f = 3, 4, 5.; Pashen: Infrared, ni = 3, n = 4, 5, 6.: Brackett: Infrared
ni = 4, n = 5, 6, 7: Pfund: Infrared ni = 5, n = 6, 7, 8. The analysis of these data should tell weather the value of the novel
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particle comprehensive parameter z2(α(eN)) = 1.587 is correct or weather should be adjusted specifically for the virtual
novel electron. The radiated photons by the quantized virtual novel electron energy differences are ordinary photons.

8. Discussion and Conclusion

The relations (15) and(16) indicate to the approximate equalities between comprehensive ordinary particle d and novel
particle dN velocities: v2(dN) ≃ v2(d). These equalities are consistent with the Special Theory of Relativity. The unphysi-
cal novel particle fudge velocity which is not present in ordinary particles has a numerical velocity value close to v(d) and
violates the Special Theory of Relativity slightly.This approximate velocity equalities made it easy to substitute the novel
virtual electron mass with the ordinary electron mass so that the selected virtual novel electron energy in the description
of the Bohr atom yields positive electron energy.

In relation (16) we introduced simple two inversely symmertrical substitutions. One can envision more complicated
designated substitutuions to deal with other involved physical problems of ordinary and novel particles; examples being:
fractional m(d) to mdN) substitution and related likely to fractional E(d) to EdN) selection, etc.
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Šoln, J. (2018a). Positive and negative particle masses in the bicubic equation limiting particle velocity formalism. Applied
Physics Research, 10(1), 14.
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