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Abstract 

Regarding inertial confinement fusion (ICF), the current proposed driving energy sources are mainly laser beams 

or high-energy particle beams. This paper proposes a new method: Adopting a strong pulsed magnetic field as 

the driving energy source, explored its action principle, derived all relevant formulas, calculated an example and 

compared it with existing driving methods.The conclusion drawn is that this method can achieve high energy 

gain, the required equipment is relatively simple and without the disadvantages of other methods, making it a 

feasible method. 
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0. Preface 

There are currently two methods being explored to achieve controlled nuclear fusion: magnetic confinement and 

inertial confinement.The former is the Tokamak device, and the Chinese have set a world record of 1056 sec and 

158 million deg F plasma operation on 12/30/2021. The challenge faced by magnetic confinement is the need to 

maintain the fusion plasma at temperatures of over a billion degrees for as long as possible, requiring the vessel 

to withstand extremely high temperatures, requiring the vessel to withstand extremely high temperatures. To 

address this, a strong magnetic field is used to confine the high-temperature plasma and isolate it from the vessel 

walls. The Tokamak device must find ways to further extend the presence of the high-temperature plasma to be 

of practical use.  

The principle of inertial confinement is completely different from the above.Taking laser direct drive device as 

an example: a hollow spherical shell, known as a "target pellet”, with a diameter of a few millimeters is made 

using a polymer.euterium and tritium (DT) fusion fuel are loaded into the sphere, using a uniformly distributed 

lasers to emit strong laser pulses around the target pellet, irradiating its surface, This causes the shell to 

instantaneously vaporize and expand, while the resulting reaction force drives the DT fuel to rapidly implode 

towards the center of the sphere, leading to a sudden increase in temperature and pressure, resulting in fusion , 

which is equivalent to detonating a miniature hydrogen bomb. This method utilizes the inertial force generated 

by the implosion of the fuel to constrain the fuel itself, thus enabling the fuel to sufficiently undergo fusion; The 

difficulty faced by inertial constraint driven by laser or particle beams is that the radiation energy beam cannot 

fully and uniformly illuminate the surface of the spherical shell. This leads to fluid instability caused by 

asymmetric implosion, i.e. the rupture of the pellet shell or inner layer during implosion, thereby disrupting the 

centripetal compression of DT. Additionally, the coronal region formed by the vaporization of the shell has 

limited transparency to radiation energy; this reduces the efficiency of radiation energy as the driving force input. 

The paper proposes using a strong pulsed magnetic field as the driving energy source, and employing a ring 

target instead of a target pellet. The structure and working principle are illustrated in Figure 1: a hollow ring 

made of metal coated with DT ice (solid DT) layer on its inner surface, and the DT gas filled inside the DT ice 

cavity. The ring target is placed in a uniformly distributed driving magnetic field 
)(tBdr  at the initial moment, 

and when 
)(tBdr  undergoes a instant step change, a great induced current J is generated inside the metal shell, 

causing the shell to rapidly heat up to the point of breakdown, forming a plasma. The magnetic field JB  

generated by J has a pinching effect on J, leading to the shell plasma to be pinched centripetally, compressing the 

DT to its critical point and initiating fusion reactions.  
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As the shell is symmetrically acted upon by 
)(tBdr  on all cross-sections simultaneously, the implosion motion 

of the shell and the DT is symmetrical, preventing fluid instability due to asymmetry, and there are no 

transparency issues. The entire fusion process of the ring target consists of the following three parts: 

Firstly, the explosion induced by discharge～electric explosion, and pinching effect of the ring target shell; 

Secondly, DT undergoes implosion due to the pinch effect of the ring target shell;  

Thirdly, as the implosion approaches the center, the velocity of the DT suddenly decreases to zero, leading to a 

sharp increase in internal energy. This is an energy conversion caused by stagnation, abbreviated as "stagnate". 

During stagnation, due to the higher entropy of the central DT gas, it heats up rapidly. At the end of stagnation, 

the central DT gas first reaches the fusion threshold, forming a“hot spot”, which is the“ignition”. The fusion 

energy within the hot spot propagates outward in the form of waves to the surrounding DT ice, resulting in wide 

range fusion. This method of first forming a hot spot in a small range and then diffusing and igniting requires 

less driving energy. If the ignition were to occur simultaneously throughout the entire region, a larger driving 

energy would be needed. Therefore, the structure of "ice wraps gas”, as shown in Figure 1, is employed.  

The aim of this paper is to derive the appropriate structural dimensions of the ring target, the amount of DT fuel 

loading, and the suitable pulse waveform of the driving magnetic field, in order to achieve a higher energy gain 

with lower driving energy input. 

1. Fusion Average Reaction Rate scv
, as Well as the Power Density αW  Related to α  Particles 

1.1 Average Fusion Reaction Rate scv
 

The DT fusion reaction equation involved in this paper is 

)0614()523( 1
0

4
2

3
1

2
1 MeV.nMeV.HTD e +→+

                          (1,1-1) 

There is an interaction potential energy between atomic nuclei, and when the distance between atomic nuclei is 

greater than a certain value vr , this potential energy is basically Coulombic potential energy; In order to achieve 

fusion,two positively charged D and T nuclei must have sufficient kinetic energy of mutual motion to overcome 

Coulomb potential energy and collide with each other. When vrr
, a pair of DT nuclei will be attracted to each 

other by nuclear forces, ultimately leading to fusion. 

According to the above, if a pair of DT moves relative and a particle hits a circle centered on another particle 

with a radius of vr , then the pair of DT may undergo fusion, 
2

vsc πrσ =
 being the fusion reaction 

cross-section. 

Let the particle flow of particle 2 with a reaction cross-section of scσ
 bombard a single particle 1. If the 
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quantity areal density of particle flow 2 is sn , the probability of particle 1 being hit, i.e. fusion, is scssc σnP =
; 

The physical meaning of scσ
can also be: the probability that a particle undergoes fusion under the 

bombardment of a particle stream with a unit flux density per unit time.  

If v is the velocity of particle 2 relative to particle 1 and the quantity volume density of particle 2 is  2Vn , then 

vnV 2  is the quantity flux density of particle 2; If the quantity volume density of particle 1 being bombarded 

is 1Vn , the probability of fusion reaction for multiple particles 1 being bombarded by multiple particles 2 within a 

unit time and volume is scVV vσnn 21 . 

If particle 1 and particle 2 collide and can undergo complete fusion, VVV nnn == 21 is required, otherwise the 

excess 
21 VV nnn −=

 particles will be useless due to the absence of particles that collide with them; This 

means that particles 1 and 2 should take equimolar values, so that D and T nuclei form a one-to-one relationship, 

known as the "DT pair"; The probability of such a "DT pair" fully undergoing fusion reaction per unit time and 

volume is scV vσn
2

. 

If 
1=Vn , then scv

 becomes: within a unit time,the probability of fusion reactions occurring when two particle 

streams with the same quantity volume density of 1 move relative to each other at velocityv ; scv
is called 

fusion reaction rate, and its dimension is 
/scmv sc

3][ =
. 

Note that if Vn  is the quantity volume density of the "DT pair", then the quantity volume density of D or T 

nucleus respectively is also Vn . Therefore, when 
1=Vn , scv

 is the fusion reaction rate of the "DT pair". 

In the calculation, the average value 
 dvvfvvv 



=
0

)()(
 of scv

 must be used, and the probability density 

)(vfi ～ 2,1=i , can be obtained from the Maxwell velocity distribution, thus obtaining 

 −−= 21212121 )( dvdvffvvσvvv
. For this equation, literature (Stefano Atzeni, Jürgen Meyer-ter-Vehn, 2008) 

provides several fitting algorithms obtained through numerical integration, among which the following two 

approximate formulas are recommended for DT fusion 

][ ))ln((exp)( 13132
321

−−= scmkTkkTv
.


                        (1.1-2)1 

where 
][10109 1316

1
−−= scm.k

, 
57202 .k =

, 
KeV].k [2643= , and 

][)( 132
4

−= scmTkTv
                                (1.1-2)2 

where 
][1011 21318

4
-KeVscm.k −−=

. 

In the above two formulas the temperature dimension is KeVT =][ ; The accuracy of the former is 10% at 

temperature (3-100)KeV and 20% at (0.3-3) KeV; The accuracy of the latter at (8-25) KeV is 15%. 

1.2 Power Density αW  Related to Particle α 

The formula for αW  is 

])()[( 32
cmsergTvρAW mhαα = 

                           (1.2-1)1 

][100648 240 erg/g.Aα =
                                (1.2-1)2 

Where mhρ
～mass density of equimolar DT gas. 

Argument the above: 

For a "DT pair"with a quantity volume density of Vn , the probability of fusion reaction occurring per unit time 



http://apr.ccsenet.org Applied Physics Research Vol. 16, No. 1; 2024 

229 

at temperature T  is 
)(

2
TvnV 

; According to equation (1,1-1), the energy carried by AF particles generated 

after each "DT pair" fusionis is 
MeV.QDT 523=

. Therefore, the power density generated by the α  particles 

participating in fusion is WA=; So, the power density generated by the AF α particles participating in fusion is 

)(
2

TvnQW VDTα =
; In this equation If the average mass of equimolar DT ions is DTm

, then  

)()2( 2 TvmρQW DTmhDTα =
                             (1.2-2) 

In the above formula, the total mass of a "DT pair" is pDT mm 5=
,where the neutron mass is approximated as the 

proton mass pm , and the electron mass is ignored.So, due to taking 
2DTDT mm =

, there is  

pDT m.m 52=
                                  (1.2-3) 

Substituting the above formula, proton mass, and DTQ
 into formula (1.2-2) and converting eV  to erg , obtain 

formulas (1.2-1)1 and (1.2-1)2. 

2. The Implosion of DT 

2.1 Foreword 

DT in implosion can be regarded as an ideal gas because:according to literature (Stefano Atzeni,  Jürgen 

Meyer-ter-Vehn, 2008), if a plasma with a mass density of mρ
 satisfies the discriminant

12)( 32 DTmB mρTke
, 

it is an ideal gas, where e  is the electron charge and Bk  is the Boltzmann constant; At the beginning, an 

electric explosion occurred on the metal shell outside the DT ice layer.According to literature (Stefano Atzeni, 

Jürgen Meyer-ter-Vehn, 2008), the temperature of the plasma generated by the electric explosion can reach 

KTkB
710=

or above. Here, estimating the DT ice layer 
erg .KTk -

B
106 1038110 ==

, and the initial mass density of 

the DT ice is 
32150 −== cmg.ρρ miom . The above data is substituted into the discriminant formulato obtain 

110986.42)( 432 = −
DTmcoB mρTke

; From this, at the beginning of the electric explosion DTice can be 

regarded as an ideal gas; At the beginning, DT ice is the coldest and thickest state of DT during the entire 

implosion process. Since DT ice at this time is an ideal gas, DT should also be an ideal gas in implosion. 

DT implosion, as a type of flow, should be expressed using an equation of fluid dynamics, but this equation 

involves the first law of thermodynamics, which means that the ring target reaches thermal equilibrium internally. 

Therefore, it is required that the diameter of the hot spot and implosion time be sufficiently large compared to the 

a mean free path and collision time of particles in the plasma; According to literature (Stefano Atzeni, Jürgen 

Meyer-ter-Vehn, 2008), the typical hot spot diameter of the ICF pellet is cm- 410120 , and the typical implosion 

time is s-910 . When the temperature in the later stage of implosion is keV10 , the mean free path of the 

particles is cm- 410 , and the collision time is s-1210 ; By comparison, it is known that the first two are indeed 

much larger than the latter two, so it is reasonable to use equation of fluid dynamics to describe implosion. 

Implosion is a radial, centripetal, and centrosymmetric motion with no tangential relative motion between 

streamlines, thus there is no tangential gradient of velocity; However, the viscous force of a fluid is related to the 

tangential gradient of velocity, so the viscous force term in the equation of fluid dynamics can be ignored. In 

addition, due to the short duration of the implosion, the heat energy exchange inside and outside the ring target is 

little and can be ignored. 

Therefore, implosion can be considered an isentropic process. 

In summary, the equation of isentropic ideal fluid dynamics can be used to describe implosion. 

2.2 Equation of Isentropic Ideal Fluid Dynamics 

2.2.1 Establishing a Ring Coordinate System 

As shown in Figure 1, establish a Ring Coordinate System on the ring target with r , θ , φ as coordinate 

variables and O as the origin, the radius of the circle where the centerc of the ring target cross-section is located 

is constR = ; In this coordinate system, the vector A is represented as φθr eeeA φθr AAA ++=
, where 

re , θe , φe are the unit vectors corresponding to r ,θ ,φ . 
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The gradient of the ring coordinate system is 

φθr eee
φθ LLr 


+




+




=

                            (2.2-1)1 

where 
kθ rL =

 and 
RLφ =

 arc lengths in the θe  and φe  directions, respectively. 

For implosion 

re
r


=

                                   (2.2-1)2 

From the previous equation, it can be inferred that there exists the following formula 

)()( dtdadtad =                               (2.2-1)3 

Argument the above:  

For orthogonal curvilinear coordinates, the gradient formula is 
φθr eee

φh

a

θh

a

rh

a
q

φθr 


+




+




=

. Where 

rhr = rR
, 

= rRθh
 and 

= rRφh
 are scale factors, the position vector rR

 of the point on the 

ring target is represented as 
θrφθrRφθrR cossin)sin(cos)sin( kjirRR r ++++=+=

, in the Cartesian 

Coordinate X-Y-Z  in Figure 1, resulting in
1=rh , 

rhθ =
 and 

Rhφ =
, where θrRR sin+= . Therefore, 

φθr eee ])([])([)(  Rararaq ++=
 is obtained, which is φθr eee )()()( φθ LaLaraq ++=

. 

Due to the central symmetry of the implosion motion, the equipotential surface of  a  should not be related to 

θand φ . Therefore, re)( raq =
 can be deduced from the above formula. 

From the previous equation there is 
φθrφθr eeeeee )()()()(

)(

dt

da

Ldt

da

Ldt

da

rL

a

L

a

r

a

dt

d

dt

ad

φθφθ 


+




+




=




+




+




=



, 

thus, )()( dtdadtad =  is obtained.  

The divergence of ring coordinate system is 

φφθθr LALRRArrRrRA ++= )()()()(A
                 (2.2-2)1 

where A～vector field. 

Argument the above: 

For orthogonal curvilinear coordinates, the divergence formula is 

]
)()()(

[
1

φ

Ahh

θ

Ahh

r

Ahh

hhh
φθrθrφrφθ

φθr 


+




+




= A

, resulting in φ

φ

θ

θr

L

A

LR

RA

rrR

rRA




+




+




=

)()(
A

 for ring coordinate. 

The Curl of the ring coordinate system is 

φθk RArAA
φθr

Rr

rR 










=

φθr eee

A
1

                           (2.2-2)2 

For vector field reA rA=  that are not related to θ  and φ , there is 

0= A                                    (2.2-2)3 

Argument the above: 

For orthogonal curvilinear coordinates, the curl formula is φφθθkr

k

φθr

φθr
AhAhAh
φθr

hhh

hhh 










=

φθr eee

A
1

, so for Ring 
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Coordinate, there is 
φθk RArAA
φθr

Rr

rR 










=

φθr eee

A
1

. Therefore, for vector field reA rA=  that are not related to θ  

and φ , the expression for curl is 0= A . 

The Laplace operator in ring coordinate system is 

2

2
2 )()(

φθθ LL
R

LRr
rR

rrR 


+








+








=

                          (2.2-3) 

Argument the above: 

Substituting formulas (2.2-1)1 and (2.2-2)1, into )(2 qq =  obtains formulas (2.2-3). 

The Euler operators in ring coordinate system 

+



= u

tdt

d

                                  (2.2-4)1 

where u  is the flow velocity in the rest frame, and for implosion reu=u . 

For implosion 

r
u

tdt

d




+




=

                                 (2.2-4)2 

Argument the above: 

For fluid parameter
)( ,tq rR
related to position vector φθ

rr

ee

eR

φθ LL

r

+

+=

, there is dt

dL

L

q

dt

dL

L

q

dt

dr

r

q

t

q

dt

dq φ

φ

θ

θ 


+




+




+




=

. 

From dt
rdR

u=
 and formula (2.2-1)1, it can be inferred that 

+



= u

tdt

d

; Applying formula (2.2-1)2 to this 

formula obtains r
u

tdt

d




+




=

. 

If the cross-section radius of a ring is r , and the radius of the circle where the center c  of its cross-section is 

located is R , then its volume and surface area are respectively 

RrπV 222=  and RrπS 24=                        (2.2-5)1,2 

2.2.2 Write the Equation System 

The equation system of isentropic ideal fluid dynamics consists of three equations: continuity equation, 

momentum equation, and isentropic energy equation. The following will write these three equations in a ring 

coordinate system. 

The continuity equation is:  

0)()( =+ rrurt mm 
 or 

0])()([ =+ rrrudtd mm 
               (2.2-6) 

where mρ
～mass density. 

Argument the above: 

Take a shell like volume element in ring target, with its cross-section center being the center c of the ring target 

cross-section. Its volume is V , the internal surface area is S , and the shell thickness is δr . Let u  be the 

velocity of the fluid flowing into S , and mρ
be the mass density of the fluid; The total mass flow rate of the 

fluid penetrating the inner surface S  and exiting the outer surface ΔSS+  is 
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uS-SSuuQ mmm  ))()(( +++=
, omitting second order and above small quantities to obtain 

mmm SuSuρuSρQ ++=
. 

On the other hand, the total mass of the fluid in volume rSV =  is 
rSρVρ mm =

, then the change in total mass 

per unit time is 
rSt-Q' m  )( =

. Since Q'Q =  is required, there must be 

rSt-SuSuρuSρ mmmm  )( =++
. Based on this equation and using the surface areaformula (2.2-5)2, 

0
)(
=




+

 rr

ur

t
mm 

 can be derived; By using the Euler operator(2.2-4)2, 
0

)(
=




+

rr

ru

dt

d
m

m 


can be derived. 

The momentum equation is 

0)()(
1

=++
−

-frpρruutu m  or 
0)(

1
=+

−
-frpρdtdu m             (2.2-7)1 

where p～pressure, f ～body force; For implosion, f , p , and u  are all radially oriented. For implosion, 

gravity can be ignored and there is no other form of body force, so 0=f , resulting in 

0)()(
1

=++
−

rpρruutu m  or 
0)(

1
=+

−
rpρdtdu m               (2.2-7)2 

Argument the above: 

According to Xu & Jin, et al., (1981), the general form of the momentum equation is 
0=+ fp-ρ

dt

du
ρ mm

. For this 

equation, use gradient (2.2-1)2 and Euler operators (2.2-4)2 to derive equation (2.2-7)1. 

The isentropic energy equation is 

0)]([
322 =dtρcd ms                              (2.2-8) 

Where sc ～sound speed. 

Argument the above: 

According to literature (Jialuan Xu, Shang Xian, 1981) there is
0)(

22 =
i

ms ρc
dt

d

, where i ～degree of freedomof 

particle thermal motion; Treating plasma as a single particle system, thus 3=i  should be taken, so that 

equations (2.2-8) obtaining. 

2.3 Parameter Discontinuity Interface in Fluids 

2.3.1 Existence of Discontinuity Interface  

There is an interval r  distributed along the flow direction. If r  is small enough, it can be approximated as 

the the streamline shape within r  does not change over time, meaning that the flow is stable.Therefore, the 

fluid parameters, should not be an explicitfunction of t , and within r , it can be considered as constr . 

Thus, within r , equations (2.2-6) and (2.2-7) 2 become 
0)()( = rrurρm and 

0
1

=+
−

rpρruu m , and 

using constr  and the former, it can be inferred that 
constuρm =

; Based on this and the latter, it can be 

inferred that 
constpuρm =+2

. 

The previous discussion suggests that there can be 1r  and 2r that meet 
Δrrr − 21 , and their 

corresponding
)(ru 11 ,

)(rρm 11 ,
)(rp 11 , and

)(ru 22 ,
)(rρm 22 , and

)(rp 22 , making 2211 uρuρ mm =
 and 

2
2

221
2
11 puρpuρ mm +=+

; There can be sr that satisfies 12 rrr s 
. When 

−→ srr1 and
+→ srr2 , although the above 

two still hold, there can be 21 uu 
, 21 mm ρρ 

, and 21 pp 
; This indicates that there are discontinuities in the 

fluid parameters mρ
, u  and p  on both sides of sr  and sr  is the discontinuous interface. 

The fluids on both sides of sr  are flowing in the same direction, and there are two possible directions for sr  

movement: One is the same as the flow direction, the second is opposite to the flow direction. Due to the flow of 

the implosion fluid from the high-energy region to the low-energy region, the upstream side of sr is the 

high-energy region and the downstream side is the low-energy region. sr  moving downstream indicates that 
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the high-energy region is expanding, which is in line with the physical meaning of implosion, while sr  moving 

upstream indicates that the low-energy region is expanding, which is not in line with the physical meaning of 

implosion. Therefore, the movement direction of sr  should be in moving downstream. 

The fluid must flow in from one side of sr  and out from the other side, and the inflow side is called "front" and 

the outflow side is called "back". Mark "front" and "back" with "1" and "2" respectively, let the propagation 

speed of sr  is su , and the direction of su is set to be positive. Therefore, there must be 
01uus and 

02uus , that is, the propagation speed of the discontinuity must be greater than the fluid speed, This forms a 

trend of continuous expansion of the high-energy region. 

For implosion, there exists a parameter discontinuity at the boundary between DT ice and gas at the initial time; 

After the implosion occurs, the discontinuity will propagate ahead of the DT ice -gas interface, forming a 

disturbance wave ahead; The forward disturbance wave immediately emitted a reflected shock wave upon 

reaching the center. 

Establish an accompanying reference frame on the discontinuity sr , denote the velocity in it as v , where 

constuρm =
 and 

constpuρm =+2
 are represented as 

1Jvρm =
 and 2

2 Jpvρm =+
                          (2.3-1)1,2 

In the equation, 1J  and 2J ～constants. 

2.3.2 Formula for Calculating Discontinuity 

In a rest frame the propagation velocity su  of the discontinuity is 

212111 mms ρJuρJuu −=−=
                          (2.3-2) 

Argument the above: 

In the accompanying reference frame, suuv −= 11 , Substituting this into formula (2.3-1)1 obtains 111 ms ρJuu −=
, 

and similarly, it can be inferred 212 ms ρJuu −=
. 

1J  can be represented as 

21
21121 ])11()([ mm ρρppJ −−−=

                       (2.3-3) 

Argument the above: 

Equations(2.3-1)1,2 can be written as 12211 Jvρvρ mm ==
and 2

2
221

2
11 pvρpvρ mm +=+

, resulting in 

211112 vJvJpp −=−
 and 

21
21121 ])11()([ mm ρρppJ −−=

; But according to formulas suuv −= 11 , 
01uus  and 

(2.3-1)1, there is
01J

, so there should be 
21

21121 ])11()([ mm ρρppJ −−−=
. 

Regarding 21 uu −
, there are 

21
21121121 ])1)(1()([ mmm ρρ--ppρpuu =−

                       (2.3-4) 

Argument the above: 

According to equation (2.3-2), there is
)11( 21121 mm ρρJuu −=−

, substituting formula (2.3-3) into this formula 

obtains 
21

21121121 ])1)(1()([ mmm ρρ--ppρpuu =−
. 

Due to the right side of formula (2.3-4) is greater than zero, there is 21 uu 
; Because the square root on the right 

side of the formula must also be greater than zero, there must be 12 pp 
, 12 mm ρρ 

, or= 12 pp 
, 12 mm ρρ 

; 

However, due to the fact that the "2" side of the discontinuity sr is in the high-energy region compared to the 

"1" side, it is necessary to take 12 pp 
and 12 mm ρρ 

 to comply with the physical meaning; So can infer: 

In implosion, as the fluid passes through the shock wave surface, its velocity decreases while both pressure and 

density increase. 

If the following formula holds 
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12 mm ρρ 
, 12 pp 

                            (2.3-5,6) 

It is called a strong shock wave; If 
02 u

, the following formula can be derived by using the above formula and 

(2.3-4) 

21
1221 ][ mmg ρρTRu 

                            (2.3-7) 

Similarly, if 
01 u

, there exists the following formula 

21
1222 ][ mmg ρρTRu 

                            (2.3-7)’ 

2.4 Solving the Equation of Isentropic Ideal Fluid Dynamics 

This article refers to literature (Stefano Atzeni, Jürgen Meyer-ter-Vehn, 2008) and explores the derivation of 

formulas in the ring coordinate. 

2.4.1 Variable Substitution of Equation System 

The dimensional analysis method was used to perform dimensional analysis on the equation system, introducing 

dimensionless variables as follows 

α
oo ttrrξ )(=

                             (2.4-1)1 

And introduce the dimensionless parameters )(ξU , )(ξC , )(ξG  corresponding to u , sc , mρ
to express the 

fluid state as follows 

)()( ξUtru = , 
)()( ξCtrcs =

, 
)()( ξGrrρρ κ

omom =
             (2.4-1)2,3,4 

where or and ot ～ the position vector and time corresponding to the reference point,   and k ～
undetermined constant. 

Determine the reference vector or  and calibrate the reference time ot  for streamline )(a,trr= , since its 

Lagrangian coordinate a  satisfies )0( == a,tra , so that for the streamline with 0=a , 0)00( ==,tr  holds; 

Which means that streamline )0( ,trr = reaches the center of the implosion 0=r at the time 0=t , so 

)00( == ,tr  corresponds to the endpoint of implosion; As the reference time,it must be set at a moment before 

reaching the center of the implosion, therefore, the reference time must be 
00t

. 

For the reference point 
),( oo tr

, according to formula (2.4-1)1, 1=ξ ; It can be proven that the average value of 

the disturbance velocity ζudtdr =
 propagating along the curve 1=ξ  in the interval 

)0( tto is 

0

0

0

0
0

0

1

t

r
dtu

t
u

t

ζζ =
−

= 
.  

According to formula (2.4-1)3, there is 
)1()( == ξCtrc ooso 

 at reference point 
),( oo tr
, and if the function 

)(CC =  satisfies the condition 

αC 11)( ==                                  (2.4-2)3 

Then there is o

o
so

t

r
c =

, thus soζ cu =
, that is, the average value of the disturbance velocity propagating along 

the curve 1= is the sound velocity ooso trc =
originating from the reference point 

),( oo tr
. 

This article selects the starting radius hor
 of implosion on the inner surface of DT ice as the reference vector, 

That is  

oho rr =
                                  (2.4-2)1 

In this way, the reference time ot  can be calibrated as 
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sooo crt =
                                 (2.4-2)2 

The following will describe: when 1=ξ is taken, 

α
oo ttrrξ )(=

 draw a curve 00 tt～rr
 in the coordinate 

plane; For any streamline ),( tarr = , if the point 
),( aoao tr

 on it and the reference point 
),( oo tr

 are on the 

same curve 1=ξ , then point 
),( aoao tr

 must be the starting point of implosion for streamline ),( tarr = . 

Attention: since the reference point is the starting point of the implosion, and at this starting point, the fluid is in 

the same state, therefore, soc
 is the same everywhere. 

In addition, at the reference point 
),( oo tr

, according to formula (2.4-1)4, there is 
(1))( κGrrρρ oomomo =

, thus 

deriving 
1(1)=G                                    (2.4-2)4 

The following text intends to substitute formulas (2.4-1)1,2,3,4 into the equation system for variable substitution. 

Equations (2.2-6), (2.2-7)1 and (2.2-8) by variable substitution it becomes: 

0)2()lnln)(1(ln =++−+ kUξdGdUξddU                     (2.4-3)1 

0)35()2()1()lnln]()35([)ln)(1( 222 =++−++− kCUUξdGCdCξddUU         (2.4-3)2 

0)1(]3)3([lnlnlnln 3 =−−−+− UαkUξdGdξdCd                 (2.4-3)3 

Argument the above: 

Firstly, the following calculations are made based on formulas (2.4-1)2,3,4 

ξ
t

α

t

ξ −
=





, 
ξ
rr

ξ 1
=





, dξ

Gd

tt

ρ mm ln−
=





, dξ

Gd

r

ρ

rr

ρ mmm ln
+=





, Udξ

dU

t

u

t

u

t

u −
+

−
=





, 





d

Ud

r

u

r

u

r

u ln
+=





, 



d

Cd

t

c

t

-c

t

c sss ln
−=





, 



d

Cd

r

c

r

c

r

c sss ln
+=





  (2.4-3)4,5,6,7,8,9,10,11 

Secondly, according to continuity equation (2.2-6) 
0

)(
=




+





rr

urρ

t

ρ mm

, there is 
0=+




+




+





r

uρ

r

u
ρ

r

ρ
u

t

ρ m
m

mm

. 

Substitute equations (2.4-3)6,7,9 into it to obtain 0)2(ln)1( =+++ UdξdUukdξGdutr-  , substituting 

(2.4-1)2 trUu =  into this equations obtains 0)2(lnln)1(ln =++−+ kUξdGdUξddU . 

Thirdly, according to momentum equation (2.2-7)2, this equation can be transformed into 

0
)35(35

2
2

=



+




+




+





r

ρ

ρ

c

r

cc

r

u
u

t

u m

m

sss

 using the single particle gas sound velocity formula m
s ρ

p
c

)35(2
=

. Substituting 

formulas (2.4-3)8,9,11,4 into this formula obtains 
0)]2(

)35(
[

ln

ln

35ln
)(

22222

=++−++− k
r

c

t

u

r

u
r

ξd

GCdc

ξd

dU

U

r

t

αu

r

u ss

, 

and then applying formula(2.4-1)2 to obtain 
0

35

2
)

1
(

ln

ln

35ln
)1( 2

22

=
+

+−++−
k

C
α

UU
ξd

GCdC

ξd

dU
U

. 

Fourthly, according to the energy equation (2.2-8), the Euler operator(2.2-4)2 is used to transform it into 

0))(2()()32(
321322 =+++−

−−
rcutcρcrρutρρc ssmsmmms , and formulas(2.4-3)6,7,10,11 are 

substituted into these formulas to obtain
0)(

ln

ln
3)

1
(3

ln

ln
)( =−+−++−−

t

α

r

u

ξd

Cd

tr

u

r

-uk

ξd

Gd

t

α

r

u

. Based on these, 

formula(2.4-1)2 is used to deduce 0)3()3(ln)]([ln)1( 3 =+−+− -kUξdGCdU . 

2.4.2 Further Evolution of the Equations System  

The equations (2.4-3)1,2,3 can be further evolved into the following equations 

))( 21 (U,CΔU,CΔdCdU =
                            (2.4-4)1 

])([])([ln 2 ,CCUΔ,CCUΔdCξd =
                       (2.4-4)2 
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In the above equation: 

])35()2(2[)1)(1()( 2
1 λkU-CUUUU,CΔ −+−−= 

                   (2.4-4)3 

])]1(5[)3(3])1[()1)(1[()( 22
2 −++−+−+−−= UCkλCλUUUUCU,CΔ 

       (2.4-4)4 

22 )1()( −−= UCU,CΔ                              (2.4-4)5  

Where 11 −= λ . 

Argument the above: 

Firstly, according to (2.4-3), there is )1(]3)3([lnlnlnln 3 −−−+= UαkUξdCdξdGd , substituting this equation 

into (2.4-3)1 to obtain 0ln]135[)1()3( =+−+ ξd-UCdCUdUC  . In this equation let
31 Ca =

, 
11 −=Ub

, 

]135[1 -UCd =
, then 

0ln111 =++ ξdddCbdUa
 is obtained. 

Secondly, according to equation (2.4-3)2 there is 
0)2(

35
)

1
(

ln

ln

ln

ln

35ln
)1(

2222

=++−+++− k
C

α
UU

ξd

Cd

γ

C

ξd

GdC

ξd

dU
U

. Substituting 

equation(2.4-3)3 into this equation obtains 
0ln]}

)1)(35(

)11(3
3[)

1
({3)1( 2 =

−

−−
++−++− ξd

U

kα-
C

α
UUCdCdUU

, and let 

11 −= λ ,
12 −=Ua

,
Cb 32= , 

]])1)(35([]3[3[)1( 2
2 −+−+−= UkλCUUd 

, then 
0ln222 =++ ξdddCbdUa

is 

obtained. 

Thirdly, Calculate using the two formulas derived above: 

0ln111 =++ ξdddCbdUa
× 2d -

0ln222 =++ ξdddCbdUa
× 1d , from this obtain 

)()( 21121221 dadadbdbdCdU −−=
; In this 

equation let 12211 dbdb(U,C)Δ −=
, 21122 )( dadaU,CΔ −=

, thus, 
))( 21 (U,CΔU,CΔdCdU =

is obtained.  

Regarding 122

11

dbd

bΔ

−

=

, substitute the previously setting 1

1

−

=

U

b

, C

b

3

2 =

, ]135

[1

−

=

U

Cd

,
]
)1)(35(

3
3[)

1
( 2

2
−

+
−+−=

U

kλ
C

α
UUd

 into 

this equation, and take 11 −= λ to derive 
])35()2(2[)1)(1()( 2

1 λkU-CUUUU,CΔ −+−−= 
. 

Regarding 21

122

da

daΔ

−

=

, substitute the previously setting 3

C
a1=

, 1

2

−

=

U

a

, and 
]
1

3

5
[1 α

-U
Cd +=

,
]
)1)(35(

3
3[

)
1

2

2

−

+
−

+−=

U

kλ
C

α
U(Ud

 into 

this equation, derive 
])]1(5[)3(3])1[()1)(1[()( 22

2 −++−+−+−−= UCkλCλUUUUCU,CΔ 
. 

Fourthly, calculate using the two formulas derived above: 
0ln111 =++ ξdddCbdUa

× 2a -
0ln222 =++ ξdddCbdUa

× 1a , 

from this obtain 
)()(ln 21121221 dadababadCξd −−=
, let 1221)( babaU,C −=

 and 21122 )( dadaU,CΔ −=
has been 

setted earlier, thus, the original formula becomes 
])([])([ln 2 ,CCUΔ,CCUΔdCξd =

. 

Regarding 1221 babaΔ −=
, substituting the previously setting 

31 Ca =
, 

12 −=Ua
, and 

11 −=Ub
, 

Cb 32= into this 

equation, derive 
22 )1()( −−= UCU,CΔ . 

Equations (2.4-4)1,2 must be solved numerically to obtain the solution function 

]C,[ (1)CUU =                                 (2.4-5)1 

and 

]C,[ (2)CZZ = , ξln=Z                            (2.4-5)2 

where 
(1)C and 

(2)C ～integral constants. 

 

2.5 The Solution of the Equation System and Its Related Formula 

2.5.1 Deriving the Relevant Formula in Implosion 

According to fluid mechanics theory, the volume elements in a fluid move along a certain streamline in the flow 
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field, and the position vector of the streamline can be expressed as )(a,trr = , where )0(a,ra=  is the 

Lagrangian coordinate of the streamline; Due to the introduction of substitution variable ξ , )(a,trr=  can be 

expressed as the following parametric equation 



=

=

)(

)(

ξtt

a,rr 

. If the function )( a,rr =  is obtained, the motion 

law of the implosive fluid is determined; It should be pointed out that according to formula (2.4-1)1,   

corresponding to 0=t  is 
= , so the Lagrangian coordinate )0(a,ra=  can also be written as 

),( = ara
. 

The streamline represented by function )( a,rr =  is divided into two branches: one starts from the starting 

point of implosion 
),( aoao tr
 and reaches point 

)( a,
, and then the other branch of the streamline starts from 

point 
)(a, ξ

 and intersects with the reflected shock wave.When discussing the r～t  and C～U planes in the 

following text,it will be pointed out that the streamline originating from the starting point 
),( aoao tr
 is located in 

the lower half plane of r～t , corresponding to the upper half plane of C～U with 0U ; The streamline 

originating from 
)( a,

is located in the upper r～t half plane, corresponding to the lower half plane of 
C～U with 0U .  

The streamline expression originating from the starting point 
),( aoao tr
of the implosion is 

βαβ CUaar 311 ])([])(1[),( −−−=                       (2.5-1)1 

λβ 32−=  in the formula, for the inner surface of DT ice, its starting position vector hor
 is the reference vector 

or , and its Lagrangian coordinate is hoa
, then the above formula becomes 

βαβ
hohoh CUaarr 311 ])([])(1[),( −−−== 

                 (2.5-1)2 

where hr ～inner surface radius of the DT ice. 

Formula (2.5-1)1 satisfies the boundary conditions: 

aoξ
rr =

=1                                  (2.5-1)3 

To achieve this, the above conditions (2.4-2)3 αC 1)1( ==  must be met. 

Formula (2.5-1)1 must also meet the boundary conditions 
ar

ξ
=

=                                   (2.5-1)5 

where 
= ～ the  value corresponding to 0=t . 

To meet the above two boundary conditions, the following formula must exist 

β
ao Ura 13})]1(1[{ −=

 and 
0)( =C

, 
0)( =U

             (2.5-1)6 

and 
1)(

1
= 


C

, which is the formula (2.5-7)2 that will be derived later. 

Argument the above: 

Firstly, according to formula dtdru =  and (2.4-1)2, 
rdtUd lnln =

can be obtained. 

According to formula (2.4-1)1, 
)(

-1
tru-rttdtdξ o

α
o =

is obtained, substitute formula (2.4-1)2 into it to 

obtain
])1([)( o

α
o rrU-tttdtdξ =

, then substitute formula (2.4-1)1 into this formula to obtain 

tdU-ξd ln])1([ln =
; Substitute the above formula into the previous formula 

rdtUd lnln =
 to obtain 

]1)([)(lnln −= ξUξUξdrd . 

Secondly, according to equation (2.4-3)1, there is 0ln)2(ln)1( =++−+ ξdκUGdUdU . Divide the two sides by 
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)1( −U to obtain 0]ln)2[()1(ln)1( =+−++− ξκdUUGdUdU . Substitute )1(lnln −= UUξdrd  in "Firstly" into 

this equation to obtain 0ln)2(ln)1()1( =+++−− rdκGdUUd . U  in this equation will be mentioned later: 

1U , and based on this, 
(3)2)1( ic

κ CGrU =− +

 can be derived, where 
(3)
icC

～constant.  

Thirdly, the sound velocity formula ms ρpc )35(
2
=

 of a single particle gas is substituted into the adiabatic 

equation 
A=

35
mρp

 to obtain 
A=γρc

-
ms

322

, substitute formulas(2.4-1)3,4 into this equation and use 

formula (2.4-1)1 to obtain 
A)35()(][)(])([ 1

0
211)(γ21 −−− = γk

mo
α

oo
κ rρrtGrrCrξα 

, note that for the adiabatic 

process const=A of the same streamline, therefore, the right side of the equation is a constant, set it to 
(4)
icC

, 

and thus 
(4)3221 )(])([ ic

κα CGrrCrξα =−

is derived.  

Fourthly, from the formula 
(3)2)1( ic

κ CGrU =− +

of "Secondly" there is )1()( )2((3) UrCξG κ −= +−
, substitute this 

into the above formula and take 
1(3)(4)(5) ][ CCC = , where λβ 32−= , then the formula for )( a,rr =  can 

be derivedas 
βαβ CUCr 311(5) ][]1[ −−−=  . 

Fifthly, determine 
(5)C in the above formula. The above formula should satisfy the boundary condition (2.5-1)5, 

so there is 
βαβ CUCa 311(5) )]([])(1[ −


−

−= 
. Substitute formula(2.5-7)2 

1)(
1

=  C
α

 derived 

from the following into this formula, and note that according to formula (2.4-1)1: because there will be no 

0=r at 0=t , there must be 
= ; According to formulas (2.4-1)2,3: since u and sc are finite values at 0=t , 

so there must be 
0)( =C

, 
0)( =U

 and thus 
(5)3 Ca β =− , substituting this to the original equation 

obtains 
βαββ CUar 3113 ][]1[ −−− −= 

. 

The above formula should also satisfy the boundary condition(2.5-1)3 formula, so there is 

βββ CUa

r
313 ])1([])1(1[ −−− −

=

 . Substituting (2.4-2)3 formula into this formula obtains 
β

ao Ur

C
1

(5)

)]1(1[ −

=

; 

Substituting this into the original formula of r  obtains 
βαβ CUar 311 ])([])(1[ −−−= 

. 

Combine the obtained 
β

ao UrC 1(5) )]1(1[ −=
 and 

(5)3 Ca β =−  to obtain 
β

ao Ura 13})]1(1[{ −=
. 

The expression for function 
)(ξρm is:  




361 }](1)1[)](1[{])([)( UξUξCρξρ α
mom −−=

                 (2.5-2)1 

At 0=t , the above formula becomes 




36 (1)]1[)( Uρρ mom −=                         (2.5-2)2 

From the above formula: the closer the )(ξU  value is to 1, the greater the 
)( mρ

 value, so then the stronger 

the compression. 

Argument the above:  

In the process of demonstrating formula (2.5-2)1 there is equation 
(3)2)1( ic

κ CGrU =− +

, according to this formula 
1-)2()3( )1( UrCG ic −= +− 

 can be obtained,substitute formula (2.5-1)1 into this formula and transform it to obtain 
1)2()2(312)3( ]1[])[( −+++ −=

  UCaCG α
ic ; From this formula and according to formulas(2.4-2)2,4 
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 
)2(1)2(32)3( ])1(1[ +−++ −= UaCic  is obtained, and substitute this into the original formula and transform it to 

obtain
1)2()2(31 })]1(1[)1({][ −++

−−=


 UUCG α
; Substitute this formula and formulas(2.5-1)1,6 into formula 

(2.4-1)4 and transform it ,obtain formula (2.5-2)1. 

At = 
, substituting formula(2.5-1)6, and substituting formula(2.5-7)2 

1)(
1

= 

C

 derived below into the 

above formula obtains 



36 (1)]1[)( Uρρ mom −= . 

The expression for velocity ),( ξauu =  at 
0tto is 

)]([]),([),( 111 ξUξarrcξau αα
oso −−=

                     (2.5-3)1 

The expression for velocity 
),( au

 at 0=t  is 

11)(),( −
 −= α

oso arcξau M
                        (2.5-3)2 

Starting time of implosion: 

)]1([)1,( Ucau so −=
                           (2.5-3)3 

where 
)()( =  CUM
～Mach number,will be discussed in formula (2.5-7)1 below. 

Argument the above: 

Firstly, according to equation (2.4-1)1, there is 
αα

oo rrtt 11 ))(( =
. Substituting this into formula (2.4-1)2 

obtains 
1-11 ))(()(   rrUtru aooo−=

. Substituting formula(2.4-2)2 into this formula obtains 

equation(2.5-3)1. 

Secondly, At 0=t i.e. at = 
, formula(2.5-3)1 becomes 

)]([]),([),(
111


−

 −=  Uarrcξau
αα

oso
. 

Substituting formula(2.5-1)5, and substituting formula (2.5-7)1,(2.5-7)2 which will be discussed below, into this 

formula obtains 
11][),( −

 −= α
oso arcξau M

. 

Thirdly, at the starting time 1= , so the formula(2.5-3)1 becomes 
)]1([])1,([)1,( 11 Uarrcau α

oso −−=
. Based 

on this,can derive 
)]1([)1,( Ucau so −=

 using initial condition(2.5-1)3.  

According to formula (2.5-1)1, the following inference can be made: 

Inference 1: according to formula (2.5-1)1 and boundary conditions (2.5-1)3, (2.5-1)6:for a given  , if the 

starting vector aor
of the streamline 

)( a,rr =
is given, then its Lagrangian coordinate a  is determined, and 

thus this streamline is also determined. 

Inference 2: There is a relationship between the streamline 
)( ,arr hoh =  with a starting position vector of 

or  and the streamline 
)( a,rr =

 with a starting position vector of aor
, as follows 

aooho rra,r,ar =)()( 
                        (2.5-4)1 

as well as 

aooho rraa =
                             (2.5-4)2 

The above formula indicates that if the streamline 
)( ,arr hoh =  at the inner surface of DT ice is given, then 

the streamline 
)( a,rr =

of any given starting vector aor
inside DT also is determined. 

Argument the above:  

For the given  , hoa
, a and the same  , use the(2.5-1)2 formula÷(2.5-1)1 formula to obtain 
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aooho rra,r,ar =)()( 
, and according to the boundary condition (2.5-1)5 formula, obtain 

aooho rraa =
. 

2.5.2 Discussion on Content Related to the Function ]C,[ (1)CUU =  of Solution 

The above formulas (2.5-1)2 and (2.5-2) for determining the law and state of implosion flow are all related to the 

solution function ]C,[ (1)CUU = , which will be discussed below. 

2.5.2.1 Establishing the r～t  Coordinate Plane 

According to the parameter equation 



=

=

)(

)(

ξtt

a,rr 

: there exists a dimensionless coordinate plane 00 tt～rr
as 

shown in Figure 2, the trace of streamline )(a,trr=  can be drawn in it. Below the 00 tt～rr
 plane is 

abbreviated as the r～t  plane. 

 

r0/r0

=1

Z

Z

A A

s1

s1*t1*/t0

Fig 2.

O
r/ro

t/t0

DTgas DTice

-t0/t0

=-1

the/t0

a/r0 aho/r0

M

 
 

Give const

ξ=

a given value, formula (2.4-1)1 expresses a given curve in the r～t  plane. Given different values 

for const , then a curve cluster 
constttrrξ

α
oo == )(

 converging at the origin O can be obtained. 

There will be intersection points between streamline )(a,trr=  and curve cluster constξ= . If 

)(a,trr= intersects with a certain curve *ξ
 in the curve cluster at point M, and draw the vertical line of the 

0r/r
 axis and 0t/t

 axis through point M,then the coordinates at their foot point are the 0/rr*  coordinate and 

0/tt* coordinate of streamline )(a,trr= , respectively. Therefore, curve cluster constξ=  is the parameter 

coordinate line of parameter equation 



=

=

)(

)(

ξtt

a,rr 

. 

When demonstrating formula (2.5-1)1 it was obtained that )1(lnln −= UUξdrd , for curve cluster constξ=  

its left side becomes infinite. In order to this formula to hold true for curve cluster constξ= , the right side must 

also be infinite,so there must be 01)( =−ξU ; Thus, 01)( =−ξU corresponds to curve cluster constξ= , but for 

solution function ][UU = , constξ , so there will be no solution function 1][ =U . 

In addition, due to 0(1)1 −U in formula (2.5-2)1, if →)(ξC , then 1

21 })](1[)]([
=
→−

U
C

λα ξUξCξ

 becomes an 

indeterminateform, resulting in the uncertainty of 
)(ξρm  value, which corresponds to the discountinuity of 
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parameter at the parameter discontinuity interface; But if )(ξC  takes a certain finite value, then 
0)( =ξρm , 

indicates that there is a vacuum at that point. 

In summary, the curve cluster constξ=  corresponds to 1)( =ξU , based on this, the inference is as follows: 

Firstly, if →)(ξC , then corresponds to the parameter discontinuity interface,it will be pointed out in the 

discussion of singularity in the later:this corresponds to singularity 6P . 

Secondly, if )(ξC takes a finite value, then it corresponds to vacuum. 

Regarding the parameter discontinuity interface, the following two will be involved: 

Firstly, material interface～the inner surface hor
 of DT ice at the starting time of implosion,the density of DT 

gas at this point is a tiny quantity compared to DT ice, can be approximated as vacuum.This corresponds to a 

finite value of )(ξC . This is consistent with the previously taken hor
as the reference vector, so αC 11)( == , 

Therefore, the parameter discontinuity interface here i.e. material interface and corresponds to 
1== fξ

. 

Secondly, the reflected shock wave.When the material interface propagates as a parameter discontinuity interface 

to the center of the implosion, a reflected shock wave is immediately emitted out from the center, this 

corresponds to 
1== sξ

. 

Argument the above: 

Regarding 
1=sξ

, referring to reference [4]: for the incident wave (L) and the reflected wave (R), the wave 

amplitudes are 
LLRR rRr =

and LLRR uRu  =
respectively,the radiation power is 

2
LLL uZP =

 and 
2

RRR uZP =
 

respectively; Where Lr and Rr  ～fluctuation amplitude, LRR
 ～ reflection coefficient, Lu  and Ru  ～

amplitude change velocity, LZ  and RZ  ～incident and reflection impedance; If the energy loss during 

reflection is ignored, then there is 
22

RRLL uZuZ  =
due to energy conservation. Substituting LLRR uRu  =

 into 

this formula obtains 
2

LRRL RZZ =
. 

Still according to literature (F.S. Crawford, 1981): impedance ufZ =
, where f  ～the damping force, 

u  ～the phase velocity; Due to the incident and reflected waves being in the same medium DT gas,  so that 

there is RL ZZ =
, thus 

2
LRRL RZZ =

 becomes 
1=LRR

. Therefore formula 
LLRR rRr =

 becomes LR rr =
, 

there is 

α
ooL

α
ooR ttrrttrr )()( =

 by this, and this formula becomes LRξ =
 according to formula (2.4 -1)1; 

But for implosion,the incident wave surface is the material interface hor
, the reflected wave is the reflected 

shock wave, and the 
1=fξ

 corresponding to the material interface is 
1=L , therefore 

1=Rξ
is 

1=sξ
. 

For DT ice or gas in the ring target, different layers can be distinguished based on the different position vector 
r . When the centrally symmetric driving pressure acts on a certain layer, the pressure is transmitted in this way: 

fluids between different layers move relative to each other due to compression, resulting in compression waves 

transmitted from the outside to the inside and along the compression direction. 

2.5.2.2 In the r～t  Plane, Representing the Implosion Process 

Due to that the DT ice layer is a thin layer,the transmission of compression waves is completed in a very short 

time, therefore can approximately consider as: all layers within the DT ice will be subjected to the same value, 

radial driving pressure at the same time. 

Regarding the DT ice thickness ir , there exists the following formula 

cocioi rrrr  =
 or hohioi rrrr  =

                      (2.5-5)1 

Where ior
 ～DT ice layer initial thickness; cor

, cr ～DT ice outer surface initial radius, outer surface radius: 

hor
, hr ～DT ice inner surface initial radius,inner surface radius. 

According to the above formula, regarding the mass density mc
 of DT ice, approximately consider as: the 

mass inside the ice layer is uniformly distributed, then the following formula exists 



http://apr.ccsenet.org Applied Physics Research Vol. 16, No. 1; 2024 

242 

2)( ccomcomc rr =
                             (2.5-5)2 

where mcρ
 ～the DT ice density, chc rrr =+ 2)(

 ～the average radius of the DT ice layer. 

Same principle, for the average mass of the center DT gas after the stagnate, and for the mass  of the ring target 

shell, there exists the following formulas 
2)( heomhomhe rr =

, 
2)( shshomshomsh rr =

                  (2.5-5)3.4 

where mhoρ
, mheρ

 ～center DT gas initial density, end density of stagnate; mshρ
, mshoρ ～ring target shell 

density, shell initial density. 

Argument the above: 

For ir : regarding )1()1()()()( chcohoccohchocoiio rrrrrrrrrrrr −−=−−=  or 

)1()1( −−= hchhocohoiio rrrrrrrr  , discuss hoco rr
in formula: use equation (2.5-4)1 here, 

where hho r,ar =)( 
and hoo rr =

, taken 
),()(  cc ara,r =

, then there is coao rr =
, hence there is 

cohoch rrrr =
, thus deriving cocioi rrrr  =  or hohioi rrrr  =

 from the original formula. 

For mc
, if approximately consider as: within the DT ice there is no parameter discontinuity interface,and the 

mass is uniformly distributed, then according to the law of mass conservation there is  comcocmc VV  =
, where 

coV
, cV ～DT ice layer volume and initial volume; According to formula (2.2-5)1, for DT ice layer this formula 

holds: ihchchchcc rrrRπrrrrRπrrRπV ]2)([4))((2)(2 22222 +=−+=−=
, note that chc rrr =+ 2)(

 is the 

average radius of the DT ice layer, so icc rrRπV 24=
, hence the original formula becomes 

iocomcoicmc rrrr  =
; Substituting formula (2.5-5)1 into this formula obtains 

2)( ccomcomc rr =
. 

For mho
and mshρ

, due to there is no parameter discontinuity interface within the hot spot after stagnate end, 

and can approximately consider as: there is no parameter discontinuity interface within the ring target shell,so 

the mass is uniformly distributed.Therefore, according to the law of mass conservation, formulas (2.5-5)3,4 can 

be derived in the same way as formula (2.5-5)2. 

Regarding the central DT gas, as shown in Figure 1, the interface between DT ice and DT gas is a material 

interface with a position vector hor
, so which is a parameter discontinuity interface; Since the curve cluster 

constξ =  corresponds to the parameter discontinuity interface, as shown in Figure 2, at the starting time of 

implosion ot , the discontinuity interface DS  will propagate as a disturbance wave from the implosion initial 

point Z to the center point O along the curve OZ ~ , and reach the O point at time 0=t ; At the same time as the 

discontinuity interface DS is emitted,the fluid element at the material interface hor
 also starts moving along the 

streamline AZ~  from point Z, and also reaching point A  at time 0=t . 

The discontinuity interface DS  goes to a place, density of the front and rear sides of the place is inconsistent; 

The DS  is a compressive wave, at the point where the DS  wave surface did not reach, the layer of the DT gas 

had not been disturbed by compression waves, so remained stationary, only the layer where the DS  wave 

surface reached began to move. As shown in Figure 2, before the DS  wave surface is reached, the fluid element 

at point *Z in DT gas is still at rest; When the DS  wave surface arrives, the fluid element at that point begins to 

move along the streamline **~AZ
, and also reaches *A  point at time 0=t . 

The streamline AZ~  and **~AZ
are expressed by formulas (2.5-1)2,1 respectively; As mentioned earlier,If the 

starting position vector hor
is given, then the streamline AZ~ is determined; And any streamline **~AZ

 inside 

DT is also determined accordingly. 

When wave surface DS  propagates to point O, a reflected shock wave sξ
is immediately emitted from the point 

O, at this time the stagnate begins: shock wave sξ
 will meet various streamline such as AZ~ and **~AZ

 in 
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sequence; Due to that the shock wave sξ
is a parameter discontinuity interface, the implosive fluid passes 

through the shock wave surface and rushes towards the center point O, causing a sharp decrease in velocity to 

zero, thereby sequentially entering the stagnate; When the reflected shock wave sξ
 reaches the DT ice -gas 

interface,the velocity inside the center DT gas is all reduced to zero, and the stagnate ends at this time. 

2.5.2.3 Establishing the C～U  Coordinate Plane 

As a solution to equation(2.4-4)1, function ]C,[ (1)CUU =  represents a solution curve in the C～U  coordinate 

plane. 

The range of values for C and U  

Firstly, according to formula(2.4-1)1: 0ξ , and since C appears in the 
β-α ξC 31 )]([  term of formula 

(2.5-1)1, therefore there must be 0C . 

Secondly, due to 0u , thus according to formula(2.4-1)2: there must be 0U  in the 
00 tt

 range, and 
0U  in the 0t  range. 

Thirdly, there is 1U in the 
00 tt

range. 

Fourthly, in summary, as shown in Figure 3, the range of values for C  and U  are located in the common area 

to the right of the U  axis and below the 1=U  line. 

C

U

P4
0

C+U=1

1
P6

P2

C=1/α

∞

(1,0)

Fig 3.

U(1/α)

α=0.69
 

Argument the above:  

Regarding 1U , according to formula (2.4-1)1, there is 0=  at 0=r ; when changing from )0,0( = tr  to 

)0,( == tar  changes from 0= to = ; So, before time 0=t ,   is an increasing function; Hence 0d , that 

is 0ln d , and for implosion 0dr  ,that is 0ln rd ; Thus, the left side of 1)(

)(

ln

ln

−
=

ξU

ξU

ξd

rd

 obtained in the 

proving formula(2.5-1)1 must be less than zero; Due to 0U in the 
00 tt

range, hence 1U is sure. 

2.5.2.4 The Singularities of Equation (2.4-4)1 
)()( 21 U,CΔU,CΔdCdU =
in the C～U  Plane 

If )(

)(

2

1

U,CΔ

U,CΔ

is the unique deterministic function at point 
),( UCPn in the C～U  plane, then the equation has a 

unique deterministic solution at that point; If the value of 2

1

Δ

Δ

at point 
),( UCPn  is uncertain, then point nP is a 

singularity, and the equation will have many solution curve passing through this singularity. 

Equation 
)()( 21 U,CΔU,CΔdCdU =
 has seven singularity, and this article involves the following three: 6P , 2P , 

and 4P . 

At point 
][6 const,UCP ==

, it can be proven that 
=21 ΔΔ

, so this point is a singularity; If 1=U  then the 

6P  singularity corresponds to the parameter discontinuity interface. 
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Argument the above: 

If there is 1=U  at the singularity 6P , then formula (2.5-2)1 becomes an indeterminate form, this makes the 

mρ
 value uncertain,that corresponds exactly to the parameter discontinuity interface, and this is also consistent 

with curve cluster constξ=  that corresponds to parameter discontinuity interface; Therefore, the parameter 

discontinuity interface corresponds to the singularity 6P . 

There is a singularity 2P in the upper half plane of C～U , which has the following characteristics: 

if a solution curve must pass through the straight line 1=+UC in the upper half plane, then the solution curve 

that conforms to the physical meaning must pass at the singularity 2P ; When taking 02 =− λk , the coordinates 

of 2P  are 





−=

=

λU

λC

P

P

12

2

                                  (2.5-6) 

Where λ  must meet 10   . 

Argument the above: 

Firstly, according to formula (2.4-4)3 can inferred: there is 
)35()2(])35()2(1[2

1 λkUλkUCΔ −−−+−+= 
 on 

the straight line 1=+UC ; In addition, 
02 =Δ

can also be derived on the straight line 1=++ UC . 

Therefore, if equation 0)35()2(])35()2(1[2 =−−−+−+ λkUλkU   is satisfied at 1=+UC , then 21 ΔΔ
 

becomes an indeterminate form, resulting in the existence of a singularity. 

When 02 =− λk and 01 −λ are taken, the above equation has a solution −=1U , and the corresponding point 

on line 1=+UC is )1,(  − , so the coordinate of 2P  is )1,(  − . 

Secondly, if the solution curve intersects with the straight line 1=+UC  at point *P ; At this point 
01

, 
02

, 

but at UC −=1 , according to (2.4-4)5 formula: 0= ; Thus, according to equations (2.4-4)1,2, 0=dCd  and 

0=dUd  can be derived; From this, it is known that functions )(C=  and )(U=  have extreme values at 

point *P on the 1=+UC line.Therefore, )(C and )(U  are double valued functions of 


 in the neighbourhood 

of point *P . However, the functions )(CC =  and )(UU =  that conform to physical meaning must be a single 

valued function of 


, so the corresponding solution curve will not cross line 1=+UC at the points of 
01

 and 

02
, but rather at the point of 

01=
 and 

02=
～ the singularity 2P , passes through the straight line 1=+UC . 

At point
)00(4 == ,UCP

, according to formulas (2.4-4)3,4: 21 ΔΔ
 becomes an indeterminate form, hence 4P  is 

a singularity. 4P  has the following characteristics: 

Firstly, when the solution curve ]C,[ (1)CUU =  enters the lower half plane from the upper half plane of C～U , it 

must pass through the singularity 4P , this corresponds to the implosion streamline 
),( hoarr =

crossing the 

0r/r
 axis from the lower half plane of r～t  into the upper half plane. 

Secondly, in the neighbourhood of singularity 4P , there is a linear relationship between U and C  

)()(  =  CU M
                                 (2.5-7)1 

where 0M  ～constant, i.e. "Mach number"; The above formula takes the "+" sign on the upper half plane and 

the "-" sign on the lower half plane. 

Thirdly, there exists the following formula in the neighbourhood of singularity 4P  

1)(
1

= 

C

                                 (2.5-7)2 

Argument the above: 
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Firstly, when discussing the value ranges of C  and U ,it has been stated that in the 
00 tt

 ranges: 0U , 

and in the 0t  ranges: 0U .Therefore, when the implosion streamline 
),( hoarr =

crosses the 0r/r
 axis 

from the lower half plane of r～t  and enters its upper half plane, the solution curve ]C,[ (1)CUU =  

corresponding to this process passes through the C  axis from the upper half plane of C～U  and enters its 

lower half plane; At the intersection of the solution curve and C  axis, there should be 0=U ; But as stated in 

the proof (2.5-1)1, this corresponds to =ξ , 
0)( =U

, 
0)( =C

; Therefore, when the solution curve enters 

the lower half plane from the upper half plane of C～U , it must pass through point 
]0)(0)([ ==   ,UC

. 

Secondly, in the neighbourhood of singularity 
)00(4 == ,UCP

, formulas(2.4-4)3,4 become 

UΔ
U
C =
=
=
0
01][

and 

CΔ
U
C =
=
=
0
02][

 after omitting second-order and third-order small quantities, respectively, resulting in 

CUdCdU
U
C =
=
=
0
0][

. Integrating this formula in the neighbourhood of point 
)00(4 == ,UCP

 obtains 

CCU )8(lnln = , with the constant of integration M=)8(C , resulting in CU M= ; So, in the first quadrant of 
C～U  the formula should take the sign "+", in the second quadrant should take the sign "-". 

Thirdly, in the neighbourhood of singularity 
)00(4 == ,UCP

, formulas (2.4-4)5,4 become 

1)]([
0
0 −=

=
=

U
CU,CΔ

 and 

CΔ
U
C =
=
=
0
02][

, respectively, resulting in equations (2.4-4)2 becoming 

CdCξd
U
C −=
=
=
0
0]ln[

. By integrating 

both sides and taking the constant of integration as 1, 
1)(

1
= 


C

 can be derived. 

2.5.2.5 The Solution Function ]C,[ (1)CUU =  and the Solution Curve  

By using the solution function ],[ (1)CCUU = , a solution curve can be drawn on the C～U  plane. According to 

formula(2.5-1)1, this solution curve corresponds to a cluster of implosive streamline 
),( hoarr =

; 

Since the implosion streamline starts at the material boundary, which is a parameter discontinuity interface, but 

the parameter discontinuity interface corresponds to 6P , therefore, the solution curve corresponding to the 

implosion streamline should start at the singularity 6P . 

From the implosion initiation to before the stagnate, the streamline 
),( hoarr =

 reaches the 0r/r
 axis 

within the 
00 tt

 range, so the corresponding solution curve should first pass through the singularity 2P  in 

the upper half plane of C～U  and then reach the singularity 4P ; In Figure 3, the two solution curves mentioned 

above are drawed: 26 ~PP
 and 42PP

. 

Regarding the solution curve 42PP
, if 02 =− λk , then it is a straight line CU M=  from singularity 2P  to 

singularity 4P , where 

λλ)1( −=M                                   (2.5-9) 

Argument the above:  

Substitute the coordinates 
λC P =2  and 

λU P −=12  of the singularity 2P at 02 =− λk into the right side of 

equation(2.4-4)1 to obtain CUdCdU = , substitute 
λC P =2  and 

λU P −=12  also into the right of this equation 

to obtain 

λ

C

U −
=
1

, thereby resulting in 

λ

dC

dU −
=
1

. Integrate to obtain 

)9(1
CC

λ
U +

−
=

 , which is a solution 

straight line with a slope of λλ)1( −=M originating from the singularity 2P ; If 0)9( =C  istaken, then 

)1( λCU −=  passes through 4P  point, so the straight line CU M= is the solution curve. 

2.5.2.6 Summary 

Discuss until now, the solution functions ][CUU =  corresponding to two solution curves 26 ~PP
 and 42PP
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have been obtained respectively. Thereby the parameters 
),( hoarr =

,
)( mρ=

, and other parameters of the 

implosion fluid can be obtained using such as formulas(2.5-1)2 and(2.5-2)1,2, etc, therefore describing the 

physical process of implosion. 

3. The Stagnate, Self-heating, and Ignition of DT 

3.1 Foreword 

The occurrence of stagnate,as shown in Figures 2 and 3, when the implosion proceeds to 0t , the streamline 

enters the upper half plane of tr～ ; The streamline then passes through the reflected shock wave and rushes 

towards the center, causing 0→r  due to the implosion velocity 0u . Thereby according to equation (2.4-1)2, 

this causing 0→u , so results in the stagnate of DT. 

At the moment 0=t  when the reflected shock wave s is emitted, the stagnate begins; As the reflected shock 

wave advances, the velocity of any streamline that meets it rapidly decreases to zero after passing through the 

shock wave, until the fluid element at the inner surface of the DT ice layer along the streamline 1~SA  meets the 

reflected shock wave. Since then, the flow velocity of all DT gases has decreased to zero, thus achieving 

complete stagnate. The corresponding moment is hett =
, the center DT gas with zero kinetic energy forms at 

the moment, its energy will be converted into internal energy. 

Self heating, if at the end of stagnate, the internal energy shows an increasing trend, i.e: 

0dtdEhe                                   (3.1-1) 

where heE
～internal energy density of the central gas. This causes the temperature of the central gas to 

continuously increase, leading to nuclear fusion .The process described in the above formula is called "self 

heating". 

Ignition, If at the end of the stagnate, the central gas occurs sufficient strong nuclear fusion due to self heating, 

the gas mass formed in this way is called a "hot spot"; If the hot spot continuously heats up,and the fusion energy 

inside it can continuously increase, causing the fusion energy to be transmitted externally, leading to complete 

nuclear fusion of the outer DT ice layer, then this process is called "ignition". 

3.2 The Center DT Gas Energy Equation and Self-heating Conditions 

3.2.1 Central DT Gas Energy Equation 

The energy equation for the center DT gas during stagnate is 

mredephe WWWWdtdE −−−=
                            (3.2-1) 

where εhe WdtdE =
～internal energy power density, depW

～the power density of α particle fusion deposited 

in the central DT gas, "deposition" refers to: when fusion occurs, α particles with greater kinetic energy escape 

and enter the surrounding DT ice layer, leaving  behind α particles, which are "deposited" α  particles; 

eW ～thermal conduction power density, rW ～radiation power density, mW ～pressure energy power density. 

According to reference [1], the formula for depW
is 

][)()( 3scmergfTWTW αheahedep =
                         (3.2-2)1 

In the above formula, according to (1.2-1)1,2formula 
][)( 32

scmergTvρAW mhαα =
 and 

][100648 240 erg/g.Aα =
, 

αf ～  particle deposition ratio coefficient. 

The formula for αf is 








+−

−
=

211601411

215423
3

2

ααα

ααα
α

,ifτττ

,ifτττ
f                         (3.2-2)2 

where ατ ～the "light thickness" of α particles, i.e. the penetrability of α particles. The formula for ατ  is 
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23210035.2)( hehemheheα T rρTτ =
                        (3.2-2)3 

where mheρ ～mass density of DT gas at the end of stagnate, 
][KeVThe ～the center DT gas temperature at the 

end of stagnate. 

Argument of formula (3.2-2)3: eeeheBe nneπnTKnΛ 21}]4)({ln[ln 2163 ==
 

Using formula 
== ln)(9

23
hehemheαheα T rρLrτ

 from literature (Stefano Atzeni, Jürgen Meyer-ter-Vehn, 

2008), the Coulomb logarithm ln in the formula comes from formula 
3

4 DeλnΛ =
in Xu & Jin, et al., (1981), 

where 
212)4( enTK eheBD  = ～the Debye length, en ～ the electron number density; From this, it can be 

derived that 
2163

0 ]4)(ln[ln eπnTK ehB=
; Calculate ee nnΛ 21ln =

, due to 
1en , this formula causes 

0ln  enΛ
, so there is constΛln  regarding en . Therefore, 

][1069.2 319 −= cmne  under standard 

conditions can be used, note that heBTK
is the energy carried by   particles during fusion ][52.3 MeV  [see 

formula (1,1-1)], thereby 102612ln = .Λ  is obtained, substituting this formula into the formula for ατ obtains 
23210035.2 hehemheα T rρτ =

. 

The formula for eW is  

][)( 3227
scmergrTATW heheehee =

                          (3.2-3)1 

][102824 2718 KeVscmerg.Ae =
                         (3.2-3)2 

where the dimension of heT
in the formula is KeV . 

Argument the above: 

According to heat transfer theory, the heat flux density of the thermal conductor is 
Tχe−=q

, where eχ
～

coefficient of thermal conductivity, due to comparing with electron, the very small coefficient of thermal 

conductivity of ions,it can be ignored. Therefore, the coefficient of thermal conductivity in the following text 

refers to the electronic coefficient of thermal conductivity eχ
. In the above formula, according to the gradient 

formula (2.2-1)2 of the ring coordinate, re)( rTT =
 is hold, thereby, there is 

rTχq e −=
. 

According to the above formula, it can be concluded that the heat conduction power density of the center DT gas 

is 
))((}])([{ 0 dVdSrTχΔVqSΔSSqW eSe −=−+= → , where S  and V  are the change in surface area 

and corresponding volume change. Using equation (2.2-5)1,2 and approximating )(rT  as a linear relationship 

rCT 0)1(= , 
))(( heheheee rTrχW −=

can be derived. 

In literature (Stefano Atzeni, Jürgen Meyer-ter-Vehn, 2008), the Fokker Planker equation of plasma dynamics 

was used to introduce the formula for eχ
. For equimolar DT there is 

]ln)([]34）8（[
2142523 ΛmeTKK.πχ eheBBe =

, Substituting this and all relevant data into the previous formula 

obtains 
][102824 322718 scmergrT.-W hehee =
. 

The formula for rW is 

][)( 3212
scmergTρATW hemherher =

                         (3.2-4)1 

][100583 212323 KeVsgcmerg.Ar =
                      (3.2-4)2 

where the dimension of heT
is ][KeV . 
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Argument the above:  

According to literature (Stefano Atzeni, Jürgen Meyer-ter-Vehn, 2008), the radiation loss of DT fusion plasma is 

mainly bremsstrahlung, with a power density of 

2233216 ])()[2364( eeBr nmcTKeπW =
. Substituting the 

electron number density en  of equimolar DT and other data into it, 

21223100583 hemher Tρ.W =
 can be 

obtained. 

The formula for mW  is 

]][[)()( 32321 scmergrTρATW hehemhemcomhomhem =
                (3.2-5)1 

In the formula 

2322 ])([10240.4 KeVgergAm =
                        (3.2-5)2 

the dimension of heT
is ][KeV . 

Argument the above: 

mW is the work done by the central DT gas pressure to the external, During the period 
]0[ he,t

 of stagnate, the 

DT ice layer on the outside contracts inward, while the reflected shock wave on the inside expands outward; 

There is a layer of DT gas between the former and the latter; But because the reflected shock wave is a strong 

shock wave, there is 12 pp 
, therefore, it can be approximated that the DT gas pressure 2p  after the reflected 

shock wave directly acts on the inner surface of the DT ice layer, causing resistance to its inward contraction. 

The work done by pressure 2p is hSdrpdVp 22 =
, where V and S ～respectively represent the volume and 

surface area of the center DT gas, and the corresponding power density is 
VSupVdtSdrpW hhm 22 ==

. 

Substituting formulas(2.2-5)1,2 into this formula obtains 
rupW hm 22=

. 

In the above formula, hu is the flow velocity in front of the reflected shock wave during stagnate, which can be 

calculated using formula (2.3-7).The original formula can be writte as 

hehemhemcomhogm rTρRW
232123

)(2 =
 using the ideal gas law,substituting the gas constant of equimolar DT 

into this formula, thereby he

hemhe

mco

mho
mm

r

Tρ
AW

23
21)(




=

and 
2322 ])([10240.4 KeVgergAm =

 are obtained.  

3.2.2 Deriving Self-heating Conditions 

Substituting equation (3.2-1) into formula (3.1-1), and then using formulas (3.2-2)1, (3.2-3)1, (3.2-4)1 and 

(3.2-5)1, the following inequality can be derived,this is the self heating condition: 

0)())(()()( 2 −+ hehemhehehemhehe TCrρTBrρTA
                   (3.2-6)1 

where 

21
)()( herheαhe TAfTσvATA −=  , 

2321)()( hemcomhomhe TATB =
, 

27
)( heehe TATC =

   (3.2-6)2,3,4 

3.3 Ignition and Ignition Criterion  

3.3.1 Physical Process and Ignition Conditions of Ignition 

If the center DT gas has reached the self heating condition at the end of the stagnate, keeping its temperature 

continuously rising, causing sufficient fusion energy αW  to be generated inside, forming a hot spot. And through 

the outer surface her
 of the hot spot, the energy is transferred to the DT ice layer in the neighbourhood dr , 

causing the internal energy to rise and undergo fusion, thereby forming the outer propagation surface 

drrr heh +=1  of the fusion, while the hot spot shrinks inward. 

The fusion energy inside the wave surface 
drrr heh +=1  also transfers some of the energy to the neighbourhood 
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dr , forming new wavefronts 
drrr hh += 12 ...

drrr hihi += −1 ..., If it continues like this, then a continuously 

spreading fusion wavefront is formed. 

To continue the above process, sufficient fusion energy αW  must be generated at the end of the stagnate, and the 

fusion energy αW  should be trend of increased, the fusion energy of outward transmission should be also 

increasing; This is the "ignition" process, the ignition conditions can be expressed as 

0])([ = fusTTα dtTdW
                               (3.3-1) 

where fusT ～the temperature required for reaching fusion. 

When the fusion energy is transmitted to the neighbourhood dr , the substances outside the original wave 

surface hir
 enters dr  and becomes the substances inside the new wave surface 

drrr hihi +=+1 , thereby 

increasing the mass inside the new wave surface 
drrr hihi +=+1 . 

3.3.2 Time Related to Fusion and Conditions for Completing Fusion 

Inertial constraint time hfet
, in the process of the fusion wave surface layer by layer spreading outward, the hot 

spot always provides fusion energy; With the continuous external transmission of fusion energy, the colder and 

denser substances outside the hot spot will enter the hot spot layer by layer, forming an inward contraction wave 

surface that is transmitted layer by layer, causing the hot spot to gradually decrease.The fusion wave propagates 

outward from the end time het
 of the stagnate, the heat spot disappears at hft

; The existence time 

hehfhfe ttt −=
of the hot spot is referred to as the "inertial constraint time ". According to literature (Stefano 

Atzeni, Jürgen Meyer-ter-Vehn, 2008), the inertial constraint time is 

shehehfe crt =
                                 (3.3-2) 

where 
21])35([ gheshe RTc =
～the sound velocity within the hot spot. 

The complete fusion reaction time fust
 refers to the time during which all DT within a certain volume can 

participate and complete fusion, and its expression is 

)(25
2

hehomhepfus TvMρmt =
                          (3.3-3) 

where hoM
～ the initial mass of the center DT gas.  

Argument the above:  

At a certain time neighborhood t  at the end of stagnate, the average probability of equimolar DT occurring 

fusion reaction in volume V is
4)(

2
tVTvn heDT 

; If all DT in V  must participate in completing the fusion 

reaction, then 
14)(

2
=tVTvn heDT 

 is required, so it can be derived that 
])([25

2
hehomhep TvMρmt 

 is required, 

hence 
])([25

2
hehomhepfus TvMρmt =

 should be taken.  

The condition for all DT to participate in and complete fusion within the inertial constraint time is  

21212121 )](10262[)( mhemceheho
-

mhemcehemhehe ρρTM.ρρTρr 
              (3.3-4) 

where mceρ
～the mass density of DT ice at the end of stagnate, the heT

dimension is KeV . 

Argument the above: 

In order for all DT to participate in and complete fusion within time hfet
, there must be 

1fushfe tt
; 

Substitute formulas(3.3-2,3), sound velocity 
21])35([ gheshe RTc =

, and (1.1-2)2 into this formula to obtain 

2121
4

22121 )()(}])35[(25{)( mhemcehehopgmhemcehemhehe ρρTkmmRρρTr 
, and then substitute all relevant data 

into this formula to obtain formula(3.3-4). 

3.3.3 Ignition Energy Equation 

Derive ignition energy equation 
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In the propagation of fusion wave surface hir
, wave surface hir

 outputs energy to its forward neighborhood 

dr ; Developing from hir
 to 

drrr hihi +=+1 , the energy equation within the wave surface 1+hir
 is 

hihihihrαhihihihi uSpVWWdrmεdu −−= 1)()(
                     (3.3-5)1 

The energy equation corresponding to the increase in mass in dr is 

hieααhihihihi VWfWdrdmuε ])1([ +−=
                        (3.3-5)2 

hiu
in the above formula～the velocity behind the wave surface, its expression is 

21)( mhjmhihighi ρρTRu =
                           (3.3-5)3   

in the above equations, hiε ～ pecific internal energy within the hir
 wave surface, him ～mass of the DT 

within hir
 wave surface, hiV

 and hiS ～the volume and surface area enclosed by the hir
 wave surface, 

hip
～pressure on the hir

 wave surface, mhiρ
 and hiT

～DT density and temperature within the hir
wave 

surface, mhjρ
～the density of DT ice in front of the hir

 wave surface. 

Argument the above: 

Firstly, wave surface hir
 developing into wave surface 

drrr hihi +=+1 , the energy equation within wave 

surface 1+hir
is mqdepε WWWW −+=

 according to the first law of thermodynamics. 

Regarding εW : the internal energy increment within the 1+hir
wave surface is 

)( hihimεd
, and thus the 

corresponding internal energy power density is
dtV

mεd
W

h

hihi
ε

1

)(
=

, but hi

hi

u

dr
dt =

 so there is hih

hihi
hiε

drV

mεd
uW

1

)(
=

. 

Regarding depW
: the dr  obtains fusion energy that is introduced from hir

, and the fusion power density in 

drrr hihi +=+1 is αW , while in 1+hir
 the fusion energy will continue to be transmitted outward. 

If the fusion energy shows an increasing trend, within 1+hir
 can still maintain the αW  value after energy 

transfer. 

Regarding req WWW +=
: due to that heat conduction should occur at the interface that is relatively stationary with 

the thermal conductive medium, but the wave surface 1+hir
 is rapidly propagating forward, so the thermal 

conductivity power density at this location should be disregarded, i.e. 
0=eW ; But there is outward radiation, 

hence 
0rW , resulting in rq WW −=

. 

Regarding mW : this is the work with a value hihihihim VuSpW =
 done outward by a fluid with a pressure of 

hip
 and a hiu

 rate of flow.  

In summary, the energy equation in the neighborhood dr  ahead becomes hihihihrα

hihihihi

uSpVWW

drmεdu

−−

=

1)(

)(

. 

Secondly, if the mass increment in the new wave surface 1+hir
is him

, the corresponding internal energy 

increment is hihi mε 
, make the internal energy power density hihihihihiε drVdmuεW =

. Corresponding to 

him
 is the fusion power density 

)1( αα fW −
 outputing to the neighboring dr in front through hir

, and eW  

input into dr  in the form of thermal conduction; Therefore, the energy equation should be hieαα

hihihihi

VWfW

drdmuε

])1([ +−

=

. 

Thirdly, the DT ice in front of the fusion wave surface 1+hir
 has a velocity 

01 u
 due to the disturbance not 

reaching; After 1+hir
 sweeps away, the fluid velocity hiu

 behind it can be derived as 
21)( mhjmhihighi ρρTRu =

 using the(2.3-7)’ formula of a strong shock wave. 
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Further changes in the ignition energy equation 

The following ignition energy equation can be further derived from equations (3.3-5)1,2,3 

34))(( --KKfKdtdTT erααhihi −=
                         (3.3-6)1 

2)1())(( -KfKdtdρρ eααmhimhi +−=
                         (3.3-6)2 

)310)(2( -KKWdtdW rααα −= 
                            (3.3-6)3 

where dimensionless quantity in the equation 

himhiαα ερτWK =
, 

himhirr ερτWK =
, himhiee ερτWK =

              (3.3-6)4,5,6 

Where hihi urτ=
～characteristic time, its expression is 

2121 )]()([ mhimichighi ρρTRr=
                           (3.3-6)7 

Argument the above:  

Firstly, hihihiherααhihi uSpVWWfWdtdm −−−= 1)(
 is obtained by changing equations3.3-5)1and (3.3-5)2; The 

left side of this equation uses himhihi Vρm =
and highi TRε 5.1=

, while the right side uses himhighi TρRp =
, 

highi TRε
2

3
=

and (2.2-5)1,2, can convert it to hihi

hi
mhihiherαα

ur

V
ρεVWWfW

3

4
)( 1 −−−

; Let hi

hi

u

r
τ=

 and 

himhi

α
α

ερ

τW
K =

, himhi

r
r

ερ

τW
K =

 and himhi

e
e

ερ

τW
K =

, then 
3

4
-- er

hi

hi

KKfK
dt

dT

T
−= 



 can be derived from the 

original equation. 

Secondly, substituting himhihi Vm =
 and 

dtudr hihi =
 into the left side of equation (3.3-5)2 obtains 

][ hi
mhihi

mhihi
hi

hi
hihi V

dt

d

dt

dV

dr

dm
u


 +=

, and then substituting equation (2.2-5)1 into this equation obtains 

)2(
dt

d
V

dr

dm
u mhi

mhi

mhi
hihi

hi

hi
hihi










 +=

, which is then transformed to derive 

2-)1( e
mhi

mhi

KfK
dt

d
+−= 







. 

Thirdly, by using equations(3.3-6)1+(3.3-6)2, 
310-])()[( rmhihimhihi KKdtTdT −= 

 is obtained through 

transformation; Substitute formula(1.1-2)2 into formula(1.2-1)1 to obtain 
21

4 ）（  AkWThimhi =
, and then 

substitute this into the previous formula to obtain 
)310-)(2( rKKWdtdW −=  

. 

Fourthly, substituting(3.3-5)3 formula

21)(
mhj

mhi
highi
ρ

ρ
TRu =

into hi

hi

u

r
τ=

, so 

21

21
)(

mhi

mij

hig

hi

ρ

ρ

)T(R

r
=

 is obtained. 

3.3.4 Deriving Ignition Criterion 

The analytical formula for the ignition criterion is 

0][]43[2.1)( 223221 −− cmKeVg.TTρρTrρ hehemhemcehehemhe               (3.3-7)1 

The approximate formula for the ignition criterion is 

][60.1 2cmKeVgTrρ hehemhe 
                         (3.3-7)2 

The dimension of heT
in the formula is KeV . The approximate ignition criterion equivalent to the above 

formula is 

][10226.1 22 cmMJDT F
                           (3.3-7)3 
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where heheDT rpF
in the formula. 

Argument the above: 

According to equation (3.3-6)3, in order for the ignition condition(3.3-1) to be valid, it is necessary to satisfy 

0]
3

10
[ − = fusTTrα -KK

. Substitute formulas(3.3-6)4,5 into this formula,and apply formulas (1.2-1)1, (3.2-4)1, 

(3.3-6)6, (1.1-2)2 and 
23 highi TR=

 to this formula to obtain 

0})]()([5{ 21232122
4

2
−− = fushi TTmhjmhihihigmhihimhirhimhiα ρρrTRTρATkρA 

. If the required temperature for 

fusion, i.e. fushehi TTT ==
, is reached at the end of the stagnate, 

thereby
)(5)(

23
4

22321
rheαhegmhemcehehemhe ATkATRρρTrρ −

 is obtained by changing the above formulas; 

Substituting relevant data into this formulas obtains 
)43(2.1)(

23221 .TTρρTrρ hehemhemcehehemhe −
. 

 

Fig 4.
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The graph corresponding to the equation corresponding to the above inequality is plotted in interval 

KeVThe 164 
of Figure 4 according to literature (Stefano Atzeni, Jürgen Meyer-ter-Vehn, 2008), the 

temperature required to achieve fusion is 
KeVTfus 15～5=

). 

y
ρ

ρ
Trρ

mhe

mce
hehemhe =21)(

is used as a function 

of
xThe = in the graph,and the )(xyy = graph is drawn ～ curve bam ~ ; According to the figure, 

21)(
mhe

mce
hehemhe

ρ

ρ
Trρ

 reaches its maximum value at point b;In addition, according to literature (Stefano Atzeni, 

Jürgen Meyer-ter-Vehn, 2008), for fuel with approximately equal pressure due to thermal equilibrium during 

ignition, there is 
1.0mcemhe ρρ

. Substituting this data and 
KeVThe 16=

 into the right side of formula (3.3-7)1 

obtains 
60.1hehemhe Trρ

. 

Substitute the ideal gas law mhhgh TRp =
into the definitional formula heheDT rpF

 to obtain 

hehemhegDT TrR =F
, and then substitute the ignition criterion(3.3-7)2 and gR  values into this formula to obtain 

][10226.1 22 cmMJDT F
. 

3.4 Regarding Temperature heT
 

The above, whether it is the self heating condition(3.2-6)1, ignition criterion(3.3-7)1, or the condition(3.3-4) that 

enables all DT to participate in and complete fusion within the inertial constraint time, all depend on the center 

DT gas stagnate temperature heT
; In the following text, there is(6.2-1)b formula gmceffce RραT

32
A=

 for the 

DT ice temperature during stagnate, which can be used as an approximate estimate of heT
; In fact, for the colder 

and denser DT ice surrounding the central DT gas, there is hche TT 
, so taking hche TT 

 is a conservative 

valuation. 

3.5 Summary 

In order to initiate nuclear fusion after the end of stagnate, must meet self heating conditions, and the conditions 
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for all DT to participate in and complete fusion must also be reached, as well as the ignition criterion must be 

met; Among them, the self heating condition is formula(3.2-6)1, the condition for completing fusion is formula 

(3.3-4), and the ignition criterion is formula(3.3-7)2. 

The equation corresponding to formula(3.3-4) is 

21212121 )](10262[)( mhemceheho
-

mhemcehemhehe ρρTM.ρρTρr =
. When the values of her

, mhemce ρρ
, and heT

 

have been calculated and hoM
is given, the right side of the equation is a fixed value.Therefore, in the coordinate 

system of Figure 4, the equation is a straight line cd  parallel to the horizontal axis; In this way, the range of 

ignition values can be achieved～ignition zone, should be located in the common part above curve bam ~ and 

straight line cd . 

4. Explosion Induced by Discharge (EIB) of Ring Target Shell 

4.1 Foreword 

The driving force of inertial confinement fusion discussed in this article is an external strong pulse magnetic 

field acting on the ring target. The pulse magnetic field causes a strong induced current in the ring target shell, 

causing a sharp phase change in the ring target shell and causing an EIB. The generated plasma undergoes a 

pinch effect due to the Lorentz force. 

As earlier in "2. The implosion of DT" mentioned: if the streamline 
)( ,arr ho=

 at the inner surface of DT 

ice is determined, then the flow field inside DT is also determined, which determines the energy accumulation 

during the implosion stagnate, and thus determines whether fusion can be triggered; So the pinch effect of the 

target ring shell caused by electric explosion should also be constrained by function 
)( ,arr ho=

. 

4.2 The Occurrence and Resistivity of EIB 

Under the action of a pulse magnetic field, the Joule heat generated by the induced current J  causes the ring 

target shell to rapidly heat up, resulting in a phase change: solid state→liquid state→gas state→breakdown. At 

the same time, the resistivity also changes accordingly. As the change in resistivi ty closely corresponds to the 

phase change process, therefore, changes in resistivity can be used to reflect the physical process of EIB. 

There are several methods for expressing changes in resistivity, and this article intends to use the "Tucker 

specific action model" among them (refer to literature (Yexun Li, 2002)); This model suggests that due to the 

completion of EIB in microseconds, the energy losses from heat conduction, convection, and radiation can be 

ignored, thus can be considered that explosion is only an adiabatic process in which resistance generates Joule 

heat.  

This process can be divided into three categories: unchanged of state, change of state and breakdown 

process.unchanged of state ,only increases temperature and resistivity; change of state, the temperature remains 

unchanged and the resistivity continues to increase; When the breakdown occurs, plasma is formed, and the 

resistivity drops sharply; Below, 321 ,,j =  is used to represent three states: solid, liquid and gas.  

4.2.1 Expression of the Law of Resistivity Change 

When the unchanged of state, the j state resistivity is expressed by the following formula: 

)()(
)( jotgtg

jjjoj Aρgρ
−

=
                                (4.2-1)1 

In the above formula:  

)]()([1
)( joje tgtg

jojejj ρρA
−

=
                              (4.2-1)a 

According to literature (Yexun Li, 2002), )(tg  in the above formula is referred to as the specific action, which 

is defined as 

= dtJtg 2)(
                                  (4.2-1)2 
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Where joρ
, jeρ

～ the starting and ending resistivity of j state, jot
, jet

～ the starting and ending times of 

j state, )(tJ ～ current density; )(tg  should be zero at startup, therefore, there is
0)( 11 == oo gtg

. 

Argument the above:  

The energy equation for the unchanged of state is 
dTLSρcdtRStJ jjmjjj ~])([ 2 =

, but jjj SLρR ~=
, which is 

changed to obtain 
dtJρcρdT jmjj
2)(=

, in the equation, jS ～ j state diversion cross-sectional area, jR ～

j state resistance, jc ～specific heat capacity of j state, jmρ
～mass density of j state ring target shell, L~ ～

diversion length, jρ
～the resistivity of j  state metal. Moreover, the resistivity of solid or liquid phase metals 

generally varies linearly with temperature, i.e. 
）1（ Tαρρ jjoj +=

, where jα
～the temperature coefficient of 

j state resistivity, hence 
dTαρdρ jjoj =

; Substitute the previous equation 
dtJρcρdT jmjj
2)(=

into this 

equation and integrate it to obtain 

1)1(2)()ln( CdtJρcαρρρ jmjjjojoj +=  , this equation must 

satisfy 0jttjjo ρρ
=

=
and jettjje ρρ

=
=

,let = dtJtg 2)(
,

])()([1
)( joje tgtg

jojejj ρρA
−

=
, thereby can be derived 

)()(
)( jotgtg

jjjoj Aρgρ
−

=
. 

Change of state: the resistivity when j  state is transformed into k  state is expressed by the following formula 

)()()( t-gFAρgρ jkjkjejk =
                         (4.2-2) 

in the formula 

]})()([{)(
222

jekokojekojk tgtgρρρA −−=
, 

)(1 jejkjk tgAF +=
          (4.2-2)a,b 

where koρ
～the starting resistivity of k  state, kot

～the starting time of k state. 

Argument the above: 

The energy equation for change of state is kjkjkjk dmHdtRJS =2)(
, in which jkS

～the diversion cross-sectional 

area when j  state and k  state coexist, jkR
～the total resistance when j state and k state coexist, jkH

～

the latent heat of state transiting from j  state to k  state, km ～mass of substance of k  state; This leads to 

kjkjkkmjk dSSρρHdtJ )(2 =
, where kmρ

～the density of k state, kS ～diversion cross-sectional area of k  state, 

jkρ
～the total resistivity when j  state and k  state coexist. 

Regarding jkR
, the coexistence of two states is equivalent to the parallel connection of two states, thereby 

resulting in 
)( kjkjjk RRRRR +=

. Additionally, due to jkjkjk SLR ~=
, jjj SLR ~=

, kkk SLR ~=
 and 

kjjk SSS +=
, therefore

])1（[ jkkjkjkjjk  +−=
 can be derived, where jkjjk SS=

 and 
01  jk . 

Substitute the above equation into kjkjkkmjk dSSρρHdtJ )(2 =
 and perform the integration for jk

, and let 

jkjekokojeko Atgtgρρρ =−− ]})()([{)(
222

and jkjejk FtgA =+ )(1
, can exported 

)(-)1（ jk tgFAjkkojkkojkje  =+−
, take jej  =

 and kok  =
 approximately in the calculation; 

Substitute this equation back to 
])1（[ jkkjkjkjjk  +−=
, thus deriving 

])([)( t-gFAρgρ jkjkjejk =
. 

The Tucker model suggests that when the liquid→gas state transition ends, there is no longer low impedance 

substances that are connected in the conductive channel, the resistivity quickly reaches maximum, and no longer 

increasing. If the energy is large enough at this time, breakdown will occur, resulting in plasma discharge. 

The breakdown stage can be considered as a continuation of the gas state stage. Using formula (4.2-1)1 of the 
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gas state stage ,its resistivity can be written as 
)()(

3333
3)( otgtg

oAρgρ
−

=
. Due to 

)()( 3otgtg 
 and the sharp 

decreasing in resistance after breakdown there is oρρ 33  , so the expression for the resistivity of the breakdown 

stage should be written as  

)]()([
3333

3)( otgtg
oAρgρ

−−
=

                            (4.2-3)1 

In the formula 

)(1
3333

3)( ohe gg
eo ρρA

−
=

, oeooJuoe ρρρgBBgg 333
2

33
2

33 8)][ln(])([ −−
      (4.2-3)2,3 

where 
2

JuB
～the given upper bound of magnetic fields 

2
drB

 and 
2

JB , eρ3 is the resistivity of the plasma 

after breakdown, which can be calculated using the following formula  

]][10334.5ln[10407.2 1
39

3 mZρMρ mmole = −

                (4.2-3)4 

In the formula, molM
, Z  are the molar mass, atomic number of the ring target shell metal material, and mρ1  is 

its density in the standard state. 

The argument for formulas(4.2-3)2,3 will be presented in 4.5 Appendix III. 

Argumenting (4.2-3)4 formula: 

According to literature (JialuanXu, Shangxian, 1981) the resistivity of the plasma after breakdown: 

][])(232[ln 232
0

212
3 mTKεπΛmeρ sheBee =

, where the Coulomb logarithm 
]))(4ln[(ln 232eTKnΛ sheBoe =

; 

When proving equation(3.2-2)3 earlier, it is proven that there is constΛln  regarding en ; Therefore, can use 

pmol

m
e

mM

Zρ
n 1=

 in the standard state, substitute it into Λln , then substitute it into eρ3 , finally, by substituting the 

values of e , em , o  and pm , 

]][
)(

10287.3ln[
)(

10906.3

1

3
27

23

33

3 m
Zρ

TKM

TK
ρ

m

sheBmol

sheB
e 


=

−

can be obtained, where 

sheBTK
～the temperature of the ring target shell at the end of the stagnate, according to literature ongminZhang, 

Weibo Yao, 2018), the electron temperature of the plasma generated by EIB of a metal wire is generally 

][103811][10 167 J.KTK -
sheB ==

, substituting this into the original formula obtains formula(4.2-3)4. 

4.2.2 Experimental Data 

The relevant data jo
, je

, 
)( jotg

and 
)( jetg

 in the above formulas must be obtained through experimental 

measurement.  
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Table 1 lists Tucker's measured data, which is sourced from literature (Xinggen Gong, 2002-07): 

 

Table 1. Measured data of six types of metal wires in Tucker 

Metal  melting beging melting end vaporing beging exploding  

Diameter  0ρbρ  

／mm 

ρ／  Q／     g／  

(nΩm) )
-1

(Jg  )
4

sm
2

A
17

(10
−

 

ρ／  Q／     g／  

(nΩm) )
-1

(Jg )
4

sm
2

A
17

(10
−

 

ρ／  Q／     g／  

(nΩm) )
-1

(Jg )
4

sm
2

A
17

(10
−

 

ρ／  Q／     g／  

(nΩm) )
-1

(Jg )
4

sm
2

A
17

(10
−

 

Ag 86   245    0.61682 159  356   0.71771 273  710   0.90132 8590  3425  1.12290 0.12     540 

Cu 99   459    0.80492 189  663   0.94228 263  1409  1.24008 6200  5909  1.73000 0.10     350 

AI 112  623    0.25238 231  1021  0.32055 415  2981  0.48561 3930  9782  0.65776 0.12     139 

Au 121  124    0.42816 260  189   0.50180 493  472   0.64950 11240 1897  0.83157 0.12     460 

Ni    592  647    0.17233 796  974   0.21156 834  1812  0.30173 6660  5492  0.56007 0.12     85 

W     903  995    0.24270 1161 637   0.27831 1236 1042  0.34175 2300  3936  0.75059 0.12     41 

 

This article intends to use the data of Ag wire in the table as the estimated value. 

4.3 Using the Ideal Magneto-fluid Mechanics Equation to Express the EIB process 

4.3.1 Introduction 

The premise for discussing the EIB of the ring target shell in this article is: 

Firstly, due to the thin shell of the ring target and the fluid generated by the EIB is constrained by the pinch 

effect, can considered that the mass density of the shell is uniformly distributed radially along its cross-section. 

Secondly, due to the skin effect, it can be considered that the induced current Q1 is concentrated in the thin layer 

on the surface of the ring target and evenly distribute; Thereby, the pinch force will act simultaneously, equally 

and radially on all layers within the cross-section of the ring target shell, causing its fluid element to move 

towards the center along a radial stable streamline, So that is a steady flow, and thus the position vector ),( tar of 

the streamline cannot be an explicitfunction of t . 

Thirdly, there exists the following formulas from the same principle as formula (2.5-5)1 

shoshshosh rrrr  =
 or cocshosh rrrr  =

                     (4.3-1)1 

as well as 

2)( shshomshomsh rr =
                           (4.3-1)2 

Where shr
, shor

～the thickness and initial thickness of the ring target shell, shr
, shor

～the outer surface 

radius and initial radius of the ring target shell, cr , cor
～outer surface radius and initial radius of DT ice, mshρ , 

mshoρ
～ring target shell density, initial density, shcsh rrr =+ 2)( ～the average radius of the ring target shell.  

The EIB discussed in this article is a ring target shell flow process driven by a pulse magnetic field 
)(tdrB
, the 

expression of this process requires the use of ideal magneto-fluid mechanics equations including equation of 

ideal fluid dynamics and Maxwell's equations. Regarding the Maxwell's equations used here,according to 

literature (JialuanXu, Shangxian, 1981), since the fluid in question is a good conductor and its characteristic time 

of field change is much greater than the particle collision time, displacement current, convection current, etc. can 

be omitted and referred to as the "quasi static equation". Thus, the form of Maxwell's equations is 

tc −= − B1E  and cπJB 4= ; Additionally, the generalized Ohm's law )()( 1 gρc BuEJ += −

 needs to be 

used.  

4.3.2 Magnetic Field Involved in EIB 

Driving magnetic field 
)(tdrB
. According to the theorem of frozen-in field: the closed circuit of an ideal 
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conductive fluid cannot undergo relative motion perpendicular to the applied magnetic induction Iine; The ring 

target shell after EIB can be approximated as an ideal conductive fluid, so the pinch velocity shu
 of the ring 

target shell will not cut the magnetic induction line of 
)(tdrB

, that is, there is 
0=shu

 relative to 
)(tdrB
, so the 

generalized Ohm's law becomes JE )(gρ= ; However, due to the presence of opposing electromotive force in the 

ring target shell, J  will not tend to infinity; If the ring target shell is made of a good conductor, that is,its 

resistivity 0)( gρ , then there must be 0E . Therefore, according to Maxwell's equations tc −= − B1E : 

there is 0 tB , so 
constdrB

 is obtained. const  is a constant regarding t , which should be equal to 

)0(drB
at 0=t , but in reality, 

)(tdrB
value constantly changes with t ; This can only be explained as follows: 

the external magnetic field 
)(tdrB

 detours outside the area enclosed by the ring target, wile the magnetic field 

)(tdrB
 within the area enclosed by the ring target is constant with respect to t . 

According to another expression of the theorem of frozen-in field: any closed curve moving with an ideal 

conductive fluid, the conservation of magnetic flux passing through the area enclosed by this curve. Based on 

this, if the area enclosed by the ring target is S , the magnetic flux passing through S  should be 
constS =drB

. 

Since the magnetic field drB
within the area enclosed by the ring target is constant with respect to t , so there 

must be constS = , that is, the area enclosed by R  is constant. Therefore can inferred that the ring target shell 

is equivalent to a circular current carrying wire with a radius of R . 

Induced magnetic field JB
. 

)(tdrB
generates an induced electric field drE

 in the ring target shell, and the ring 

target shell generates a self induction electromotive force due to self inductance, which corresponds to the self 

induced electric field E' ; The total electric field acting on the target ring shell should be 
E'EE dr +=

, 

E generates current J , as shown in Figure 1, J  generates an induced magnetic field Q10 surrounding JB
. 

The Lorentz force J
-1 BJc

 generated by JB
 and J  is the driving force for ICF discussed in this article; 

However, due to the skin effect, it can be considered that J is concentrated on the surface of the shell, so only 

JB
at the surface shr

of the ring target shell needs to be considered, therefore this JB
 must have the same 

circular shape as shr
. 

There is a relationship between the driving magnetic field 
)(tdrB
and the induced electric field 

)(tdrE
 as 

follows  

dttBdcRt dr ])([)()( −= φdr eE
                           (4.3-2) 

Argument the above: 

)(tdrB
and 

)(tdrE
 can be represented as zdr eB )()( tBt dr=

 and φdr eE )()( tEt dr=
 in the cylindrical coordinate 

system )(R,φ,z of Figure 1; 
)(tdrB

and 
)(tdrE
should satisfy Maxwell's equations 

tc = −
drdr BE 1

,and 

because the ring target shell is equivalent to a circular wire with a radius of R , thereby can derived 

dttBdcRt dr ])([)()( −= φdr eE
in Lagrangian form.  

4.3.3 Deriving the equation of magnetic field motion 

The induced current J  and Induced magnetic field JB
 are represented as φeJ J=

 and θJ eB JB=  in the 

ring coordinate system of Figure 1, respectively; The equation of magnetic field motion in Lagrangian form 

exists on the surface shr
 of the ring target shell 

}])()([{])()([])(4[ 2
shshshJshshshJshJ rrrBrrrBrggB = −

             (4.3-3) 

The dimensions of the above equations are in the Gaussian system. 
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Argument the above:  

Using the curl(2.2-2)2 formula of the ring coordinate system, write the Maxwell's equations as 

tBcrE Jsh = −1

and 
cπJrBrr shJshsh 4)(

1
=

−

. Using these equations and the generalized Ohm's law, 

can obtain shJshshshJshshJshshJ rBuruBrrBrrπgctB −−=
−

}])([]{4)([
12

. 

The continuity equation (2.2-6) can be used to change the above equation to 

}])()([]{4)([)( 2
shshshshJshmshmshshJ rrrrBrπρgcdtρrBd = 

; Use formula (4.3-1)2 for mshρ
in this 

equation and note shshoshsho rrrr =
,can obtain 

}])()([){4)(()( 2
shshshJshsuJsu rrrBrrgcdtBrd = 

. 

Convert shr
in the above equation to the Lagrangian form 

),( tarr shshsh = , then 
),( trB shJ  is also expressed as 

the Lagrangian form 
),( taB shJ ; Note that the "Introduction" already states that due to the steady flow of the EIB 

fluid, the position vector ),( tar  of the streamline cannot be an explicitfunction of t , thus 

}])()([){4)(( 2
shshshJshJ rrrBrgctB = 

 can be derived. 

The above equation can be further changed to shshshJshJ rrrBrgcdtdggB = ])()([){4)(())(( 2 
. In 

this equation, it is known 

2)(tJ
dt

dg
=

from formula (4.2-1)2, and then according to Maxwell's equations 

cπJrrBr shshJsh 4)()( =
in ring coordinate system,

22 ])()()4[( shshJsh rrBrcJ = 
 is obtained, so resulting 

in 
}])()([{])()([])(4[ 2

shshshJshshshJshJ rrrBrrrBrggB = −
. 

4.3.4 Solving the Equation of Magnetic Field Motion 

The solution of the equation of magnetic field motion is: 

22 )()(8)( jzJ

g

g

J gBdgggB

jz

+= 

                         (4.3-4) 

where jzg
～starting value of g  (unchanged of state jojz gg =

, change of state stage jejz gg =
). 

Argument the above:  

Firstly, plan to use the method of separation of variables to solve the equation of magnetic field motion. Let 

)()(),( gBrBgrB JgshJrshJ −=
 for this reason. Substitute it into the original equation to obtain two equations 

2))(4(  =dggdBB JgJg  and 
22 })(])()([{])()([ −=−

shJrshshJrshshshJrsh drBdrrBrdddrrBrd
. 

Secondly, solve equation 
2))(4(  =dggdBB JgJg , change it to 

dggdBB JgJg )(4 2=
 and integrate, obtain 

solution 

212])()(8[ jzJ

g

g

Jg gBdggB

jo

+= 

. 

Thirdly, solving equation 
22 )(])()([])()([ −=−

shJrshshJrshshshJrsh drBdrrBrddrrBrd
. It can be changed to 

2

22

2
2

2
]
)(

[
)(

]
)(

[ −=−

sh

Jrsh

shJrsh

sh

sh

Jrsh

dr

Brd

drBr

dr

dr

Brd

. If let 1

2

x

rsh

=  and 2x

Br Jrsh

=  then it changes to 

2

1

2

12

12

1

2 )()( −=−

dx

dx

dxx

dx

dx

dx

, and 

If let 
3

1

2 x
dx

dx
=

 then it changes to 
2

2

1

312
3 x

dx

dxx
x −=

−

. Taking the derivative of 1x  on both sides obtains 

3
2

1

312
3

1

)( x
dx

dxx
x

dx

d
−=

−

, which can be changed to obtain 

3
2

1
2

2
1

1
3

2
1

2
)(]

)ln(
[
)ln(

xrx
rxd

dx

rxdr

d
sho

shoshosho

−=−

−

. 
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In this equation, If again let 4

1
3

x

x

=

−

and 

52

1 )ln( x
r

x

sho

=

 then the original equation becomes 04
22

2
54

2

5 =

−

xer

dxxd

x
sho . 

The above equation has solution, its form is as 
5

3)1(
2)1(

4
xC

eCx =
. Substitute it into the original equation and 

change it to 
0][][

]1[2)1(2223)1(2)1(
3)1(

55
3)1(

=−
−Cx

sho
xC

eCreCC 
. At 213)1( =C  and shorC 22)1( =

 both sides of 

the above equation are equal, so the solution is 
2

4
52

x
shoerx =

. 

Restore to the original variable: according to 4
1

3 xx =
−

 and 5
2

1 )ln( xrx sho =
, make 

2
4

52
x

shoerx =
 become 

1
1

3 2 xx =
−

, and according to 312 xdxdx =
, make 1

1
3 2 xx =
−

 become 211 2 dxxdx =
; Integrating it 

obtains 
4)1(

2
21

1 22 Cxx += 
; Note here that since the original equation is a second-order equation, only two 

integration constants are needed, and now there have been integration constants shorC 22)1( =
 and 213)1( =C , 

so 
4)1(C  is not needed, thus obtain 2

21
1 xx =

; Based on this, 
1=JrB

 is exported from 1
2

xrsh =
 and 

2xBr Jrsh =
. 

Fourthly, in summary, the solution 
)()(),( gBrBgrB JgshJrshJ −=

 of the equation of magnetic field motion 

becomes 

22 )()(8)( jzJ

g

g

J gBdgggB

jz

+= 

. 

4.4 The driving magnetic field 
)(tdrB

 is the driving energy source, which drives the ring target shell to contract 

inward. Therefore, in order to achieve stagnate, form hot spots and lead to fusion, must to ensure that the 

changes in 
)(tdrB
 follow a certain pattern. 

In solid state, solid-liquid state, and liquid state, due to the incompressibility of the solid and liquid, the ring 

target shell has not yet deformed; In solid-liquid state, the gaseous substances produced will expand,but the 

expansion is limited by the Lorentz force; On the other hand, due to the rapid reaching of the maximum 

resistivity at this time, so the current is reduced to the minimum, which makes the Lorentz force insufficient to 

cause the ring target shell to shrink, thereby it is approximately considered no deformation; In the breakdown 

stage, plasma has formed; Due to the sudden increase in current, a strong Lorentz force is generated, causing the 

ring target shell to pinch DT; Therefore, the breakdown stage of the ring target shell corresponds to the implosion 

of DT. 

Before the breakdown stage, the ring target shell has not yet deformed, the expression for the driving magnetic 

field at this time is 

22

2

2
)()()(

2

1
)( jzdr

g

g

sho
dr gBdgg

R

rL
gB

jz

+= 




                     (4.3-5)1 

In the derivation of the above formula, the following formula is also obtained 

)()4()(
2

jzJshojzdr gBRrLgB −=
                        (4.3-5)2 

Note that the above formula only holds before the breakdown stage. The breakdown stage corresponds to an 

implosion; The ring target shell is pinched inward at this time, and the driving magnetic field expression is 

 +−
−

=

sh

sho

sh

sho

r

r

shsh

sho

sho

r

r

shsh

shosho

shdr drgB
R

gBr
Rr

rL
drrgBgρ

Ruπr

c
rB )(

1
)(

4

)()(
4

)( 332

2
333

2





      (4.3-5)3 

where shou
～the starting speed of the ring target shell, L～coefficient of self-inductance of ring target; The 

dimension of above formulas are in the Gaussian system. 
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Argument the above:  

Firstly, the generalized Ohm's law should be represented as 
)()( 1 gρBucEJ Jsh

−+=
in ring coordinate 

system.
E'EE dr +=

 has been mentioned earlier, formula(4.3-2) is substituted to obtain 

E'dttBdcRE dr +−= ])([)(
. In the equation, E'  corresponds to the self induction electromotive force 

dtJrrdcLE'Rπ shshJ )2()(2 2 −== E
. Substitute this and formula(4.3-1)1 into the E'  formula to obtain 

dtJrdRrcr-LE' shshosho )()(
22=

, thereby obtain 
dtJrdRrcr-LdttBdcRE shshoshodr )()(])([)(

22+−=
. 

According to formula(4.3-4), JB is not an explicitfunction of shr
, hence 

0= shJ rB
; Therefore, from the 

Maxwell's equations 
cπJrrBr shshJsh 4)()( =

in the ring coordinate system, 
JrBc shJ =)4( 

 is obtained; 

Apply this to obtain
dt

Brd

Rcr

r-L

dt

tBd

c

R
E Jsh

sho

shodr )(

4

])([




+

−
=

 to the above formula, substitute back into the generalized 

Ohm's law formula to obtain 

Jsh
sh

sh

Jsh

sho

shosh

sh

dr Bu
Rdt

dr

dr

Brd

Rr

rL
gJρ

R

c

dt

dr

dr

tdB 1)(

4

)(
)(

2
+−

−
=





, substitute 
J

r

B

π

c

sh

J
=

4  into it 

again, obtain 

shJJsh

sho

sho
sh

shsh

J
dr drB

R
Brd

Rr

rL
dr

ur

Bgρ

Rπ

c
dB

1
)(

4

)(

4 2

2

+−
−

=





. 

Secondly, discuss shshur
 in the above equation. As mentioned in "4.3.1 Introduction": can considered that the 

ring target shell undergoes steady flow in an EIB, therefore, shshur
 is not an explicitfunction of t , so there is 

0
][
=





t

ur shsh

, then according to sh

shsh

sh

shsh

sh

shsh

dr

dt

t

ur

r

ur

dr

urd




+




=

)()()(

 there is sh

shsh

sh

shsh

r

ur

dr

urd




=

)()(

. 

Therefore, the continuity equation(2.2-6) can be written as 
))()(( shshshshmshmsh drdtrurdρdρ −=

, but should 

note shsh udtdr =
: for implosion ,

0shu
 is the velocity flowing into the surface of the fluid element, however 

the positive direction of shu
 in the continuity equation points outward from the surface of the fluid element, so 

should be written as shsh

shsh

msh

msh

ur

urd

ρ

dρ )]([ −−
=

; Integrate it to obtain msho

shoshomsh
shsh

ur
ur




=

, where shou
～the 

starting speed of the ring target shell; Substitute formula(4.3-1)2 into this formula, pay attention to 

shshoshsho rrrr =
, so 

23
shshoshoshsh rurur =

is obtained. Substitute it back to the original formula to obtain 

shJJsh

sho

sho
shshJ

shosho

dr drB
R

Brd

Rr

rL
drrBgρ

Ruπr

c
dB

1
)(

4

-)(
4

2

2

3

2

+
−

=





. 

Thirdly, before the breakdown stage, since the ring target shell has not yet deformed, so 
constrsh = , thereby the 

above equation becomes Jshodr dBRrLdB )4-(
2

=
; Integrating it, Jshodr BRrLB )4(

2
−=

is obtained, and 

then result in
)()4()(

2

jzJshojzdr gBRrLgB −=
. Substitute formula (4.3-4) into the previous formula to derive 

22

2

2
)()()(

2

1
jzdr

g

g

sho
dr gBdgg

R

rL
B

jz

+= 




. 

In the breakdown stage, since the breakdown stage corresponds to implosion, there should be shoo rr =3 . 

Integrate the formula of drdB
 in " Secondly ", and apply formula (4.3-5)2 to 

)()( 3 shoJoJ gBgB =
 to obtain 

 +−
−

=

sh

sho

sh

sho

r

r

shsh

sho

sho

r

r

shsh

shosho

shdr drgB
R

gBr
Rr

rL
drrgBgρ

Ruπr

c
rB )(

1
)(

4

)()(
4

)( 332

2
333

2





. 

Notes on formula (4.3-5)1,3 

The above driving magnetic field(4.3-5)1,3 should be connected end-to-end in sequence, namely 
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)()( kodrjedr gBgB =
 and 

)()( jodrkedr gBgB =
, where jog

, kog ～the starting g value of j , k states, jeg
, 

keg ～the ending g  value of j , k  states; And thus should be able to establish a connection between the 

)( 1odr gB
 value and the 

)( 3odr gB
value. The 

)( 3odr gB
value can be calculated using formula(4.3-7)2c below, and 

the starting value 
)( 1odr gB
 of the driving magnetic field can be calculated using the 

)( 3odr gB
value. 

Furthermore, according to formula (4.3-5)1, 
)(

2
gBdr is an increasing function of g , so 

)( 3
2

odr gB
 should 

belong to the peak of the driving magnetic field before the breakdown stage. 

Further evolution of formula(4.3-5)3 

According to Figure 1, if drB
 increases in the negative direction as shown in the figure, 

)(g3B  should be in 

the positive direction as shown in the figure, so formula(4.3-4) should be written as 

212
3333 ])()(8[)(

3

o

g

g

gBdgggB

o

+= 

; Substituting this and formulas(4.2-3)1,2 into formulas (4.3-5)3 obtains the 

following formula 

)(])()()([)( 3
2

gBrdrgdrrggrB sh

r

r

sh

r

r

shshshdr

sh

sho

sh

sho

321 CSSCC −+−=  A

              (4.3-6)1 

In the formula 

)(
33

3)( ogg
Ag

−−
=A

, 
)(])([1)( 2

33 gRgBg o A−+= 1CS
              (4.3-6)2a,b 

as well as 

21
3333

1
})(ln)]()([8{ eooheo ρρtgtgρR −=

−
1C

, )4(
3

3
2

shoshoo uπrρc=2C , 
)4(

2
RrrL shosho =3C

 (4.3-6)2c,d,e 

where shou
～the starting speed of the ring target shell. 

Formula (4.3-6)1is an integral about shr
, but )(gA  is a function of g , so must to derive the function 

)(grr shsh = . The expression for this function has been exported, as shown below 

}])()([])(1)([ln{ 33
2

3333
2

33
122 z

oeo
z

oeoshsho ρρgBρρgBrr −+=−
−

554 CCC
         (4.3-7)1 

In the formula, 
])()([)( o3 tgtgggz heo −−=
 is a variable with range of values of 10 z ; and there are also: 

shosho

oo

ur

Aρc
3
333

2

4
=4C

, 

)(ln
)(8

1

3

3

3o33 e

o

eo ρ

ρ

ggρ −
=


5C

, o

o
Juo

A

A
BgB

33

3322
33

1
)(

−
=

, 

1
8

ln
)(

3

332
3333 +=

o
oo

ρ

A
gBA


 (4.3-7)2a,b,c,d 

where 
2

JuB
～given upper bound of magnetic field, and oA33 must be solved by the following equation 

}])1[()(ln{])4()([ 33333333
322

3
2

33 oeooeoshoshosheshooo ρρAρρAurrrρcA −−=− 
      (4.3-7)2e 

Note that according to formula(4.3-6)1: 
2

33
2

3 )]([)( oshoodr gBrgB 3C=
. 

Argument the above 

In the " Firstly" of argument of formulas (4.3-5)1,2, 
JrcB shJ =4

 has been derived, substituting dtdgJ =2
 

derived from formula(4.2-1)2into this formula can lead to 
shshshshJ drdgurrB

π

c
=

22)
4

(
; In addition, 
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23
shshoshoshsh rurur =  has been derived in the “Secondly”of argument of formula(4.3-5)3, and substitute it into 

the above formula to obtain the differential equation 
2

3
32 ])4([ Brurπcdrdg shshoshosh =

; Solving this equation 

obtains 

=−

g

g

shosho
shsho

o
gB

dg

πc

ur
rr

3

2
3

2

3
22

)()4(

2

. 

Calculating

dg
gB

g

g J
o


3

2)(

1

 of the above formula: substitute formulas (4.2-3)1,2 into formula (4.3-4) to obtain 

2
3

)(
33333

2
3

)(]

1)[ln8()( 3

oJ

gg
o

gB

AAρgB o

+

−=
−−



; Substitute this into 

dg
gB

g

g J
o


3

2)(

1

 and let 
1

8

ln
)(

3

332
3333 +=

o
oo

ρ

A
gBA

 , then can 

obtain 

)(
3333

)(
3333

33

3
2

3
3

3

3
)1(

ln
)8(1

)( o

o

o

gg
o

gg
o

o

o

g

g AA

AA

A

ρ

gB

dg
−−

−−

−

−
=



. 

Substitute the above formula back to the original formula of 
22

shsho rr −
, note that as 

133 eo ρρ
 and 

133 − oe gg
can prove 

11 3333 −=− oo AA
 and 

1)(1)( 3333 −=− gAgA oo AA
, and let 

shoshooo urAρc
3

333
2 4=4C

, 

then the original formula becomes 
})1(][ln{
)(

3333
)(

3333
122 33 oo gg

o
gg

oshsho AAAArr
−−−−−

−−=− 4C
. 

The above formula also needs to satisfy sheesh rgr =)( 3 . After substituting the above formula, equation 

})1(][ln{)(
)(

3333
)(

3333
22 3333 oeoe gg

o
gg

oshesho AAAArr
−−−−

−−=−4C
 can be obtained. Substituting formula (4.3-7)2a 

into it and using formula(4.2-3)2, an equation 
oeo

oeo

shosho

sheshoo
o

ρρA

ρρA

ur

rrρc
A

3333

3333
3

22
3

2

33
)1(

ln
4

)(

−

−
=

−


 about oA33  can be 

obtained. After solving the equation to obtain the oA33  value, substitute oA33 into formula (4.3-7)2d, and 

substitute formulas (4.2-3)2,3 into this formula, finally obtain o

o
Juo

A

A
BgB

33

3322
33

1
)(

−
=

. 

Firstly, can derive the expression for the unit mass Lorentz force as follows 

rJB ef ]4)([
22

shomshoJsh rgBr −=
                        (4.3-8)1 

Secondly, in the breakdown stage, namely during the implosion of the ring target, as the driving force, the work 

done by JBf
 during the implosion is: 

=

co

ce

r

r

ccJBd drrFE )(2

, 

=

sh

c

r

r

cJB drBRrF
2
3)( 

                    (4.3-8)2,3 

where 
)1( coshocsh rrrr +=
. 

4.5 Appendix 

The driving energy 2dE  during the implosion has the following approximate values 

)8)((
2

32 BVrrE shoshoshod 
                          (4.3-8)4 
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where shoV ～the initial volume of the ring target; The average value of 
)(

2
3 rB

during the implosion in the 

formula is 

−
=

he

o

g

g
ohe

dggB
gg

B

3

2
3

3

2
3 )(

1

                           (4.3-8)4’ 

Before the breakdown stage, change is from the solid state to the liquid - gas state. As the ring target shell has 

not yet deformed, its volume is shoV
; During this period, the energy density 

8
2

drB
of magnetic field 

)(gBdr increases to 
8)( 2

3odr gB
at ogg 3=

, so at this moment, the energy outputed from the driving magnetic 

field reaches 
8)( 2

31 odrshod gBVE =
. After this, the implosion process corresponding to the breakdown stage is 

entered; So at this moment, the energy outputed from the driving magnetic field is 

8)( 2
31 odrshod gBVE =

                            (4.3-8)5 

The total driving energy should be 

])()()[8(
2

3
2

321 BrrgBVEEE shoshoodrshoddd +=+= 
                (4.3-8)6 

Argumenting formulas(4.3-8)2,3,4,5: 

In the breakdown stage, inside the ring target shell, take a annular volume element 
drSdV shsh =  that is 

concentric with the ring target, then the Lorentz force exerted on the volume element is 
drSf shmshJB  . The 

Lorentz force on the entire ring target shell is 
=

sh

c

r

r

shmshJBJB drSfF 

. Substitute formulas(4.3-8)1 and (2.2-5)2into 

this formula, and substitute formula(4.3-1)2 into this formula, paying attention to sh

sho

sh

sho

r

r

r

r
=

, then 

−=

sh

c

r

r

JB drBRF
2
3

 is obtained. 

The total amount of work done by force JBF
 during the implosion is 

=

sho

she

r

r

shJBd drFE 2

; The following 

approximate calculation can be made for 2dE : during the implosion, within the interval 
],[ shc rr

, the average 

value of 
2

3 )(rB
is Q6, thereby resulting in: 

2
3

2
3

2
3 )()(

)(
rBrrRdrB

rr

rrR
drBRF csh

r

r
csh

csh

r

r

JB

sh

c

sh

c

−=
−

−
==  




. 

Furthermore, during the implosion, within the interva
],[ 3 heo gg

, the average value of
2

3 )(gB
 is 

−
=

he

o

g

g
ohe

dggB
gg

B

3

2
3

3

2
3 )(

1

; Use 
2
3B to approximate 

2
3 )(rB

, thus 

2
3)( BrRrF shcJB 

 is obtained. Substitute this 

into the 2dE formula, and according to formula(4.3-1)1, shoshoshsh rrrr  )(=
is obtained, so resulting 

in

)1(
2 2

2
22

32

sho

she
sho

sho

sho
d

r

r
rB

r

rR
E −



. Additionally, due to ceco rr 
, thereby 

2
3

2

2
8

4
B

rRr

r

r
E shosho

sho

sho
d






 is obtained, 

where 
2)( coshosho rrr +=

; In this formula, as the initial volume of the ring target shell is 

shoshocoshosho rRrπRrπRrπV 22222 422 =−=
, therefore, obtain 

8
2

32  shoshoshod rBVrE
from the original 

formula. 

Thirdly, argumenting for formulas (4.2-3)2,3 
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Integrate formula(4.2-3)1to obtain

)
1

1(
ln

)dg()(
3

3
3333

3
33

ohe

he

o

gg
o

g

g

he
AA

ρ
gρgW

−
−== 

; The dimension of this formula is 

3cm

erg

, indicating that the physical meaning of 

=

he

o

g

g

he gρgW

3

)dg()( 3

 is the energy density at hegg =
; As heg

 

corresponds to time het
, so 

)( hegW
 is the energy density at the end of the stagnate ; But the energy comes from 

the magnetic field 
2)(gBJ ; According to formula(4.3-4),the 

8)( 2gBJ value shows an increasing trend, so 

2)(gBJ should reach the upper limit of
2

JuB
 at ehe grgg 3)( ==

,which is 

2
3

2

)()(
8

3

3

oJ

g

g

Ju gBdgg
B

e

o

+=  
, 

while


e

o

g

g

dgg

3

3

)(

 in the formula is
=

he

o

g

g

he gρgW

3

)dg()( 3

, thereby 
 8)(8]1)[ln( 2

33
2)(

33333
3

oJu
gg

o gBBAAρ ohe −=−
−−

. 

According to formula (4.2-3)1 there is 
)(1

3333
3)( ohe gg

eo ρρA
−

=
, substitute this into the above formula, and due 

to eo ρρ 33 
, thereby leads to 

])8()ln(][)([ 333
2

33
2

3 oeooJuohe ρρρgBBgg −−
. 

Fourthly, regarding the coefficient of self-inductance L  of the ring target in formula (4.3-5)2, refer to literature 

Xisen Pang and Yu Ke, 1994-03), can be calculated approximately according to the coefficient of self-inductance 

of circle conducting wire with a radius R and a wire radius shor , its formula is 

4]2)2[()( RkEKkkrRRL shoo  +−−−=
, where o ～ permeability of vacuum ,  ～ the magnetic 

permeability of the wire material, K , E ～value of complete elliptic integral of the first kind, second kind，

])2[()(4 22
shosho rRrRRk −−=

. 

Fifthly, drB
 can be represented as a function

)(tBB drdr =
of t  using formula(4.3-5)3and parameter equation 





=

=

)(

)(

ξtt

,arr ho 

. 

5. Stability of Implosive Fluid 

5.1 Origin of Fluid Instability 
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As shown in Figure 6, the fluid is divided into two parts by the NN −  face in a confined space, the density is 

1mρ
 and 2mρ

 respectively, 21 mm ρρ 
, and the fluid moves with an acceleration of ra ea )(raa=

. aa is 

perpendicular to the NN − face, so there is a unit mass inertial force ra ef )(raa−=
 in the volume V ; In 

addition, there is also the unit mass Lorentz force JBf  in the ring target shell, this 
fff JBa =+

 is the body force; 

Since af  and JBf  are not related to θand φ , according to formula(2.2-2)3 there is 
0)( =+ JBa ff

, so there 

is the potential energy fU that leads to fU−=+ JBa ff
. 

Because fU  is the potential energy per unit mass, the potential energy of the two fluids per unit volume are 
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1mfρU
and 2mfρU

, respectively. Due to 21 mm ρρ 
, so there is 21 mfmf ρUρU 

. Therefore, there is a potential 

energy difference on the NN − face, which makes the NN −  face unstable. If the force f points towards the 

1mρ
 fluid, once there is external disturbance, the 2mρ

 fluid will flow to the direction of decreasing potential 

energy along the force f, thus, NN −  protrudes towards 1mρ
 fluid, forming a " pike" shaped protrusion, at 

the same time, in order to fill the gap caused by the "spike", the NN − face also retracts towards the 2mρ
 fluid 

to form a "bubble" shaped depression, thus the NN − face will form a concave convex disturbance surface. If 

the increase of this concave convex causes the NN −  face to be damaged, instability will occur.  

In summary, if the body force f points towards a thin fluid, instability may occur; According to (Atzeni, & 

Meyer-ter-Vehn, 2008), this instability is known as the "Rayleigh Taylor instability (RTI)". For the implosion 

discussed in this article, RTI may occur in the following three situations: 

Firstly, the ring target shell shrinks inward until the starting of stagnate. At this point, aa  points towards the 

center of the ring target shell cross-section, making af  point in the opposite direction of motion; While force 

JBf  points toward the center, but as the driving force JBf  there should be aJB ff 
, so that the resultant force 

f at the outer interface of the ring target shell points toward the center; But the density of the substance outside 

the shell is much smaller than the density of the substance inside, therefore, f points towards a dense fluid, thus, 

there will be no instability at the external interface of the ring target shell. 

Secondly, at the starting of stagnate, as f at the internal interface of the ring target shell also points towards the 

center, that is, from the ring target shell to DT ice, the density of the former > the density of the latter. Therefore, 

the internal boundary of the ring target shell, instability may occur. 

Thirdly, from the starting of stagnate to the end of stagnate, the velocity of the the center DT gas is all reduced to 

zero, aa  points in the opposite direction of the motion, making af  point from DT ice to DT gas. Pay attention 

to the center DT gas there is no JBf  present, so disturbance will occur at the interface between DT ice and DT 

gas; Due to the need to form hot spot, so must limit the peak disturbance at this time, to ensure that the hot spot 

is not damaged. 

5.2 Disturbance Face and Its Neighboring Fluid Conditions 

As shown in Figure 6, disturbance  occurred on the NN −  face thus forming interface ζS ; Now establish the 

coordinate system at the intersection H of the axis of symmetry of the disturbance wave peak and the NN −  

face; With ξ as the position vector of ζS face, and thus the ζS  face equation is ),,( t = , and its implicit 

equation is 
),,(),,,( ttS  −=

. When a series of values for ζS  are given, 
),,( tS  −=

 forms a 

family of equipotential surface related to ζS . 

The fluid in the neighborhood of the disturbance face can be approximated as an incompressible and irrotational 

fluid.For the disturbance velocity ζu , there is a potential U  that causes U=Mu , and the following 

equation exists 

02 = ςU                                (5.1-1) 

Argument the above: 

Firstly, the fluid in the neighborhood of ζS  face is approximately incompressible flow. If the change amount 

that  occurred during time t  is  , and the change amount of position vector r  of the face NN −  is 

r ,then  should be limited to tiny quantity compared to r , namely r ; r can be represented as 

tcr s=
, sc  is the sound velocity under the current fluid condition. Therefore, within the same t , there is 

sM cudtd =
due to r , where Mu  ～disturbance velocity. 

Furthermore, the fluid density mρ
 in this topic should not be an explicitfunction of t , otherwise mρ

 will 

change only due to t  changing, but the pressure, volume, and temperature remain unchanged, hence 

0= tm . 

In addition, substituting 
2

s

m
c

γp
ρ =

 into the continuity equation (2.2-6) obtains 

0
)(

2
=




+

rr

ru

c

γp

dt

dρ ζ

s

m

; if in the 
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neighborhood of face ζS , regarding r  can considered constcs 
2

, then there can be 

0)(
2

=



+

s

Mm

c

ru

rr
γp

dt

dρ

. 

Due to s

M

c

u

 , there is 

0
2


s

M

c

u

, so infer 
0

dt

dρm

; Applying Euler operators(2.2-4)2 to this equation 

obtains
rρutρdtdρ mmm +=

, so
0 rm due to

0= tm ; In addition according to the continuity 

equation 
0=+ uρdtdρ mm , since 

0dtdρm , due to 
0mρ

, 
0 ζu  can also be inferred. 

From 
0= tm  and 

0 rρm  above, in the neighborhood of face NN − , mρ
 can be approximated as a 

constant for spacetime, so this fluid can be approximated as an incompressible flow. 

Secondly, the fluid in the neighborhood of ζS  face is an irrotational fluid 

The fluid in the neighborhood of ζS face satisfies the following three conditions of Kelvin's circulation theorem 

can be regarded as an ideal fluid, this has been mentioned earlier. 

(2) mρ
is only a function of pressure p , in the small space to the neighbourhood of the ζS  face, can be 

approximated as an isentropic process, then resulting in constp m 


 . 

(3) There is potential energy for the body force acting on the fluid; According to fU−=f
 mentioned above, 

therefore this point is established. 

So, then according to the Kelvin's circulation theorem, the velocity circulation of the fluid is conserved with 

respect to time; Because the velocity circulation of the fluid at the starting of the implosion is zero, thus, the 

velocity circulation in the subsequent process remains zero, so there is 
0= Mu ; Based on this, the existence 

of potential U leads to U=Mu , substituting this into 
0 Mu  obtains 

02 = ςU . 

5.3 Solving Equation 
02 = ςU  

5.3.1 Introduction 

In a closed space, waves can only form the standing wave with unchanged positions of "crest - trough pair"; 

Therefore, the "spike - bubble pair" generated by the disturbance  in the ring target shell must be distributed in 

the form of standing wave, and their function is 

)(),(),,( tφtφ t =
                             (5.2-1) 

where ),( φ and 
)(tt  are two unrelated functions, ),( φ  represents the spatial distribution of the 

amplitude of the "spike-bubble pair ", 
)(tt  represents the variation of the amplitude over time. 

The solution ςU  of equation 
02 = ςU  should correspond to disturbance  , therefore ςU  should also have a 

form similar to equation (5.2-1). 

In the above article, the coordinate system has been established at the intersection H of the symmetry axis of the 

disturbance wave peak and the NN −  face. Now only discuss this crest of wave separately, and the conclusions 

obtained can be extended periodically; Using ξ as the position vector of ζS  face, the length in ψe  direction 

is measured according to 
 =L

, the length in φe  direction is measured according to 
RL  =

; In 

addition, as mentioned above,the ring target shell is equivalent to a circle conducting wire with a radius of R , so 

equation
0)()()()(

222 =++= φςςςς LULRLURRURU 
 can be written as 

0)()(
2222 =++ φςςς LULUU 

 using the Laplace operator(2.2-3) in the ring coordinate system. 

Plan to use the method of separation of variables to solve the above equation, so let 

)()()()(),,,( φςθςςrφθς LULUζUtCtLLζU =
 for this, and thus the following equations 

21
)(2)()( mkdddUdU ςς =

−
  , 

2221
)(mk-dLUdU ςς =

−
 , and 

2221
)(mkdLUdU φςς −=

−
  are obtained, where 

┅,,m 321= . 

 

 

 

http://dict.cn/Kelvin%27s%20circulation%20theorem
http://dict.cn/Kelvin%27s%20circulation%20theorem
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5.3.2 The Solution of the Equation 

The solutions of 

2

2

2

)(
1

mk-
UdL

Ud

ς

ς
=





 and 

2

2

2

)(
1

mk
UdL

Ud

ςφ

ς
−=





with respect to wave number mk  are as follows: 

)(cos)(
 += mkLU mk

, 
)(cos)(

 += φ
mk mkLU

, 
Rnrnk Rhor ==

         (5.3-1)1,2,3 

where hor ～starting radius of DT ice inner surface, L  and L are the arc lengths along the circumference 

hor2
 and Rπ2 , 

2rn and 
2Rn  are a pair of minimum coprime positive integer, making rRho nnrR =

; 

The arc length 
'L  along the circumference r2  must be measured according to 

 == horLrL '
, where 

～central angle. 

Argument the above: 

Substituting formulas (5.3-1)1,2 into the original equation can verify that it is the solution of the equation. 

mk2  is an arc length period along the circumference hor2
 or Rπ2 , so 

)2(2 mkrho 
and )2(2 mkRπ   

are the number of periods along the circumference hor2
and Rπ2 , respectively. In order for the "spike -bubble 

pair" to be distributed in standing wave form, positive integers rn  and Rn  must exist, making 

rho nmkr =)2(2 
 and RnmkRπ =)2(2 

; Can choose rn  and Rn  as follows: reducting horR
 into a pair 

of minimum coprime positive integers 
2rn and 

2Rn , resulting in rRho nnrR =
.  

Measure the arc length 
'L  along the circumference r2 according to 

 == horLrL '
, this can make the 

number of period along circumference r2  same as the number of period along circumference hor2
. 

The solution of 

2)(
1

][ r
ςr

ςr
mk

Ud

dU
ζ

d

d
=


 with respect to wave number mk is as follows 

]
)22(

)22([ln )16(

1

2)15()( C
n!n

mk
mkeCU

n

n
mk-mk

r +


+= 


=







                  (5.3-2) 

where 
)(jC ～constant, ┅,,j 321= . 

Argument the above: 

The original equation can be transformed into ςrrςr UmkdddUd 22)(2ln)ln(  =
, let z=ln  then it becomes 

0)(2 2222 =− ςr
z

ςr UemkdzUd
; Apply operator Ddzd =()  to this equation, the original equation becomes 

0])(2[ 222 =− ςr
z UemkD

. Solving this equation using the method of operator obtains equation (5.3-2). 

The general solution of equation
02 = ςU that satisfies central symmetry and convergence is 




=

=

1

)()()()(

m

mkmkmk
rmς UUUtCU 

, the average value of this general solution has an upper bound uU  . uU   will be 

used as the estimation of the solution in the following article, and for simplicity, it is still referred to as the 

solution, and still recorded as ςU . The equation is 

),,()(),,,( 1  SPς UtCtU =
                           (5.3-3)1 

in the equation 

)(cos)(cos)(ln),,( 2



 ++=

− kLkLeU o
k

SP                (5.3-3)2 

Argument the above: 

Superposition the solutions 
)()()()( mkmkmk

r
mk UUUU  =

of all wave numbers to obtain the general solution 




=

=

1

)()()()(

m

mkmkmk
rmς UUUtCU 

; Substitute equations (5.3-1)1,2 and (5.3-2) into this equation to obtain 
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 


=



=

−
++++=

1

)16(

1

2 )(cos)(cos]])22([)22([ln

m n

nmk
mς mkLmkLCn!nmkmkeCU 




. 

m

n

nmk hCn!nmkmke =++


=

− ]])22([)22([ln )16(

1

2




 in the above equation is the disturbance peak with wave 

number mk ; If the average disturbance force f  causes the disturbance to reach the peak value mh , then the 

work done by force f is mhf . 

Due to there are rmn
or Rmn

 peaks on circumference r2  or Rπ2  for the disturbance with wave number 

mk , and thus the disturbance energy is mr hfmn  or mR hfmn  . From this, can see that under the same disturbance 

energy, the larger the wave number mk , the smaller the peak mh ; Therefore at 1=m , mh  should take the 

maximum value 1h . 

The previous equation expresses the superposition effect of many disturbances. The result is that the spikes and 

bubbles of various peaks fuse with each other, resulting in a decrease in the peak of the higher peak, while an 

increase in the peak of the lower peak, thereby tending to an average value. The value can be calculated using the 

weighted average 

)(cos)(cos)
1

(lim

1

  ++= 
=

→
mkLmkLhC

n
U

n

m

mm
n

, thereby there is 


=

→
++

n

m
n

mkLmkL
n

hCU

1

11 )(cos)(cos
1

lim  

. 

The above equation involves the peak at point H in Figure 6. Due to symmetry can discuss  +mkL
 and 

 +mkL
 only within the interval ]20[ , , within this interval, 

)(cos  +mkL
and 

)(cos  +mkL
are 

decreasing functions for m . Therefore there is 
)(cos)(cos)(cos)(cos   ++++ kLkLmkLmkL
, so 

there is 

)(cos)(cos)(cos)(cos

1

  ++++
=

kLkLnmkLmkL
n

m , thereby can infer 
)(cos)

(cos11





 ++



kLkL

hCU

. 

Further discussing 1h in the above formula, there is 




=



=





11

)22()22(

n

n

n

n

n!n

k

n!n

k

due to 1 , resulting in 

]
)22(

)22([ln
1 )16(

1
2

1 C
n!n

k
k

e
h

n

n

k
+


+ 



=




. Can prove that



=


1

)22(

n

n

n!n

k

 convergences to a constant, and if the 

constant term is uniformly written as 
)16(C , then there is 

)(cos)(cos])(ln[ )16(2
1 


  ++

− kLkLkCeCU k

. 

Determine 
)16(C  in the above formula. From U=Mu  know that U has the dimension 

][][ gsergU =  

namely 
][][ gergsU = . This indicates that the physical meaning of 

sU  is: U  per unit time is the unit 

mass disturbance energy, so if there is no disturbance, then there should be 
0=sU  ; So, if there is an initial 

manufacturing error o , then in order to achieve 
0][ == o

sU


, i.e. 

0])(cos)(cos)(ln[ )16(2
1 =++ =

−

o
kLkLkCeCU k




 
, there must be 

1)16( )( −= okC  . 

In summary, there is an upper bound  
)(cos)(cos)(ln),,( 2




 ++=
− kLkLeU o

k
SP that makes 

),,()(1  SPUtCU 
, so as a valuation, it can be approximated as 

),,()(1 SPς UtCU =
. 

5.4 Boundary Condition and Initial Condition at the Disturbance Interface 

Motion Boundary Condition 

Mark the subscripts of the fluid parameters in Figure 6 as follows: corresponding to 2mρ
 add "+", 

corresponding to 1mρ
add “-”; The point M

 in the neighbourhood of point M  on the ζS face forms the 

S face. In the disturbance, since ζS is the interface between fluids 2mρ
and 1mρ

, so neither fluid should cross 
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the ζS  face; So the normal component Mn u
of the velocity Mu  of the fluid element at point M

, must be 

equal to the normal component Mnu
 of the velocity Mu  of the fluid element at M  point on the ζS  face, that 

is MnMn uu = ; But 
0nuu =− )( MM , n ～normal unit vector, therefore 

0nuu =− )( MM  is required. Based on 

this, the following motion boundary condition can be derived 

0)),,(()),,(( =+ φLtuLtu                        (5.4-1) 

The above speed Mu is represented as φψζM eeeξu  uuudt ++== d
in the coordinate system H. 

Argument the above: 

For equipotential surface 
),,( tS  −=

there is 



S

S



−
=n

, so there is

0)( =


−
−





S

S
MM uu

, thereby there is 

0=−



−+




 





S

t

S
S

t

S
MM uu

, this equation should have t

S

t

S




→



  

and SS →   at 
MM → , 

thus can be written as 
0=−




−+






 S
t

S
S

t

S
MM uu



; Apply Euler operators(2.2-4)1 to this equation to 

obtain 
0=

dt

dS

and 
0=

dt

dS

, according to the second equation, 
0=+




= 


S

t

S

dt

dS
Mu

 is obtained. 

Substitute the implicit equation 
),,(),,,( ttS  −=

of face ζS into the above equation to obtain 

0)],,([
)],,([

=−+


−
t

t

t
M 


u

, and then in the coordinate system H use the ring coordinate gradient 

φξ eee
φLL 


+




+




= 


, leads to 

0
),,(),,(
=




+





φL

t
u

L

t
u







, this is the Motion boundary condition. 

Dynamic boundary condition 

As shown in Figure 6, during motion, the fluids on both sides of interface ζS  always come into contact with 

each other without separation. Therefore, the resultant force of fluid interaction at face ζS  should be zero, 

i.e.
0=++ + -s ppp

. Where sp ～the surface tension of face ζS , where −p  and +p ～the fluid pressure acting 

on the 1mρ
 side and 2mρ

 side of face ζS  at the point M , respectively. For implosion, sp can be omitted due 

to −+ , ppps , thereby there is 
0=++ -pp

. 

From this, the following dynamic boundary condition can be derived 

0)2(
2

=−+ fuM Mut
                            (5.4-2) 

where JBa fff +=
～body force, af ～inertia force per unit mass, JBf

～Lorentz force per unit mass. 

Argument the above: 

Due to the tiny amount of the viscous force compared to the internal pressure of the implosive fluid, it can be 

omitted; According to Bernoulli's principle 
7)1(2

2 CUρputU fmM =+++  , where p ～ fluid internal 

pressure; fU ～the potential energy of body force f, namely 
f=− fU ; Or the equation can be written as 

]2[
27)1(

fMςm Uu-tU-Cρp −=
. 

Substituting the above equation into 0=

++

-p

p

 obtains 
0)(])

2
()

2
([][

12

2

1

2

2
7)1(

1
7)1(

2

=+−

+



++




−+ −−++

−+

fmm

Mς
m

Mς
mmm

Uρρ

u

t

U
ρ

u

t

U
ρCρCρ

, 

due to in the neighbourhood of point M ,so there are
tUtU ςς → + ,

tUttU ςς → − and MM uu →+ , 

MM uu →− , therefore there is 
)(][2 12

7)1(
1

7)1(
2

2
mmmmfMς ρρCρCρUutU ++=++ −+ . 

In the neighbourhood of the disturbance face, because can be approximated as an incompressible fluid, so in the 

above equation, there are
constρm 1 and

constρm 2 , thereby there is 
constρρCρCρ mmmm ++ −+ )(][ 12

7)1(
1

7)1(
2 . 
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If 12 mm ρρ 
, then 

7)1(
+=Cconst

, thus deriving 
7)1(2

2 +=++ CUutU fMς . 

Perform the   operation on both sides of the above equation to obtain
)(

fMς CUutU 172
)2()( +=++

, 

and apply formula (2.2-1)3 and Mu= ςU  to this. Thereby, the dynamic boundary condition for disturbance is 

derived as 
0)2(

2
=−+ fuM Mut

. 

Initial condition, regarding (5.2-1) equation 
)(),(),,( tφtφ t =

, there are the following initial condition: 

o
L
L 




=

=

=

0
0]),([

, 
1)( =ot t

, 

0]),([
2

0 =

=

=

kL
L






, 
])4(sin[2]),([ hokL krr

G
 

==  (5.4-3)1,2,3,4 

In the formulas: 

2)211( rG n+= 
                              (5.4-3)5 

where o ～the initial manufacturing error of the cross-sectional radius of the ring target, ot ～the starting 

time of the disturbance; For implosion, the starting time of disturbance is ot ; For stagnate, the starting time of 

the disturbance is 0=t . 

Argument the above: 

Due to the initial manufacturing erro o  of the cross-sectional radius of the ring target, so the disturbance at 

time ot  has an initial value o ; This o  should be the vertex of the disturbance crest or trough.If 

corresponding to the disturbance peak at time ot , let 
0=L , 

0=L , then there is o

φ

tt
LLo tφ




 

=

=== 0,0]),,([

. 

Substituting equation(5.2-1) into this formula obtains 

o
L
L

φ




=

=

=

0
0]),([

and 1

)(

=

ot t

. 

As shown in Figure 6, since the disturbance amplitude reaches its peak at Mtp points of 
0=L  and 

0=L , 

then the amplitude should decrease when leaving this point. At the 1/4 cycle from the Mtp point along the 

circumference R2 , this should be the intersection of the crest and trough, the disturbance amplitude at this 

point should be zero, hence 

0]),([
2

0 =

=

=

kL
L

φ 




. 

As shown in Figure 6, since the width of the crest or trough of wave along the circumference r2  is the half 

cycle along the arc length. Therefore, regardless of the value of kL
, the arc length GH ~  along the 

circumference r2 should always be equal to 1/4 cycle. If HG is the chord length corresponding to GH ~ then there 

is 
HG

kkL ==
 ]),([

, where G
is the   angle value corresponding to point G; The HG value can be 

determined as follows: if the arc length GH ~ corresponds to the central angle of the circumference r2 then the 

chord length )2sin(2 rHG = , so there is 
)2sin(2]),([  

r
kkL ==

; But for the circle hor2
, its central 

angle is 
)2( hokr =
, so there is 

])4(sin[2]),([ hokL krr
k

 
==

. 

As shown in Figure 6, 
2)211(22 hoG kr+=+= 

 can be inferred from ΔHCG , substituting formula 

(5.3-1)3 into this formula obtains 
2)211( rG n+= 

. 

5.5 Basic Formula for Calculating the Crest Value p  of Disturbance From the General Solution of ςU   

5.5.1 General Solution Must Comply With Motion Boundary Condition 

Meeting the motion boundary condition requires  to satisfy equation 

0)in()(cos)()(cos)(sin)( =+++++   kLskLLkLkLL φ , its solution is 

}])([sin)-(sin)()({)(),,,(   kLrkLrArBttφr kot +−=
           (5.5-1)1 

In the equation: 

kBrA  sinsin]1[)( −=
, 

)4sin()2()( hoo krrrB =
, 

])1([)( −= BBarctgr  (5.5-1)2,3,4 

Argument the above: 
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Substituting equation (5.3-3)1 into U=Mu  obtains three equations  uUC SP =1 ,  uLUC SP =1 , 

and  uLUC SP =1 .Substituting the latter two equations into the motion boundary condition (5.4-1) obtains 

0=







+









φ

SPSP

LL

U

LL

U 

 , and then substituting the general solution(5.3-3)2 into this equation 

obtains
0)in()(cos)()(cos)(sin)( =+++++   kLskLLkLkLL φ ; And also substitute the 

above equation into equation(5.2-1) to obtain equation 
0)in()

(cos)(cos)(sin

=++




+++

















kLs

kL
L

kLkL
L φ

 about ),( φ . 

Using the method of separation of variables to solve the above equation, the general solution  obtained 

is
CkLkLDkLkLAφ oo ++++++= )(sin)(sin)(sin)(sin),(  

, where A , B , C ～constants. 

This solution should satisfy the initial conditions (5.4-3)1,3,4 formulas. 

Substitute the general solution ),( φ into the initial condition (5.4-3)4 to obtain 

)
4

sin(2
)(sin

)(sin

)(sin

)(sin

hoG
o

G
o

kr
rC

kL
D

kL
A





















 =+

+

+
+

+

+

. To make this equation independent of the value of 

 +kL
, can only take  −=G  and 0=D , thus 

)
4

sin(2
)(sin

)-(sin
),(

ho

G
o

kr
r

kL

kL
Aφr,











 +

+
−=

 is obtained. 

Substitute the above equation into the initial condition(5.4-3)1 to obtain 

Ghoo krrA   sinsin]1)4sin()2[( −=
; And substitute this formula into the original equation to obtain 

)}4sin()2()(sinsin)-(sinsin]1)4sin()2[({),( hooGGhooo krrkLkLkrrφ   ++−−=
, the 

formula should meet the initial condition (5.4-3)3, and thus derive 

}]1)
4

sin(
2

[)
4

sin(
2

{ −=
hoohoo kr

r

kr

r
arctg













. 

In summary, substituting the formula of ),( φr, back to equation (5.2-1) obtains 

}])([sin)-(sin)()({)(),,,(   kLrkLrArBttφr kot +−=
. 

5.5.2 General Solution Must Comply With Dynamic Boundary Condition 

The disturbance crest corresponds to the general solution 

)0,0,()(][ o1
0,0

o 



 
 SPς UtCU =

==

=

. In order to make that 

the general solution satisfies the dynamic boundary condition, 
)(1 tC

 in equation(5.3-3)1 must satisfy the 

following equation 

0)()(2)( 2 =+− rftCdttdC oHH                         (5.5-2)1  

where 
ok

oH etCtC 
 

2
1 coscos)()( =

. 

Integrate the equation (5.5-2)1 

0)(
12

)(
1)(1 2 =

−
+

−
−

− 
he

o

he

o

he

o

r

r
ohe

r

r
o

H
ohe

r

r

H

ohe

drrf
rr

drtC
rr

dr
dt

tdC

rr 

, where 

0)(
1

=
−

= 
he

o

r

r
ohe

drrf
rr

f

,

−
=

he

o

r

r
o

H
ohe

H drtC
rr

tC


2
)(

1
)( 22

and 
−

=

he

o

r

r

H

ohe

H dr
dt

tdC

rrdt

tdC )(1)(

 are all the average values 

related to r . Below, 
dttdCH )(

and 
2)(tC H  are still recorded as 

dttdC H )(
 and 

2)(tC H , and thus the original 

equation is transformed into  

0)(2)( 2 =+− ftCdttdC oHH                          (5.5-2)2 

Argumenting equation (5.5-2)1 

Firstly, the dynamic boundary condition (5.4-2) can be expanded to 
0sincos

)
2

()(
2

=−

++++




ψς

φψζ

ee

eee





ff

u
uuu

t
M

 in the 
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coordinate system H. When proving equation(5.5-1), obtained three equations:  uUC SP =1 , 

 uLUC SP =1 , and  uLUC SP =1 , substitute these three equations into the previous equation, thereby 

three component equations 






dfd

u
d

U

dt

dC MSP cos
2

1
2

1 −=



+





, 







dLfdL
L

u
dL

L

U

dt

dC MSP sin
2

1
2

1 =



+





 and 

0)2())((
2

1 =+  dLLudLLUdtdC MSP  are obtained; Add the three equations together to obtain 

)sincos(2)(
2

1  dLdfdudUdtdC MSP +−=+
. 

Because the discussion of this article is about disturbance crest, and the L  , L values corresponding to the 

disturbance crest are 
0=L and 

0=L , thereby 
1

0
0

0
0 ][)](sin)([cos PdUddUdLdUd SPSPSP ==−

=
=

=
=





 

, and 

2
0
0

2
][5.0 PdUdu SPM =
=
=




 can be set, so above equation corresponding to the disturbance peak can be written as 

211 )()( PPrfdttdC −−=
.  

Secondly, calculate 0
01 ][

=
==


 SPdUdP

in the above equation. For this use formula (5.3-3)2 to calculate 









 d

dL

L

U

d

dL

L

UU

d

dU SPSPSPSP




+




+




=

, and then use formulas (5.5-1)1 and (5.2-1) to calculate 

1)( −




=



 

 Ld

dL

 and 

1)( −




=



 

 Ld

dL

 (Note: Here L , L , and r are independent of each other) in this equation. Then, substitute this 

and equations(5.5-1)2,3 into the original equation, obtain 

)}
cos

sin
(

])
4

sin(2[)(

sin)(ln
cos]1)(ln2{[os][

2
o

o

2

0
0

kk
o

ho
t

ko
o

o

k

L
L

SP

tg

tg

kr
rt

kc
e

d

dU o
























 




+

−

−
++−=

−

=

=

 at 
0=L  and 

0=L . There is 

0)](ln[lim o
0

=
→

 
 

o
o due to 

1o and 
oo  


==0][

, so after calculation, 




  




oscos][

2

0
01 cedUdP ok

o
L
LSP =

=

=

is obtained.  

Thirdly, calculate 0
0

222

0
0

2
2 ])([5.0][5.0

=
=

=
= ++==





 SPSPM dUuuuddUduP

in equation 211 )()( PPrfdttdC −−=
. 

When proving equation(5.5-1), three formulas 



u

U
C SP =




1

, 




u
L

U
C SP =




1

and 




u
L

U
C SP =




1

 were obtained, 

substitute these three formulas into the previous formula, 

obtain 0
0

2222
1

0
0

2

}])()()([{][
=
=

=
=




+




+




=







 L

U

L

UU

dU

d
C

dU

du SPSPSP

SPSP

M

. 

Regarding 0
0

0
0

0
0

2 ][])()[(2])([
=
=

=
=

=
= =








  SPSPSPSPSP dUddUdUdUUd

 in the above equation, since 

o =
is present at 0= and 0= , and in the numerator omit the tiny quantity containing 

1o , then 






   coscos][

21

0
0

ok
oSP eU

−−

=
= =

 and 






   coscos])([

22

0
0

ok
oSP edUd

−−

=
= −

 can be derived by 

using formula(5.3-3)2. Substituting these two formulas and 




  




oscos][

21

0
0 ceddU ok

o
L
LSP

−−

=

= =

 calculated 

earlier into the original formula obtains 






   coscos2])([

22

0
0

2 ok
oSPSP edUUd

−−

=
= −=

. 

Regarding 0
0

22 }])()([{
=
=




+








 L

U

L

U

dU

d SPSP

SP in the original equation, where 
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0
0

0
0

2 ])(
2

[])([
=
=

=
=








=













 SP

SPSPSP

SP dU

dL

L

U

dL

d

L

U

L

U

dU

d

, there is o =
 at 0=  and 0= , 

0][
0
0 =





=
=




L

U SP

can be 

calculated using formula (5.3-3)2, thus

0])([
0
0

2 =




=
=




L

U

dU

d SP

SP  can be derived, and

0])([
0
0

2 =




=
=




L

U

dU

d SP

SP  can be 

derived similarly, thus

0}])()([{
0
0

22 =+
=
=


 SPSPSP dULULUd

 can be derived; Substitute the calculated 

formulas into 2P , then obtain 


   coscos)(2
222

12
ok

o etCP
−−

−=
. 

Fourthly, substitute the derived 1P  and 2P into the original equation 211 )()( PPrfdttdC −−=
, and let 

)()(coscos 1
21

tCtCe H
k

o
o =

−−



  

, then equation 

0)(
2

)(
)( 2 =+− rftC

dt

tdC

o
H

H

 is obtained, this is equation 

(5.5-2)1. 

Solve equation (5.5-2)2 
0)(2)( 2 =+− ftCdttdC oHH  , Its basic solution is: 

]1[]1[2
)()( 11 −+=

+−+− icic CtCt
oH eefC




, of  8=
           (5.5-3)1,2 

where 1icC
～integral constant. 

Argument the above: 

Let 
zdtdC H =

, then the equation is transformed into oHCfz 
2

2=+
, namely 

])[2( fzC oH += 
; 

Discuss the symbol of this equation: according to (5.3-3)1 equation 
),,()(1 SPς UtCU =

, note that the 

dimension of velocity potential U is ][ gserg  , its meaning is: the unit mass energy of a disturbance during a 

certain period of time, this energy should not be negative, so 
)(1 tC

, namely 
)(tC H , alsow should not be 

negative. Thereby there should be 
2][ fzC oH += 

.  

Take the derivative on both sides of the above equation, it can be transformed into
)(8 fzzdzdto +=

, 

integrating this equation,
2)()(
]1[4 11 −=

+−+− icic CtCt
eefz



is obtained, where already set 
of  8=

. Since 

the disturbance amplitude only increases over time and does not decrease, so when integrating, 

0)( = zdttdC H  is taken.  

Combining 
2)()(
]1[4 11 −=

+−+− icic CtCt
eefz



 with equation (5.5-2)2, thus the basic solution 

]1[]1[5.0
)()( 11 −+=

+−+− icic CtCt
oH eefC




is obtained.  

Regarding f in the basic solution 

The body force JBa fff +=
includes unit mass inertial force aa af −=

 and unit mass Lorentz force JBf . Where 

af  should be discussed in two stages: firstly, exists in the ring target shell from starting of the implosion to 

starting of stagnate; Secondly, exists in the DT gas of center from starting of stagnate to end of stagnate. 

In the first stage, due to implosion, the overall system is in a speed increase state, and af  can be estimated as 

follows  

ocoaa tuξauaf ]),([ −= 
                          (5.5-4)1 

Where cou
～starting speed of the outer surface of DT ice,

),( ξau
is calculated using the(2.5-3)2 formula. 

In the second stage, due to stagnate, the overall system is in a speed reduction state, and af can be estimated as 

follows  

heaa tξauaf ),( =
                            (5.5-4)2 

where 
),( ξau

is also calculated using the (2.5-3)2 formula. 

The formula for calculating the Lorentz force per unit mass is 
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shshoJB MBrRf 2
2

3−
                           (5.5-4)3 

where shM ～the mass of the ring target shell. 

Argumenting formula (5.5-4)3: 

Regarding the unit mass Lorentz force, according to formula(4.3-8)1, the unit mass Lorentz force on the entire 

target ring shell is 

 −

−−
=

−
=

sh

c

sh

c

r

r
csh

csh

sh

r

r
sh

JB drB
rr

rr

M

R
drB

M

R
f

2
3

2
3



, where 

−
=

sh

c

r

r
csh

drrB
rr

rB 2
3

2
3 )(

1
)(

 is the average 

value of 
2

3 )(rB
; When deriving formula(4.3-8)4, the average value 

−
=

he

o

g

g
ohe

dggB
gg

B

3

2
3

3

2
3 )(

1

 was used to 

approximately replace 
2

3 )(rB
, thus shshJB MBrRf

2
3−=

 can be derived. 

Substitute the above formula into
−

=

he

o

r

r

JB
ohe

JB drf
rr

f
1

, note that JBf
 only exists in the

),( shoshe rr
 interval, so 

there is
−

−
=

she

sho

r

r

shsh
shshoshe

JB drr
Mrr

BR
f 



)(

2
3

. According to formula(4.3-1)2, 2

1
2

3 +−
= shoshe

sh

sho
JB

rr

M

BrR
f



 can be 

derived, due to shesho rr 
, there is shshoJB MBrRf 2

2
3−

. 

5.5.3 According to the description in 5.5.1 and 5.5.2, the basic formula for calculating the crest value of 

disturbance  , i.e. the value p  at 
0=L and 

0=L , can be derived, as follows 

}]1[ln{)4( 2)()(
2

11 icic CtCt
icop eeC

+−+
−=




                    (5.5-5) 

where 2icC
～integral constant.  

Argument the above: 

Because

222
d  uuuudt M ++==

, substitute the three equations  uUC SP =1 ,  uLUC SP =1  

and  uLUC SP =1  btained from proving formula (5.5-1) into it, and integrate it to obtain 

 


+




+




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L

U

L

UU
tC SPSPSP 222

1 )()()()(




; At
0=L and

0=L , there is
0
0

222
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=
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
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
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
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=




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L
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L
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; 

Substitute 
o

kSP oe
U





 



 coscos][
2

0
0

−

=
= =





, 

0][
0
0 =





=
=




L

U SP

, 

0][
0
0 =





=
=




L

U SP

 obtained from proving formula 

(5.5-2)2, as well as the 
ok

oH etCtC 
 

2
1 coscos)()( =

 already set above, into this formula, thereby 

obtain = dttC Hp )(
. 

In addition, according to the formula (5.5-1)1 there 

is
0
0

0
0 }]][[sin)]-([sin{)(][

=

=

=

= +−==







  

L
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L
Lp kLkLABt

, and substituting formula(5.5-1)2into it can 

obtain otp t  )(=
; Combine this formula with the previous formula, and substitute the basic solution 

(5.5-3)1into it, thereby derive 


−

+
=

+−

+−

dt
e

ef
t

ic

ic

Ct

Ct

o
t

1

1

2
)(

)(

)(

1

1








. 

In the above formula, because o is a tiny amount and f is a huge quantity, thereby 
18 = of 

, and 

according to umerical computation, there is 1t , so 1
)( 1 

+ icCt
e


; Therefore, the previous formula should 

be 
+−+−

−+= dteeft icic CtCt
ot ]1[]1[2)(

)()( 11 


; Integrating it, and substituting into otp t  )(=
, thereby 
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the basic formula for the crest value 
}]1[ln{)4( 2)()(

2
11 icic CtCt

icop eeC
+−+

−=



is obtained.  

5.6 Determine the Integral Constant and Corresponding Formula in the Basic Equation 

5.6.1 During the time interval
0tto , the body force f points towards the center of the ring target shell, the 

formula for expressing the disturbance at the interface of the ring target is 

})1(]1[{ln)4()(
)(22)(4 oo tt

u
tt

uop eCeCet
−−−−

−−=



, 

]12)1,([]12)1,([ +−= oou faufauC  
 (5.6-1)1,2 

Argument the above: 

Firstly, at the starting time ot  of the implosion, the disturbance starting speed u
at the crest should be the 

starting speed 
)1,(au

of the implosion; When deriving equation(5.5-1)1,  uUtC SP =)(1  was derived, so 

there must be

)1,(])([ 0,01 auUtC
ott

SP =
=

== 

. But






   coscos][

21

0
0

ok
oSP eU

−−

=
= =

 has already been 

derived above, thus there is 
)cos(cos)1,()(

2
1 


   auetC ok
oo =

; Thereby there is 
)1,()( autC oH =

 due 

to
ok

oH etCtC 
 

2
1 coscos)()( =

. 

Substitute the basic solution(5.5-3)1into the above formula,and note that 1
)( 1 

+ icCt
e


 has already been 

mentioned above, so there is 
)1,(

1

1

2 )(

)(

1

1

au
e

ef

ico

ico

Ct

Ct
o

=
−

+

+−

+−






, from this, 

o

o

o
ic t

fau

fau
C −

−

+
=

12)1,(

12)1,(
ln

1
1










 can be 

obtained; Substituting this back into the basic formula(5.5-5) of p , then 

}]1[ln{)4(
)(2)(

2
oo tt

u
tt

uicop eCeCC
−−−−

−=



is obtained, where have set 

]12)1,([]12)1,([ +−= oou faufauC  
. 

Secondly, according to the initial conditions(5.4-3)2 and otp t  )(=
, the previous formula becomes 

])1(ln[)4( 2
2 uuicoo CCC −=  

, thus obtaining 
24

2 )1( −= uuic CCeC
. Substituting this formula back to the 

original formula obtains 
})1(]1[{ln)4()(
)(22)(4 oo tt

u
tt

uop eCeCet
−−−−

−−=



. 

5.6.2 At the starting moment 0=t  of stagnate, the disturbance starting speed u
 at the crest should be the 

stagnate speed 
),( au

; So, from the same principle as the previous derivation of formulas (5.6-1)1,2, the 

formula for expressing the disturbance at the interface of the center DT gas in the time interval hett 0
 can 

be derived as follows 

])1()1(ln[)4()( 224 −−= −+
v

t
v

t
op CeCet 


, 
]12),([]12),([ +−= oov faufauC  

 (5.7-1)1,2 

5.7 Stability Criteria 

As mentioned earlier, the following two places must limit the disturbance crest:  firstly, on the interface inside the 

ring target shell at the starting of stagnate, in order to avoid instability, must ensure that both the ring target shell 

and DT ice layer are not damaged by disturbance. So the stability criterion is 

)0()0( shp r 
, 

)0()0( ip r 
                         (5.8-1)1,2 

Secondly, at the end of the stagnate, on the center DT gas surface, in order to avoid instability, must ensure that 

hot spot is not damaged by disturbance. So the stability criterion is 

hehep rt )(
                                 (5.8-1)3 

6. Energy Gain 

6.1 Foreword 

For nuclear fusion devices with practical value, the energy released by fusion should exceed the driving energy; 

For inertial fusion devices, its application value is measured by "energy gain"; According to literature  (Stefano 

Atzeni, Jürgen Meyer-ter-Vehn, 2008), the energy gain aG is defined as 
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dfusa EEG 
                                  (6.1-1) 

where dE ～driving energy; This dE  causes the ring target to pinch, resulting in an increase in the internal 

energy of "DT"; fusE ～the energy released due to fusion. 

 

1.driver
ηd

Em Em=Ed  2.target
Ga

3.exchanger
ηth

ηd   Efus=  EmGaηd     EmGaηd ηth

    EmGa  fbηd ηth

    EmGa  (1-fb)ηd ηth

    5.loop

    4.output

Fig 7.  
 

Inertial fusion devices should be combined with other necessary devices to form an energy system, only then can 

work properly; Figure 7 shows the energy flow diagram of the inertial confinement fusion energy system, where 

the input energy mE  is inputted into a driver with the conversion efficiency of dη
 and the output is 

mdd EηE =
; dE and the gain aG  follow formula(6.1-1) adfus GEE =

..., can write the energy flow thereby as 

bthamdm fηGEηE =
, where thη

～the conversion efficiency of heat exchangers, bf ～Feedback quantity; Thus, 

bthad fηGη=1
is obtained, namely bthda fηηG 1=

. 

In literature (Stefano Atzeni, Jürgen Meyer-ter-Vehn, 2008), 
250.fb 

, 
33010 .～.ηd 

 and 
40.ηth   are taken, 

then from the above formula can calculate that: the threshold that energy gain must reach is 
10030～Ga = . 

6.2 Exploring the Functional Relationship Between aG  and Driving Energy dE  

6.2.1 Introduction 

According to the principle of conservation of mass, the total installed amount of DT fuel hcΣ MMM +=
 in the 

ring target should always be maintained as a constant, where cM ～DT ice mass, hM ～mass of the center DT 

gas,and cM and hM also being constant. When given a ΣM  value, there should be a functional relationship 

)( Σdaa ,MEGG =
 between aG and dE ; On the ad～GE

 plane, a curve can be drawn using function 

)( Σdaa ,MEGG =
, and the following understanding can be given to this curve, as shown in Figure 8: 

 

Ed

Ga

NL

Ga(Ed,M?)

Edg

Nj
Gaj

Gam

EdL

GaL

Nm

m

m

Fig 8.  
 

Firstly, for a given total mass ΣM  of DT fuel, due to differences in the size of the ring target structure, causing 

the different values of driving energy dE , but there is surely a minimum value dLE
 in the dE  value; Due to 

dLE
 being a minimum,there is surely a U-shaped bend of the 

)( Σdaa ,MEGG =
 curve at point 

)( aLdLL ,GEN
, and 

the tangent of the 
)( Σdaa ,MEGG =

 curve at point Q8 is parallel to the aG axis. 

Secondly, when changing the given value of ΣM , the position of the 
)( Σda ,MEG

 curve on the ad～GE
 plane 
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will change, resulting in a cluster of 
)( Σda ,MEG

curves. 

Thirdly, as shown in Fig 8, for a given dgd EE =
 value, a straight line jNEdg

 parallel to the aG  axis can be 

drawn. jNEdg
 intersects multiple curves within the 

)( Σda ,MEG
 cluster, the aG  value at the intersection point 

jN  is 
)( Σdgaj ,MEG

. Due to the different ΣM  values, make the intersection jN different, resulting in different 

)( Σdgaj ,MEG
 values, thus obtaining a set of aG values; But in physical meaning, for a certain driving energy 

dgE
, it is impossible to obtain an infinite gain aG . So there must be an upper limit amG

 in 
)( Σdgaj ,MEG

; Let 

the intersection point corresponding to amG
is mN , changing the value of dgE

, the coordinates 
)( amdg ,GE

 of 

mN will change accordingly, thus draw a trajectory line mm~ ; The aG  value at each point on this curve is all the 

upper limit value amG
. 

Fluid parameters after stagnate, according to literature (Stefano Atzeni, Jürgen Meyer-ter-Vehn, 2008), for strong 

compression in ICF, Fermi fluid may be involved,where the average particle spacing is smaller than the de 

Broglie wavelength; According to literature (JialuanXu, Shangxian, 1981), i.e.the following discriminant 

formula holds 
3121)(

-
nhB nTmk 

, where  ～Planck constant, m ～particle mass， hBTk
～the temperature 

inside the center DT gas after the stagnate, nn ～particle quantity density; For the DT ice of equimolar, the 

number density of electrons and ions both are pmn m.n 52=
, so for electrons, the discriminant is 

1])()[52( 321 hBepmc Tkmm.ρ 
; At the end of the stagnate, the estimate of magnitude orders for mcρ

and heBTk
 

are: can reach ][10 35 −cmg and ][104.1][10 88 ergK −=  respectively; Based on this, can calculated that the left 

side of discriminant >1, indicating that there indeed is an electron Fermi fluid after the stagnate. 

Based on the above, the calculation should be carried out in the quantum domain, but the results obtained above 

were all obtained in the classical field. Here, plan to make corrections to the relevant fluid parameters. 

Literature(Stefano Atzeni, Jürgen Meyer-ter-Vehn, 2008) provides the following approximate calculation: still 

using DT ice the mass density mcρ
 calculated after stagnate, introduce degp

 to express the pressure of electron  

Fermi fluid,for the Fermi pressure
f
icp

of DT ice after stagnate there  are two formulas 
35

deg mcρp r A=
 

and degpαp f
f
ic = , where r A

～constant, for equimolarDT 
])()([10172 3231 cmggMJ. −=r A

, fα
～constant; 

Accordingto (Atzeni, & Meyer-ter-Vehn, 2008), in the current target design, the average value of fα
 is 451 ～. ; 

The combining of these two formulas results in 
35

mcff
f
ic ραp A=

, thus obtain 
5353)( f

icfmc pαρ −= r A
                             (6.2-1)a 

According to the ideal gas law mceg
f
icce RpT =

 during stagnate, substituting 
35

mceff
f
ic ραp A=

 into it can 

obtain the DT ice temperature during stagnate 

gmceffce RραT
32

A=
                             (6.2-1)b 

6.2.2 Deriving fusE
 

fusE
 can be calculated using the following formula 

DTΣDTDTODTfusfus qΓMQΓNQNE ===                         (6.2-2) 

where fusN
～the number of "DT pair" that actually undergo fusion within the inertial constraint time, DTQ

～

the whole fusion energy of a single "DT pair", DTOfus NNΓ =
～the combustion efficiency, DTON

～the total 

number of "DT pair" participating in fusion, DTq
 ～the unit mass fusion energy of "DT pairs". 

Regarding Γ  

According to literature(Stefano Atzeni, Jürgen Meyer-ter-Vehn, 2008), for inertial fusion where most of the fuel 

will be burned, there exists the following approximate formula (Fraley. et. ai, 1974)
)1(1 cB HHΓ +

, where 
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)( hcmcc rrH − 
, mcρ ～DT ice mass density, cr ～DT ice outer surface radius, hr ～the center DT gas radius, 

][ 2-
B cmgH 

is referred to as "combustion parameters". 

Among them, cH can be written as 
))(( hcccc rrVMH −=

, the volume enclosed by cr in the formula is based 

on formula(2.2-5)1 is 
RrπV cc
222=

,so there is 
)1)(2( 2

chccc rrRrπMH −=
.In this formula, ch rr

is expressed 

as 
constrrrr cooch ==

 according to formula (2.5-4)1, and due to 
constMc = , thereby cH  is the decreasing 

function of cr . 

According to 
)1(1 cB HHΓ +

,Γ  is an increasing function of cH , so when cr decreases due to implosion, 

Γ will increase; According to 
1])1(1[][ =+ →→ cc HcBH HHΓ

, Γ  has an upper bound; So when 

cr decreases to a certain value, Γ  will reach its peak uΓ
, seting cH corresponding to uΓ

 is cuH
, when 

reaching peak,can prove that Γ  has a asymptotic value  
21)(5.0 Bcuu HHΓ =

                            (6.2-3) 

Argument the above: 

According to (Atzeni, & Meyer-ter-Vehn, 2008), the energy fusE
 released by a single micro fusion must be 

limited to 
JEfus

1010 
, 10 . The fuel loading amount M also needs to be limited to ensure that micro 

fusion is carried out several times per second in the reaction chamber without damaging the equipment. This 

article takes 
MJEfus

4108
 and limits 

][60.1 gM  . Estimating that the amount of fuel involved in fusion 

accounts for 0.3 of the total fuel installed. Known that complete combustion of ][1 mg  DT releases 337 MJ of 

fusion energy, the peak value of Γ is 
5.03373.0 = MEΓΓ fusu ; So there must be 

5.0)1()(])1()([ +=+= → BcuBcuHHBcBcu HHHHHHHHΓ
cuc , thereby when Γ  reaching its peak,there is 

Bcu HH 
. 

Based on the above, can infer that: when Γ  approaches its peak, there can be an asymptotic form 

)(5.0 Bc HHΓ =
,making BcBc HHBccHHBc HHHHH →→ += ])([])(5.0[ 

 hold, Where  ～ Undetermined 

constant; determine  : let 
y=Bc HH

 then there is 11 ])1([]5.0[ →→ += yy yyy 
,this formula is a 

indeterminate form regarding  . By taking the logarithm of both sides of the formula and using the L'Hôpital's 

rule, 5.0=  can be obtained. From this, can infer that: when Γ  reaches its peak, there is a asymptotic value 

2
1

)(5.0 Bcuu HHΓ =
. 

Regarding BH , its value can be approximated as 

][697 2-
B cmg.H 

                               (6.2-4) 

Argument the above: 

According to Stefano Atzeni, Jürgen Meyer-ter-Vehn, 2008), BH  can be calculated using the following 

formula:
)(8 heDTTB TvmcH =
, where Tc ～the isothermal sound speed in the center DT gas at end moment het

 

of stagnate, 
][KeVThe ～the DT temperature in the center DT gas at end moment of stagnate. 

Substitute the average reaction rate formula (1.1-2)1into the above formula, and let 3kheTy =
 and 

135 58 kkmkk Bp=
, then there is

132

2 ln21
5

.
yk

B eykH =
; In the 

KeV.heT 26410 
domain the following will 

discuss the formula, here the original formula should be written as 

132
2 )ln(21

5

.yk
B eykH

−
=

; The reason for 

setting the discussion domain in this way, according to literature (Stefano Atzeni, Jürgen Meyer-ter-Vehn, 2008), 

the temperature of ICF increases from KeV.50  to KeV10  during stagnate and combustion, and can then reach 
KeV100 . The discussion domain set here basically covers this region. 
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The[KeV]

HB

64.2O 10 20 40.8

[g/cm ]2

8.15

7.22

10.0

27.4

Fig 5.
 

 

Substituting all relevant data into 

132
2 )ln(21

5

.yk
B eykH

−
=

, the graph can be drawn as shown in Figure 5, the 

graph has a minimum value 
227min .H B =

of BH  at 
][8.40 KeVThe =

. From the graph, can see that at 

1000.3 heT
the graph of BH  approximates a straight line parallel to the heT

 axis in the interval 

158227 .H. B 
; The following article approximates the BH  value as 

2)158227( ..H B +=
, namely 

][697 2-
B cmg.H 

. 

The formula for Q1 is:  

]1[)3]()([ 21253101

cehedf
f
iccu rrRπEαpH −= r A

                 (6.2-5) 

Argument the above: 

The peak cuH
 should correspond to the end moment of stagnate, and according to the definition formula, there 

is 
)1( cehecemcecu rrrH −= 
; Discussing cer

 in this formula: due to the pinch of the ring target caused by the 

driving energy dE , ultimately leads to an increase in the internal energy of DT, so dE  can be written as 

hmhehcmcecd VVE  +=
, where the specific internal energy is mcecec p  5.1=

, mheheh p  5.1=
, there 

should be 
f
iccehe ppp =

 when reaching thermal equilibrium, hence 
VpVVpE f

ichc
f
icd 5.1)(5.1 =+=

. Using 

formula(2.2-5)1 to this formula,
212 )3( f

icdce pRπEr =
is obtained. 

Substituting the above formula and equation(6.2-1)back to the original formula cuH
 then obtain to 

]1[)3]()([ 21253101

cehedf
f
iccu rrRπEαpH −= r A

. 

The formula for ΣM  is 

])(1][)([)32( 25352

cehef
f
icdΣ rrαpEM −=

−

r A
                  (6.2-6) 

Argument the above: 

The total installed amount of ring target fuel is hmhecmceΣ VVM  +=
, due to mhemce  

, there is 

cmcecΣ VMM =
, where cV is the volume of DT ice layer. Using the ring target volume formula (2.2-5)1, 

])(1[2 222
cehecemceΣ rrrRM −= 

 can be derived; Substitute formula (6.2-1)a and 
212 )3( f

icdce pRπEr =
into the 

above formula to derive formula (6.2-6), where 
212 )3( f

icdce pRπEr =
 obtained from proving formula (6.2-5). 

In summary, can conclude that Q1 at the end moment of stagnate is 

)1()1()()( 2211075358109
zzzREαE dfGfusu −−= K

                (6.2-7) 

where 
1071092156583 DTBDTG Hq FK r A=

, cehe rrz =
. 

Argument the above: 

At the end moment of stagnate, H reaches the peak cuH
, causing Γ to also reach peak uΓ

. So according to 

formula (6.2-2), make fusE
also reach peak DTΣufusu qMΓE =

; Substitute formula(6.2-3)into this formula to 

obtain 
21)(5.0 BcuDTΣfusu HHqME =

. 

Substituting formulas (6.2-5) and (6.2-6) into the above formula obtains 
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])(1[)]1[(
)()(3

22120745

109412145
ce

he

ce

hef
icd

fB

DT
fusu

r

r

r

r
pE

αRH

q
E −−=

−

r A
; Discuss 

f
icp

 in this formula: for this 

the definition formula heheDT rpF
involved in ignition criterion (3.3-7)3 is used, where hep

 should be the 

Fermi pressure 
f
icp

of DT ice at the end of stagnate, hence 
f
icDThe pr F=

; According to 

212 )3( f
icdce pRπEr =

that is obtained from proving formula(6.2-5), there is 
212 )3()( f

icd
f
icDTcehe pRπEprr F=

, 

thus 
22 ))(()(3 −= cehedDT

f
ic rrERπp F

 is obtained; Substitute this formula into the original formula, and let 

1071092156583 DTB

DT
G

H

q

F
K

r A
=

and ce

he

r

r
z =

, then obtain 

)1()1(
1 221107

53

58

109
zzz

R

E

α
E d

f

Gfusu −−=K

. 

6.2.3 Deriving the Maximum Value amG
of aG  When Givened the Driving Energy dE  

The expression for amG
is  

531096 ))(10938.3( REαG dfam
−=

                     (6.2-8)1 

The dimension of dE  in the formula is [erg].  

The structural parameters of the above formula must satisfy the following formula 

396.0== cehecoo rrrr
                          (6.2-8)2 

Argument the above: 

Substitute formula (6.2-7) into formula (6.1-1), obtain the expression of fusuE
corresponding to peak aG  as 

)1()1())(()( 22110753109
zzzREαzG dfGa −−= K

; When dE is given, this formula is only a function of z . So to 

obtain the extreme value of 
)(zGa , the extremum of 

)1()1()( 221107
1 zzzzf −−=

 must be calculated; the 

function 
)(1 zf

 has the following values: 
0)0(1 =f

and 
0)1(1 =f

,and there is 10  z  within interval 
0)(1 zf

, 

therefore there must exist a maximum value of 
)(1 zf

; To obtain this maximum value, calculate 
0)(1 =dzzdf

to 

obtain equation 07532 2 =−+ zz , solving this equation obtains a positive root 
396.0== mcehe zrr

, according 

to equation (2.5-4)1, 
396.0=coo rr

 can be further derived from this formula; Substituting it into the original 

formula of 
)(zGa obtains

53109
))(343.0( REαG dfGam K=

, substituting the value of GK  into this equation 

obtains equation (6.2-8)1. 

6.3 Estimating the Ring Target Size Range and Driving Energy Value Based on the Expected amG
 Value  

The initial volume shoV
 of the ring target shell 

If the upper bound of JB is JuB
, then the upper bound of its energy density is 

8
2

JuB
; Due to the magnetic 

field act on the ring target shell, so the upper bound of the driving energy provided by the magnetic field can be 

estimated as 
8

2
Jushod BVE 

; Substitute this formula into formula (6.2-8)1 to obtain 

5321096 )8)(10938.3( RBVαG Jushofam −
, thereby for the expected gain value amG

there must be 

3561092
)10938.3)(8( − amfJusho GαBRV 

                    (6.2-9) 

The initial volume ioV
 of the ring target DT ice layer 

As mentioned earlier: must to limit the loaded quantity of fuel to 
][60.1 gM  , so that micro fusion can occur 

several times per second without damaging the reaction chamber; So 
][6.1 gViomco 
 must be met, therefore 

due to 
][224.0 3−= cmgmco
, must have 

][143.7 3cmVio 
                               (6.2-10) 

The required ring target volume threshold was estimated based on the expected amG
 value using formulas 

(6.2-9,10),this can further determine the structural size of the ring target. 
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7. Examples 

The following is an example to verify the feasibility of the proposed programme in this article. 

7.1 Firstly, using numerical methods to solve the first order differential equation (2.4-4)1 

)()( 21 U,CΔU,CΔdCdU =
, the numerical function ],[ (1)CCUU =  corresponding to the curve 26 ~PP

 of solution 

can be obtained, while the curve 42 ~PP
of solution  has been proven to be a straight line 42PP

 In the previous 

text; When taking 69.0=  draw the curve of solution graph as shown in Figure 3; In the solving, 

9827036.0)1()1( ====  UCU is obtain at 1=C . 

7.2 Determine the Initial Parameters of the Ring Target and the Size During Stagnate 

The initial volume of DT ice layer should be constrained by formula (6.2-10) 
][143.7 3cmVio  , the initial 

volume of the ring target shell should be constrained by formula (6.2-9) 

3561092
)10938.3)(8( − amfJusho GαBRV 

. take 
5.1=fα

, 
][10650.2 6 GsBJu 
 and 

75amG
, the following 

structural parameters are obtained under this constraint (as shown in Figure 1): 
][2.0 cmrr hoo ==

 is taken 

first, and then the initial dimensions of the ring target are calculated as 
][5050.0 cmrco =

, 
][005.1 cmrsho =  

and ][605.1 cmR = ; The initial volume of DT ice layer is 
][812.6 3cmVio =
, and the initial volume of ring target 

shell is 
][92.23 3cmVsho =

; The DT gas loading amount is 
][10336.6 4 gM ho

−=
, the total DT fuel loading 

amount is 
][527.1 gMΣ =
. 

At the starting of stagnate, using formula(2.5-1)6,
][10191.2 3 cmaho

−=
 can be obtained, subsequently 

][10702.7)0( 3 cmrsh
−

, 
][10533.5)0( 3 cmrc

−=
and 

][10169.2)0( 3 cmrsh
−=

 obtained, and using 

hoci arr −= )0()0(
 obtained 

][10342.3)0( 3 cmri
−=

. 

At the end of stagnate, the hot spot radius 
][10392.1 4 cmrhe

−=
can be obtained using formula (2.5-1)1. 

7.3 Determining the Driving Magnetic Field 

Since the peak value of the driving magnetic field before the breakdown stage is 
)( 3

2
odr gB

, based on 

][10650.2 6 GsBJu 
 can estimate 

)( 33 ogB
as 

2122
33 ][10733.6)( GsgB o 

. Due to that between each driving 

magnetic field segment should be connected to each other end-to-end, namely
)()( kodrjedr gBgB =

and 

)()( jodrkedr gBgB =
. Thereby establishing the relationship between 

)( 3odr gB
 and 

)( 1odr gB
 values to obtain the 

appropriate starting value
)( 1odr gB
for the driving magnetic field. This article obtained 

22
1 ][95.51209)( GsgB odr =

. 

Then, using formula (4.3-5)1that describes the driving magnetic field before the breakdown stage, obtain 

respectively: the functions that drive the magnetic field in the solid state, solid- liquid state, liquid state and 

liquid- gas state are ][]95.5120910583.6[)( 2121
1 GsggBdr +− −

, 
212

1

1112112

12

12

212

})(

])(
2

[)(
2

1
{)(

odr

eoe
esho

dr

gB

gρ-gF-gF
A

ρ

R

rL
gB ++−−=





, 

odreo

oe
e

oo
sho

dr

gBgρ

-gF-gF
A

ρ
ggρ

R

rL
gB

111

212112

12

1
22

2

22

(]

)(
2

)([)(
2

1
{)(

++

−+−−=




, 

212
111222212112

12

1
23223

23

22

223 })(])()(
2

)(
2

[)(
2

1
{)( odreooeooe

e
e

esho
dr gBgρggρ-gF-gF

A

ρ
-gF-gF

A

ρ

R

rL
gB ++−+−+−−=




, and 

the driving magnetic field waveform curve DOABC ~  before the breakdown section was plotted in Figure 9a using 

these functional formulas. 
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D
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Using the expressions(4.3-6)1,(4.3-7)1for the driving magnetic field in the breakdown stage, numerical 

calculations are performed to obtain the numerical function 
)(zBdr regarding z , where 

)()( 333 oeo ggggz −−=
, and the waveform curve ED ~  of the driving magnetic field in the breakdown stage is 

drew in Figure 9b using this function. 

 

 

 

 

 

 

 

 

 

 

 

The curves DOABC ~  and ED ~ in Figure 9a,b are connected at point 
)( 3odr gB

, forming the driving magnetic field 

waveform curve starting from 
)( 1odr gB

. The driving magnetic field 
)(gBB drdr =
 obtained above is a function 

regarding g , the function of the driving magnetic field regarding time t  can also be obtained using 

formula(4.3-7)1 and parameter equation 






=

=
α

oo ttrrξ

arr

)(

),( 

. To save the length, this article does not further 

discuss this. 

7.4 Performance Parameters of the Ring Target 

According to calculations: after the implosion, enters stagnate at moment 
][10882.5 6 sto

−=
, and after the 

starting of stagnate completes stagnate at moment 
][10562.1 10 sthe

−=
. The total driving energy required for 

fusion: first the average value 
2122

3 ][10606.6 GsB =
 must be calculated using formula (4.3-8)4’, and then 

][10023.4 12
1 ergEd =

and 
][10369.8 12

2 ergEd 
 can be calculated using formulas (4.3-8)4,5, thereby the total 

driving energy 
][239.1][10239.1 13

21 MJergEEE ddd =+=
 can be calculated. The energy gain obtained by 

fusion: calculated using formula (6.2-8)1, the energy gain is 
148aG . 

7.5 To Achieve Fusion, the Ring Target Should Meet Various Criteria 

After the stagnate,
]/[1032 3cmgmhe =

can be calculated using formula (2.5-5)3,and thus 
1437.0=hemherρ

 can 

g

-Bdr

10.19

O

[10 Gs]

Fig9b. Breakdown
[10 g/s cm]

g3e

180

D

10.11g3o

2.457

20.64

42.62

68.93

103.2

177.3
E

Z=0 Z=1
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be calculated; And using formula (6.2-1)b calculate the hot spot temperature at the end of stagnate as 

][10949.2][41.25 8 KKeVThe =
; Additionally, 

448105224.0 4 === −
mhomcomhemce ρρ 

 can be obtained. 

Substitute the above data into the condition for all DT to participate in and complete fusion within the inertial 

constraint time ～formula (3.3-4), and self heating condition (3.2-6)1, ignition criterion (3.3-7)1, then the left 

side of formula (3.3-4) becomes 
0651.3)(10262

2121 =− heho
-

hehemhe TM.Trρ
, the left side of 

formula(3.2-6)1becomes 010561.6)())(()()( 212 =−+ hehemhehehemhehe TCrρTBrρTA , and the left side of formula 

(3.3-7)1 becomes 
007.71)43(2.1)(

23221 =−− .TTρρTrρ hehemhemcehehemhe . 

From the above results: the conditions for all DT to participate in and complete fusion, self heating condition, 

and ignition criterion are all met, that is: the ring target with the selected parameters can achieve fusion. 

7.6 Stability in Fusion 

7.6.1 Stability of Ring Target Shell and DT Ice Layer 

m/s][10186.2),( 5 cξau =  and 
]/[10305.2)1,( 4 scmauuco ==

can be obtained using formulas(2.5-3)2,3, 

thereby the average inertial force 
]/[10325.3 210 scmfa 

can be obtained using formula (5.5-4)1. The average 

Lorentz force 
]/[10506.3 10 gdynfJB −=
 per unit mass can be obtained using formula (5.5-4)3; Thereby the 

average body force from starting of the implosion of ring target shell to the starting of stagnate is obtained as 

]/[1081.1 9 gdynfff JBa =+=
. 

Calculate the disturbance peak 
)0(p of the ring target shell at the starting of stagnate needs to use 

formula(5.6-1)1,substitute ]/[1081.1 9 gdynf = ,
][10882.5 6 sto

−=
and ]/[10305.2)1,( 4 scmau =  into this 

formula, and take the initial manufacturing erro of the surface radius inside the ring target shell as 

][101 3 mmo
− , thereby obtain 

][10052.2)0( 3 cmp
−=

. Comparing this with the 

thickness
][10169.2)0( 3 cmrsh

−=
of the ring target shell and the DT thickness 

][10342.3)0( 3 cmri
−=

of the 

ice layer at the starting moment of stagnate: If the initial manufacturing erro of the surface radius inside the ring 

target shell is 
][101 3 mmo

− , then the stability criterion (5.8-1)1,2 
)0()0( shp r 

 and 
)0()0( ip r 

are 

satisfied. 

7.6.2 Stability of Hot Spot 

Using formula (5.5-4)2, the average body force inside the central DT gas can be obtained as 

]/[10399.1 15 gdynff a =
. 

Calculating the disturbance peak 
)( hep t

at the hot spot at the end of stagnate needs to use formula (5.6-1)1, 

substitute ]/[10399.1 15 gdynf = , 
][10562.1 10 sthe

−=
 and 

m/s][10186.2),( 5 cξau =
, into this formula, 

and take the initial manufacturing erro of the surface radius inside the DT ice layer as 
][109 4 mmo

− , thereby 

obtain 
][10324.1)( 4 cmthep

−=
. 

Comparing this with the hot spot radius 
][10392.1 4 cmrhe

−=
 at the end of stagnate: if the initial 

manufacturing erro 
][109.0 3 mmo

−  of the inner surface radius of the DT ice layer, then the stability 

criterion (5.8-1)3 hehep rt )(
 is satisfied. 

7.6.3 In summary, the ring target of the selected parameters can maintain stability in fusion. 

8. Conclusion 

So far this article has derived the relevant formulas required for ICF driven by a strong pulse magnetic field, and 

used these formulas to calculate an example. The results show that the selected ring target parameters can meet 

various detection criteria, thus stably achieving DT fusion and obtaining a high energy gain of 
148aG . There 



http://apr.ccsenet.org Applied Physics Research Vol. 16, No. 1; 2024 

284 

are still the following issues that need to be further solved in this programme: 

Firstly, the peak value of the driving magnetic field is relatively high, reaching 177.3 [T] at the end of the 

breakdown stage. At present, this belongs to the ultra strong magnetic field. 

Secondly, the manufacturing accuracy of the ring target is required to be relatively high, the initial manufacturing 

erro of the inner surface radius of the DT ice layer is required to reach 
][109.0 3 mmo

− . 
But there have been reports that the current world record for stable ultra strong magnetic fields is 45 [T] held by 

the United States, while the world record for non stable ultra strong magnetic fields is 2800[T]held by Russia. 
China is building a "world's strongest pulsed magnetic field device" that can generate 110 [T] magnetic flux 

density.In addition, there have been reports on micro nano 3D printing devices based on the principle of new 
surface projection micro lithography technology.So, the above issues can be solved with the development of 

high-tech. 

The proposed programme in this article has obvious advantages compared to existing programmes. The current 
programme proposed of using high-energy short pulse laser or high-energy particle beam pulse heating is 

difficult to achieve uniform energy flow irradiation on the target surface, so resulting in instability during 
implosion due to asymmetric flow, this causes tearing of the target, making fusion impossible to complete; 

Therefore, the current solution needs to make the driving device more complex, such as using the hohlraum 

target and so on. However, the pulse magnetic field used in this article can act symmetrically and uniformly on 

the ring target. So in implosion, ring target can perform symmetric flow without instability. 

Furthermore, the existing programme will form a coronal region due to the gasification of the spherical shell 
during implosion, which is particularly severe for hohlraum target. This coronal region will affect the 

transparency of the radiation energy flow, thereby reducing the input efficiency of the driving energy, which is 

not conducive to obtaining high energy gain. But for the pulse magnetic field used in this article, there is no such 

coronal region, which is very beneficial for improving energy gain. 

In summary, after comparison, the following conclusions can be drawn: the proposed programme of "using a 
strong pulse magnetic field to drive ICF" in this article, It is a feasible and promising for development technical 

method. 
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