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Abstract 

I already reported that 𝐴;ν;σ;λ
μ

=
∂3𝐴μ

∂𝑥ν ∂𝑥σ ∂𝑥λ + ⋯ must be expressed in 𝐴;ν;ν;ν
μ

=
∂3𝐴μ

∂𝑥ν ∂𝑥ν ∂𝑥ν = 𝐴 if 𝐴;ν;σ;λ
μ

=

∂3𝐴μ

∂𝑥ν ∂𝑥σ ∂𝑥λ + ⋯ was tensor satisfying Binary Law. I reported that 𝐴μ = 𝑆𝑖𝑛(𝑥ν) was established from the 

search result of the property of this 
∂3𝐴μ

∂𝑥ν ∂𝑥ν ∂𝑥ν = 𝐴. A trigonometric function is included in 𝐴μ = 𝑆𝑖𝑛(𝑥ν) here, 

but the search about the equation of Tensor satisfying Binary Law including the trigonometric function isn't done. 

I report the search result about the equation of Tensor satisfying Binary Law including the trigonometric function 

in this article. 

Keywords: tensor, covariant derivative 

1. Introduction 

I have already reported establishment of 𝐴μ = 𝑆𝑖𝑛(𝑥ν). (Ichidayama, 2017. Property of …) 𝐴μ = 𝑆𝑖𝑛(𝑥ν) is 

an equation including the trigonometric function here. However, it isn't investigated Tensor satisfying Binary 

Law for the equation including the trigonometric function. I investigate Tensor satisfying Binary Law for the 

equation including the trigonometric function newly and report this result in this article. 

2. Definition 

Definition1. 𝑥μ ≠ 𝑥μ, 𝑥ν ≠ 𝑥ν, 𝑥μ = 𝑥ν, 𝑥ν = 𝑥μ is established.(Ichidayama, 2017, Introduction of …) 

I named 𝑥μ ≠ 𝑥μ, 𝑥ν ≠ 𝑥ν, 𝑥μ = 𝑥ν, 𝑥ν = 𝑥μ "Binary Law".(Ichidayama, 2017, Introduction of …) 

Definition2. If 𝑥μ ≠ 𝑥μ, 𝑥ν ≠ 𝑥ν, 𝑥μ = 𝑥ν, 𝑥ν = 𝑥μ is established, 𝑥ν = 𝑥μ is established.(Ichidayama, 2017, 

Introduction of …) 

Definition3. If 𝑥μ ≠ 𝑥μ, 𝑥ν ≠ 𝑥ν, 𝑥μ = 𝑥ν, 𝑥ν = 𝑥μ is established, 𝑥μ = 𝑥ν is established.(Ichidayama, 2017, 

Introduction of …) 

Definition4. If 𝑥μ ≠ 𝑥μ, 𝑥ν ≠ 𝑥ν, 𝑥μ = 𝑥ν, 𝑥ν = 𝑥μ is established, 𝑥ν = −𝑥μ is established.(Ichidayama, 2017, 

Introduction of …) 

Definition5. If 𝑥μ ≠ 𝑥μ, 𝑥ν ≠ 𝑥ν, 𝑥μ = 𝑥ν, 𝑥ν = 𝑥μ  is established, 𝑥ν = −𝑥μ  is established.(Ichidayama, 

2017, Introduction of …) 

Definition6. If all coordinate systems 𝑥μ, 𝑥ν, 𝑥σ, 𝑥λ, ⋯  satisfies 𝑥μ ≠ 𝑥μ, 𝑥ν ≠ 𝑥ν, 𝑥μ = 𝑥ν, 𝑥ν = 𝑥μ , all 

coordinate systems 𝑥μ, 𝑥ν, 𝑥σ, 𝑥λ, ⋯ shifts to only two of 𝑥μ, 𝑥ν. (Ichidayama, 2017, Introduction of …) 

Definition7. If 𝑥μ ≠ 𝑥μ, 𝑥ν ≠ 𝑥ν, 𝑥μ = 𝑥ν, 𝑥ν = 𝑥μ is established, 
∂3𝑀μ

∂𝑥ν ∂𝑥ν ∂𝑥ν = 𝑀 is established.(Ichidayama, 

2023) 
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Definition8. If 𝑥μ ≠ 𝑥μ, 𝑥ν ≠ 𝑥ν, 𝑥μ = 𝑥ν, 𝑥ν = 𝑥μ is established, 
∂𝑚

∂𝑥ν = 0 is established. 𝑚 expresses Mass. 

Definition9. The first-order covariant derivative of the covariant vector satisfied  𝑀μ;ν =
∂𝑀μ

∂𝑥ν − 𝑀τΓμν
τ =

∂𝑀μ

∂𝑥ν −

𝑀τ
1

2
𝑔ϵτ .

∂𝑔μϵ

∂𝑥ν +
∂𝑔νϵ

∂𝑥μ −
∂𝑔μν

∂𝑥ϵ /.(Fleisch, 2012) 

Definition10. 𝑥μ =
∂𝑥μ

∂𝑥ν 𝑥ν is established. 

Definition11. −𝑆𝑖𝑛𝐴 = 𝑆𝑖𝑛(−𝐴) is established. (Spiegel, 1968)  

Definition12. 𝐶𝑜𝑠𝐴 = 𝐶𝑜𝑠(−𝐴) is established. (Spiegel, 1968)  

Definition13. 𝑆𝑖𝑛𝐴 + 𝑆𝑖𝑛𝐵 = 2𝑆𝑖𝑛
(𝐴+𝐵)

2
𝐶𝑜𝑠

(𝐴−𝐵)

2
 is established. (Spiegel, 1968)  

Definition14. (𝐴)
2

= 𝐴 ⋅ 𝐴 is established. (Spiegel, 1968)  

Definition15. −𝑆𝑖𝑛−1𝐴 = 𝑆𝑖𝑛−1(−𝐴) is established. (Spiegel, 1968)  

Definition16. Sin(𝑛π) = 0 is established. n expresses natural number here. 

Definition17. ∫
𝑑𝑋

√𝐴2−𝑋2
= arcsin .

𝑋

𝐴
/ is established. (Spiegel, 1968)  

Definition18. W(𝐴 → 𝐵) = −U = ∫ 𝐹⃗
𝐵

𝐴
⋅ 𝑑𝑟 is established. (Kittel, Knight, Ruderman, 1975) 

W expresses Work, U expresses Potential Energy, 𝐹⃗  expresses External force vector, and 𝑟  expresses 

Displacement vector. 

Definition19. 𝐸 = 𝑚𝑐2 is established. (Taylor, 1975) 

E expresses Energy, m expresses Mass, and c expresses Speed of light. 

Definition20. The force that the nucleus attracts electron is expressed in 𝐹 =
1

4πϵ0

𝑄𝑞

𝑟2 = −
𝑘

𝑟2. (Crawford, 1968) 

r expresses distance between nucleus and the electron, ϵ0 expresses dielectric constant, k expresses constant, Q 

expresses nuclear charge, q expresses electronic charge. 

The force that binary proton repels is expressed in 𝐹 =
1

4πϵ0

𝑄𝑄

𝑟2 =
𝑘′

𝑟2. (Crawford, 1968) 

r expresses distance between proton each, k' expresses constant. 

Definition21. 𝑦,𝑥- = 𝐶,1-𝐶𝑜𝑠,𝑥- + 𝐶,2-𝑆𝑖𝑛,𝑥-  is established as a solution of the equations of 𝑦′′,𝑥- +

𝑦,𝑥- = 0. I obtained this calculation result by Wolfrem Mathematica 11.3. 

y is function 𝑦 = 𝑓(𝑥) which assumes 𝑥 an independent variable. 

Hypothesis1. 𝑀 ∝ 𝑚, 𝑀 = ϵ𝑚 is established. 

M expresses 
∂3Mμ

∂xν ∂xν ∂xν = M, ϵ expresses Proportional constant, and m expresses Mass. 

3. Property 
𝛛𝟑𝑴𝛍

𝛛𝒙𝛎𝛛𝒙𝛎𝛛𝒙𝛎 = 𝑴: (𝑴 > 𝟎) 

Proposition1. When all coordinate systems satisfies Binary Law, 
∂𝑀

∂𝑥μ = 0,
∂𝑀

∂𝑥ν = 0,
∂𝑀

∂φμ = 0,
∂𝑀

∂φν = 0  is 

established. M expresses 
∂3𝑀μ

∂𝑥ν ∂𝑥ν ∂𝑥ν = 𝑀. 
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Proof. I get 

∂𝑀

∂𝑥ν = ϵ
∂𝑚

∂𝑥ν = 0                                      (1) 

from Hypothesis1,Definision8. I rewrite 
∂𝑀

∂φν and get 

∂𝑀

∂φν =
∂𝑀

∂φ𝑥ν =
1

φ

∂𝑀

∂𝑥ν.                                   (2) 

I get 

∂𝑀

∂φν = 0                                        (3) 

from (1),(2). I get 

∂𝑀

∂𝑥μ = 0,
∂𝑀

∂φμ = 0                                    (4) 

as μ, ν-inversion form of (1),(3). 

Proposition2. When all coordinate systems satisfies Binary Law, 
∂2𝑀1

∂𝑥1̇ ∂𝑥1̇ = −𝑀1,
∂2𝑀2

∂𝑥1̇ ∂𝑥1̇ = −𝑀2, 𝑥1̇ = 𝑥2̇ is 

established for 
∂3𝑀μ

∂𝑥ν ∂𝑥ν ∂𝑥ν = 𝑀: 𝑀 > 0 if the number of the dimensions is 2. 

Proof. I get 

∂2𝑀μ

∂𝑥ν ∂𝑥ν = M ∫ ∂𝑥ν = M𝑥ν                                 (5) 

in consideration of Proposition1 for Definision7. Two next 

∂2𝑀μ

∂𝑥ν ∂𝑥ν = −𝑀𝑥μ = −𝑀μ,                                 (6) 

∂2𝑀μ

∂𝑥ν ∂𝑥ν = 𝑀𝑥μ =
𝑀

𝑥μ =
(𝑀)2

𝑀μ                                (7) 

can rewrite (5) each using Definision3,Definision5,𝑀𝑥μ = 𝑀μ. I get (7) as 𝑥μ =
1

𝑥μ here. I get 

∂2𝑀1

∂𝑥1̇ ∂𝑥1̇
= −𝑀1,

∂2𝑀1

∂𝑥2̇ ∂𝑥2̇
= −𝑀1, 

∂2𝑀2

∂𝑥1̇ ∂𝑥1̇ = −𝑀2,
∂2𝑀2

∂𝑥2̇ ∂𝑥2̇
= −𝑀2,                              (8) 

∂2𝑀1

∂𝑥1̇ ∂𝑥1̇
=

(𝑀)2

𝑀1
,

∂2𝑀1

∂𝑥2̇ ∂𝑥2̇
=

(𝑀)2

𝑀1
, 

∂2𝑀2

∂𝑥1̇ ∂𝑥1̇ =
(𝑀)2

𝑀2 ,
∂2𝑀2

∂𝑥2̇ ∂𝑥2̇
=

(𝑀)2

𝑀2                                (9) 

from (6),(7) if I assume a dimensional number 2. I get 

∂2𝑀1

∂𝑥1̇ ∂𝑥1̇ =
∂2𝑀1

∂𝑥2̇ ∂𝑥2̇
,

∂2𝑀2

∂𝑥1̇ ∂𝑥1̇ =
∂2𝑀2

∂𝑥2̇ ∂𝑥2̇
                            (10) 
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from (8),(9). I get 

∂2𝑀1

∂𝑥1̇ ∂𝑥1̇ =
∂2𝑀1

∂𝑥1̇ ∂𝑥1̇   (𝑓𝑎𝑙𝑠𝑒),
∂2𝑀2

∂𝑥1̇ ∂𝑥1̇ =
∂2𝑀2

∂𝑥1̇ ∂𝑥1̇   (𝑓𝑎𝑙𝑠𝑒)                     (11) 

from (10) if I assume establishment of 𝑥1̇ = 𝑥2̇  (𝑓𝑎𝑙𝑠𝑒). Because (11) isn't established, 

𝑥1̇ = 𝑥2̇                                      (12) 

is established. I get 

∂2𝑀1

∂𝑥1̇ ∂𝑥1̇ = −𝑀1,
∂2𝑀2

∂𝑥1̇ ∂𝑥1̇ = −𝑀2,                            (13) 

∂2𝑀1

∂𝑥1̇ ∂𝑥1̇ =
(𝑀)2

𝑀1 ,
∂2𝑀2

∂𝑥1̇ ∂𝑥1̇ =
(𝑀)2

𝑀2                               (14) 

in consideration of (12) for (8),(9). 

Proposition.3 When all coordinate systems satisfies Binary Law, 𝑀1 = 𝑀𝑆𝑖𝑛(𝑥1̇), 𝑀2 = 𝑀𝑆𝑖𝑛(𝑥1̇)  is 

established for 
𝜕3𝑀𝜇

𝜕𝑥𝜈𝜕𝑥𝜈𝜕𝑥𝜈 = 𝑀: 𝑀 > 0 if the number of the dimensions is 2. 

Proof. When 𝑀 > 0 is established, I get 

𝑀1 = 𝐶,1-𝐶𝑜𝑠(𝑥1̇) + 𝐶,2-𝑆𝑖𝑛(𝑥1̇), 

𝑀2 = 𝐶,1-𝐶𝑜𝑠(𝑥1̇) + 𝐶,2-𝑆𝑖𝑛(𝑥1̇)                            (15) 

as a solution of the equations of (13) in consideration of Definision21. In addition, I do not deal in this article 

about (14). I get 

𝑀1 = 𝐶,2-𝑆𝑖𝑛(𝑥1̇), 𝑀2 = 𝐶,2-𝑆𝑖𝑛(𝑥1̇)                          (16) 

as 𝐶,1- = 0 for (15). I assume that 

𝑥1 = 𝑆𝑖𝑛(𝑥1̇)  (𝑓𝑎𝑙𝑠𝑒), 𝑥2 = 𝑆𝑖𝑛(𝑥1̇)  (𝑓𝑎𝑙𝑠𝑒)                       (17) 

is established. I rewrite (17) using 𝑀𝑥𝜇 = 𝑀𝜇 and get 

𝑀1 = 𝑀𝑆𝑖𝑛(𝑥1̇)  (𝑓𝑎𝑙𝑠𝑒), 𝑀2 = 𝑀𝑆𝑖𝑛(𝑥1̇)  (𝑓𝑎𝑙𝑠𝑒).                     (18) 

I get 

𝑑2𝑀1

𝑑𝑥1̇𝑑𝑥1̇
= −𝑀𝑆𝑖𝑛(𝑥1̇) = −𝑀1  (𝑓𝑎𝑙𝑠𝑒), 

𝑑2𝑀2

𝑑𝑥1̇𝑑𝑥1̇ = −𝑀𝑆𝑖𝑛(𝑥1̇) = −𝑀2  (𝑓𝑎𝑙𝑠𝑒)                          (19) 

from (18). I get the conclusion that 

𝑥1 = 𝑆𝑖𝑛(𝑥1̇), 𝑥2 = 𝑆𝑖𝑛(𝑥1̇)                             (20) 

is established as (19) is not established from (13). I get 

𝑀1 = 𝐶,2-𝑥1, 𝑀2 = 𝐶,2-𝑥2                              (21) 

from (16),(20). I get 

𝐶,2- =
𝑀𝑥1

𝑥1 =
𝑀𝑥2

𝑥2 = 𝑀                                 (22) 

as 𝑀𝑥μ = 𝑀μ in (21). I get 

𝑀1 = 𝑀𝑆𝑖𝑛(𝑥1̇), 𝑀2 = 𝑀𝑆𝑖𝑛(𝑥1̇)                             (23) 

from (16),(22). I get 

𝑀μ = 𝑀𝑆𝑖𝑛(𝑥ν)                                    (24) 

from (23) in consideration of (12). Similarly, I get 

𝑀1 = 𝐶,1-𝐶𝑜𝑠(𝑥1̇), 𝑀2 = 𝐶,1-𝐶𝑜𝑠(𝑥1̇)                           (25) 

as 𝐶,2- = 0 for (15). I assume that 
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𝑥1 = 𝐶𝑜𝑠(𝑥1̇)  (𝑓𝑎𝑙𝑠𝑒), 𝑥2 = 𝐶𝑜𝑠(𝑥1̇)  (𝑓𝑎𝑙𝑠𝑒)                      (26) 

is established. I rewrite (26) using 𝑀𝑥μ = 𝑀μ and get 

𝑀1 = 𝑀𝐶𝑜𝑠(𝑥1̇)  (𝑓𝑎𝑙𝑠𝑒), 𝑀2 = 𝑀𝐶𝑜𝑠(𝑥1̇)  (𝑓𝑎𝑙𝑠𝑒).                    (27) 

I get 

𝑑2𝑀1

𝑑𝑥1̇𝑑𝑥1̇ = −𝑀𝐶𝑜𝑠(𝑥1̇) = −𝑀1  (𝑓𝑎𝑙𝑠𝑒),  

𝑑2𝑀2

𝑑𝑥1̇𝑑𝑥1̇ = −𝑀𝐶𝑜𝑠(𝑥1̇) = −𝑀2  (𝑓𝑎𝑙𝑠𝑒)                          (28) 

from (27). I get the conclusion that 

𝑥1 = 𝐶𝑜𝑠(𝑥1̇), 𝑥2 = 𝐶𝑜𝑠(𝑥1̇)                               (29) 

is established as (28) is not established from (13). I get 

𝑀1 = 𝐶,1-𝑥1, 𝑀2 = 𝐶,1-𝑥2                               (30) 

from (25),(29). I get 

𝐶,1- =
𝑀𝑥1

𝑥1 =
𝑀𝑥2

𝑥2 = 𝑀                                 (31) 

as 𝑀𝑥μ = 𝑀μ in (30). I get 

𝑀1 = 𝑀𝐶𝑜𝑠(𝑥1̇), 𝑀2 = 𝑀𝐶𝑜𝑠(𝑥1̇)                             (32) 

from (25),(31). I get 

𝑀μ = 𝑀𝐶𝑜𝑠(𝑥ν)                                    (33) 

from (32) in consideration of (12). 

4. Tensor Satisfying BinaryLaw for the Equation Including the Trigonometric Function 

Proposition.4 When all coordinate system satisfies Binary Law, 𝐴𝑆𝑖𝑛(𝑥ν) = 𝑆𝑖𝑛(𝐴𝑥ν) is established. 

Proof. I get 

𝑥μ = 𝑆𝑖𝑛(𝑥ν)                                     (34) 

from (24) in consideration of 𝑀𝑥μ = 𝑀μ. I get 

𝐴μ = 𝑆𝑖𝑛(𝐴ν)                                    (35) 

from (34) as 𝑥μ → 𝐴μ, 𝑥ν → 𝐴ν in all coordinate system 𝑥μ, 𝑥ν. I rewrite (35) using 𝐴𝑥μ = 𝐴μ, 𝐴𝑥ν = 𝐴ν and 

get 

𝑥μ =
1

𝐴
𝑆𝑖𝑛(𝐴𝑥ν).                                  (36) 

I get 

𝑆𝑖𝑛(𝑥ν) =
1

𝐴
𝑆𝑖𝑛(𝐴𝑥ν)                                (37) 

from (34),(36). I rewrite (37) and get 

𝐴𝑆𝑖𝑛(𝑥ν) = 𝑆𝑖𝑛(𝐴𝑥ν).                                (38) 

Proposition.5 When all coordinate system satisfies Binary Law, 𝐴𝐶𝑜𝑠(𝑥ν) = 𝐶𝑜𝑠(𝐴𝑥ν) is established. 

Proof. I get 

𝑥μ = 𝐶𝑜𝑠(𝑥ν)                                    (39) 

from (33) in consideration of 𝑀𝑥μ = 𝑀μ. I get 

𝐴μ = 𝐶𝑜𝑠(𝐴ν)                                    (40) 

from (33) as 𝑥μ → 𝐴μ, 𝑥ν → 𝐴ν in all coordinate system 𝑥μ, 𝑥ν. I rewrite (40) using 𝐴𝑥μ = 𝐴μ, 𝐴𝑥ν = 𝐴ν and 

get 
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𝑥μ =
1

𝐴
𝐶𝑜𝑠(𝐴𝑥ν).                                   (41) 

I get 

𝐶𝑜𝑠(𝑥ν) =
1

𝐴
𝐶𝑜𝑠(𝐴𝑥ν)                                 (42) 

from (39),(41). I rewrite (42) and get 

𝐴𝐶𝑜𝑠(𝑥ν) = 𝐶𝑜𝑠(𝐴𝑥ν).                                 (43) 

Proposition.6 When all coordinate system satisfies Binary Law, 𝐴𝑆𝑖𝑛(𝑥ν)𝐶𝑜𝑠(𝑥ν) = 𝑆𝑖𝑛(𝐴𝑥ν)𝐶𝑜𝑠(𝐴𝑥ν) is 

established. 

Proof. I get 

𝑥μ𝑥μ = 𝑆𝑖𝑛(𝑥ν)𝐶𝑜𝑠(𝑥ν) = 𝑥μμ                             (44) 

as the product of (34) and (39). I rewrite 

𝑥μ𝑥μ =
∂𝑥μ𝑥μ

∂𝑥ν𝑥ν 𝑥ν𝑥ν                                   (45) 

and get 

√𝑥μ𝑥μ =
∂√𝑥μ𝑥μ

∂√𝑥ν𝑥ν
√𝑥ν𝑥ν, 

𝑥μ =
∂𝑥μ

∂𝑥ν 𝑥ν.                                     (46) 

As (46) establish from Definision10, (45) establish. I rewrite (45) and get 

𝑥μ𝑥μ =
∂𝑥μ

∂𝑥ν 𝑥ν𝑥ν.                                   (47) 

𝑥μ𝑥μ, 𝑥ν𝑥ν is contravariant tensor of rank 1 than (47). Therefore, I get 

𝐴μμ = 𝑆𝑖𝑛(𝐴ν)𝐶𝑜𝑠(𝐴ν)                                (48) 

from (44) as 𝑥μμ → 𝐴μμ, 𝑥ν → 𝐴ν in all coordinate system 𝑥μ, 𝑥ν. I rewrite (48) using 𝐴𝑥μμ = 𝐴μμ, 𝐴𝑥ν = 𝐴ν 

and get 

𝑥μμ =
1

𝐴
𝑆𝑖𝑛(𝐴𝑥ν)𝐶𝑜𝑠(𝐴𝑥ν).                             (49) 

I get 

𝑆𝑖𝑛(𝑥ν)𝐶𝑜𝑠(𝑥ν) =
1

𝐴
𝑆𝑖𝑛(𝐴𝑥ν)𝐶𝑜𝑠(𝐴𝑥ν)                         (50) 

from (44),(49). I rewrite (50) and get 

𝐴𝑆𝑖𝑛(𝑥ν)𝐶𝑜𝑠(𝑥ν) = 𝑆𝑖𝑛(𝐴𝑥ν)𝐶𝑜𝑠(𝐴𝑥ν).                         (51) 

Proposition.7 When all coordinate system satisfies Binary Law, 𝐴𝑆𝑖𝑛−1(𝑥μ) = 𝑆𝑖𝑛−1(𝐴𝑥μ) is established. 

Proof. I get 

𝑥ν = 𝑆𝑖𝑛−1(𝑥μ)                                  (52) 

from (34). I get 

𝐴ν = 𝑆𝑖𝑛−1(𝐴μ)                                  (53) 

from (52) as 𝑥μ → 𝐴μ, 𝑥ν → 𝐴ν in all coordinate system 𝑥μ, 𝑥ν. I rewrite (53) using 𝐴𝑥μ = 𝐴μ, 𝐴𝑥ν = 𝐴ν and 

get 

𝑥ν =
1

𝐴
𝑆𝑖𝑛−1(𝐴𝑥μ).                                 (54) 

I get 
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𝑆𝑖𝑛−1(𝑥μ) =
1

𝐴
𝑆𝑖𝑛−1(𝐴𝑥μ)                               (55) 

from (52),(54). I rewrite (55) and get 

𝐴𝑆𝑖𝑛−1(𝑥μ) = 𝑆𝑖𝑛−1(𝐴𝑥μ).                               (56) 

Proposition.8 When all coordinate system satisfies Binary Law, 𝑆𝑖𝑛𝐴ν + 𝑆𝑖𝑛𝐵ν = (𝑆𝑖𝑛𝐴ν + 𝑆𝑖𝑛𝐵ν)𝐶𝑜𝑠(𝐴 −

𝐵)𝑥ν is established. 

Proof. I get 

𝑆𝑖𝑛𝐴1 + 𝑆𝑖𝑛𝐵1 = 2𝑆𝑖𝑛
(𝐴1 + 𝐵1)

2
𝐶𝑜𝑠

(𝐴1 − 𝐵1)

2
, 

𝑆𝑖𝑛𝐴2 + 𝑆𝑖𝑛𝐵2 = 2𝑆𝑖𝑛
(𝐴2+𝐵2)

2
𝐶𝑜𝑠

(𝐴2−𝐵2)

2
, ⋯                       (57) 

from Definision13. I get 

𝑆𝑖𝑛𝐴ν + 𝑆𝑖𝑛𝐵ν = 2𝑆𝑖𝑛
(𝐴ν + 𝐵ν)

2
𝐶𝑜𝑠

(𝐴ν − 𝐵ν)

2
 

= 2𝑆𝑖𝑛
(𝐴+𝐵)𝑥ν

2
𝐶𝑜𝑠

(𝐴−𝐵)𝑥ν

2
                           (58) 

from (57). I get 

𝑆𝑖𝑛𝐴ν + 𝑆𝑖𝑛𝐵ν = 2𝑆𝑖𝑛
(𝐴 + 𝐵)𝑥ν

2
𝐶𝑜𝑠

(𝐴 − 𝐵)𝑥ν

2
 

= 𝑆𝑖𝑛(𝐴 + 𝐵)𝑥ν𝐶𝑜𝑠(𝐴 − 𝐵)𝑥ν                        (59) 

from (58) using (51). I get 

𝑆𝑖𝑛𝐴ν + 𝑆𝑖𝑛𝐵ν = (𝐴 + 𝐵)𝑆𝑖𝑛𝑥ν𝐶𝑜𝑠(𝐴 − 𝐵)𝑥ν 

= (𝐴𝑆𝑖𝑛𝑥ν + 𝐵𝑆𝑖𝑛𝑥ν)𝐶𝑜𝑠(𝐴 − 𝐵)𝑥ν                      

= (𝑆𝑖𝑛𝐴ν + 𝑆𝑖𝑛𝐵ν)𝐶𝑜𝑠(𝐴 − 𝐵)𝑥ν                    (60) 

from (59) using (38). 

5. Force in the Tensor Satisfying Binary Law 

Proposition.9 When all coordinate system satisfies Binary Law, 𝑀′ = 𝑀Cos(φν), 𝑀′ = M
1

𝐵
Cos(𝐵φμ): B =

1

√1−(φμ)2
 is established for 

∂3𝑀μ

∂𝑥ν ∂𝑥ν ∂𝑥ν = 𝑀: 𝑀 > 0. 

Proof. I get 

𝑀(𝑥μ + φμ) = 𝑀𝑆𝑖𝑛(𝑥ν + φν)                              (61) 

from (24) using Mxμ = 𝑀μ as 𝑥μ → (𝑥μ + φμ), 𝑥ν → (𝑥ν + φν). I add (24) to (61) and get 

𝑀(𝑥μ + φμ) + 𝑀𝑥μ = 𝑀𝑆𝑖𝑛(𝑥ν + φν) + 𝑀𝑆𝑖𝑛(𝑥ν).                   (62) 

I rewrite right-hand side of (62) in consideration of (60) and get 

𝑀(𝑆𝑖𝑛(𝑥ν + φν) + 𝑆𝑖𝑛(𝑥ν))                               

M(𝑆𝑖𝑛(𝑥ν + φν) + 𝑆𝑖𝑛(𝑥ν))Cos(φν),                            

M = MCos(φν).                                (63) 

I express (63) in 

𝑀′ = 𝑀Cos(φν)                                (64) 

to distinguish M of the both sides of (63). I rewrite left-hand side of (62) in consideration of (60) and get 
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𝑀(𝑥μ + φμ) + 𝑀𝑥μ = 𝑀(𝑆𝑖𝑛𝑆𝑖𝑛−1(𝑥μ + φμ) + 𝑆𝑖𝑛𝑆𝑖𝑛−1(𝑥μ))               

= 𝑀(𝑆𝑖𝑛𝑆𝑖𝑛−1(𝑥μ + φμ) + 𝑆𝑖𝑛𝑆𝑖𝑛−1(𝑥μ))𝐶𝑜𝑠(𝑆𝑖𝑛−1(𝑥μ + φμ) − 𝑆𝑖𝑛−1(𝑥μ)),              

𝑀 = 𝑀𝐶𝑜𝑠(𝑆𝑖𝑛−1(𝑥μ + φμ) − 𝑆𝑖𝑛−1(𝑥μ)).          (65) 

I get 

𝑀 = 𝑀𝐶𝑜𝑠(𝑆𝑖𝑛−1(1 + φ)𝑥μ − 𝑆𝑖𝑛−1(𝑥μ)) 

= 𝑀𝐶𝑜𝑠((1 + φ)𝑆𝑖𝑛−1(𝑥μ) − 𝑆𝑖𝑛−1(𝑥μ))                          

= 𝑀𝐶𝑜𝑠(𝑆𝑖𝑛−1(𝑥μ) + φ𝑆𝑖𝑛−1(𝑥μ) − 𝑆𝑖𝑛−1(𝑥μ))                    

M = MCos(Si𝑛−1(φ𝑥μ)) = MCos(Si𝑛−1(φμ))                     (66) 

using (56) from (65). I express (66) in 

𝑀′ = MCos(Si𝑛−1(φμ))                                (67) 

to distinguish M of the both sides of (66). I get 

∂𝑆𝑖𝑛−1(φμ)

∂φμ =
1

√1−(φμ)2
                                 (68) 

as 𝐴 = 1, 𝑋 → φμ for Definision17. I get 

∂𝑆𝑖𝑛−1(φμ)

∂φμ =
1

√1−(φμ)2
=

1

√1−φμ⋅φμ = 𝑆𝑐𝑎𝑙𝑎𝑟                       (69) 

from (68) in consideration of Definision14. I decide to express (69) in 

∂𝑆𝑖𝑛−1(φμ)

∂φμ =
1

√1−(φμ)2
= 𝐵.                              (70) 

I get 

𝑆𝑖𝑛−1(φμ) = 𝐵 ∫ ∂φμ = 𝐵φμ                             (71) 

from (70). I get 

𝑀′ = 𝑀𝐶𝑜𝑠(𝐵φμ)                                 (72) 

from (67),(71). I get 

𝑀′ = 𝑀Cos(φμ)                                 (73) 

as μ, ν-inversion form of (64). I get 

𝑀𝐶𝑜𝑠(φμ) = 𝑀𝐶𝑜𝑠(𝐵φμ)                             (74) 

from (72),(73). The establishment of (74) is impossible here. Therefore, I rewrite (72) as 𝑀𝐶𝑜𝑠(𝐵φμ) →

𝑀
1

𝐵
𝐶𝑜𝑠(𝐵φμ) in consideration of (42) and get 

𝑀′ = 𝑀
1

𝐵
𝐶𝑜𝑠(𝐵φμ).                               (75) 

Proposition.10 When all coordinate system satisfies Binary Law, 𝐹ν = −
∂𝑀

∂𝑥ν is established. 

Proof. 

𝐹⃗ = 𝑒ν⃗⃗⃗⃗⃗𝐹ν, 𝑑𝑟 = 𝑒ν⃗⃗⃗⃗ 𝑑𝑥ν                             (76) 

is established. I rewrite Definision18 using (76) and get 

U = − ∫ eν⃗⃗ ⃗⃗ Fν ⋅  eν⃗⃗ ⃗⃗ d𝑥ν = − ∫(𝑒ν⃗⃗⃗⃗⃗ ⋅ 𝑒ν⃗⃗⃗⃗ )𝐹ν 𝑑𝑥ν = − ∫ 𝐹ν𝑑𝑥ν.                  (77) 

I get (77) as 𝑒ν⃗⃗⃗⃗⃗ ⋅ 𝑒ν⃗⃗⃗⃗ = 1 here. I get 

𝐹ν = −
∂𝑈

∂𝑥ν                                    (78) 

from (77). I get 

𝑈 =
𝑐2

ϵ
𝑀                                    (79) 
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as E→U from Definision19,Hypothesis1. I get 

𝑈 = 𝑀                                      (80) 

as 
𝑐2

ϵ
= 1 for (79). In addition, I rewrite Hypothesis1 using 

𝑐2

ϵ
= 1 and get 

𝑀 = 𝑚𝑐2.                                    (81) 

I get  

𝐹ν = −
∂𝑀

∂𝑥ν                                   (82) 

from (78), (80). 

Proposition.11 When all coordinate system satisfies Binary Law, 

𝐹ν
′ = 𝑀𝑆𝑖𝑛 − (φν), 𝐹μ

′ = −𝑀
1

𝐵
𝑆𝑖𝑛(𝐵φμ): 𝐵 =

1

√1−(φμ)2
 is established for 

∂3𝑀μ

∂𝑥ν ∂𝑥ν ∂𝑥ν = 𝑀: 𝑀 > 0. 

Proof. I get 

𝐹ν = −
∂𝑀

∂φν                                    (83) 

as 𝑥ν → φ𝑥ν = φν from (82). I get 

𝐹ν
′ = −

∂𝑀′

∂φν
= −

∂𝑀𝐶𝑜𝑠(φν)

∂φν
 

= −
∂𝑀

∂φν 𝐶𝑜𝑠(φν) −
𝑀 ∂𝐶𝑜𝑠(φν)

∂φν = 𝑀𝑆𝑖𝑛(φν).          (84) 

from (64),(83),Proposition1. If 𝐹ν
′ = 0 is established, 

φν = π𝑛                                      (85) 

is established in consideration of (84),Definision16. I get 

𝐹1
′̇ = MSin(φ1̇),                                   (86) 

φ1̇ = π𝑛                                       (87) 

from (84),(85) if I assume dimensionality 1. I show figure of (86) in Figure 1. 

 

 

Figure 1. Plot for variable φ1̇ of 𝐹1
′̇ = 𝑀𝑆𝑖𝑛(φ1̇): (𝑀 = 1). The black dot expresses φ1̇ satisfying F1̇

′
= 0, 

and this is negative divergence point in the field of force more. 
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The value of φ1̇ satisfying 𝐹1
′̇ = 0 exists innumerably according to (87). I show this in 

φ1̇ = 0, π, 2π, 3π, 4π, 5π, ⋯.                               (88) 

In Fig.1, Positive divergence point in the field of force exists in (88). I show this in 

φ1̇ = 0,2π, 4π, ⋯.                                   (89) 

Negative divergence point in the field of force exists in (88). I show this in 

φ1̇ = π, 3π, 5π, ⋯.                                   (90) 

I think about wave moving in circle length of radius r. Circle length of radius r as 2π𝑟. Wave length of the wave 

as λ. The phase length of the wave as φ. 

2π𝑟 − 𝑛λ = φ                                      (91) 

is established here. When φ ≠ 0 is established, φ of the wave is only out of φ every time for each 2π𝑟. As 

overlap between the wave which φ is different each occurs, I get 

𝑆𝑖𝑛(𝑥) + 𝑆𝑖𝑛(𝑥 + φ).                                  (92) 

(92) accords with right-hand side of (62). As λ is constant, I get 

φ ∝ 𝑟                                         (93) 

from (91). I also get 

φ1̇ = 2π𝑟1̇ − 𝑛λ                                    (94) 

by consideration of (93) as φ → φ1̇ for (91). I get 

𝐹1
′̇ = 𝑀𝑆𝑖𝑛(2π𝑟1̇ − 𝑛λ) = 𝑀𝑆𝑖𝑛(2π𝑟1̇)                          (95) 

from (86) as (94). I show figure of (95) in Figure 2. 

 

 

Figure 2. Plot for variable 𝑟1̇ of 𝐹1
′̇ = 𝑀𝑆𝑖𝑛(2π𝑟1̇): (𝑀 = 1). The black dot expresses 𝑟1̇ satisfying 𝐹1

′̇ = 0, 

and this is negative divergence point in the field of force more. 

 

When binary particle with the opposite charge is located each as distance 𝑟1̇. Force 𝐹1
′̇  which one particle 

receives is obtained as 

𝐹1
′̇ = −

𝑘

(𝑟1̇)
2                                      (96) 

in consideration of Definision20. I show figure of (96) in Figure 3. 
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Figure 3. Plot for variable 𝑟1̇ of 𝐹1
′̇ = −

𝑘

(𝑟1̇)
2 : (𝑘 = 3) 

 

I add (96) to (95) and get 

𝐹1
′̇ = 𝑀𝑆𝑖𝑛(2π𝑟1̇) −

𝑘

(𝑟1̇)
2.                              (97) 

I show figure of (97) in Figure 4. 

 

 

Figure 4. Plot for variable 𝑟1̇ of 𝐹1
′̇ = 𝑀𝑆𝑖𝑛(2π𝑟1̇) −

𝑘

(𝑟1̇)
2 : (𝑀 = 0.511, 𝑘 = 3). The black dot expresses 𝑟1̇ 

satisfying 𝐹1
′̇ = 0, and this is negative divergence point in the field of force more. 

 

I get 

𝐹μ = −
∂𝑀

∂φμ                                        (98) 

than μ, ν-inversion form of (83). I get 
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𝐹μ
′ = −

∂𝑀′

∂φμ = −
∂𝑀

1

𝐵
𝐶𝑜𝑠(𝐵φμ)

∂φμ                               (99) 

from (75),(98). I rewrite (99) in consideration of μ, ν-inversion form of (42) and get 

𝐹μ
′ = −

∂𝑀
1

𝐵
𝐶𝑜𝑠(𝐵φμ)

∂φμ = −
∂𝑀𝐶𝑜𝑠(φμ)

∂φμ .                          (100) 

I get 

𝐹μ
′ = −

∂𝑀𝐶𝑜𝑠(φμ)

∂φμ
 

= −
∂𝑀

∂φμ 𝐶𝑜𝑠(φμ) −
𝑀 ∂𝐶𝑜𝑠(φμ)

∂φμ = MSin(φμ).          (101) 

from (98),(100), Proposition1. I rewrite (101) in consideration of μ, ν-inversion form of (37) and get 

𝐹μ
′ = 𝑀

1

𝐵
𝑆𝑖𝑛(𝐵φμ).                               (102) 

If 𝐹μ
′ = 0 is established,  

𝐵φμ = 𝑛π                                  (103) 

is established in consideration of (102),Definision16. I get 

𝐹1
′ = 𝑀√1 − (φ1)2𝑆𝑖𝑛 (

φ1

√1−(φ1)2
),                         (104) 

(φ1)
2

1−(φ1)2 = 𝑛π, φ1 = √
𝑛π

1+𝑛π
                           (105) 

from (70),(102),(103) if I assume dimensionality 1. I show figure of (104) in Figure 5, Figure 6, Figure 7. 

 

 

Figure 5. Plot for variable φ1 of 𝐹1
′ = 𝑀√1 − (φ1)2𝑆𝑖𝑛 (

φ1

√1−(φ1)2
) : (𝑀 = 1), *0 ≤ φ1 < 1+. The black dot 

expresses φ1 satisfying 𝐹1
′ = 0, and this is negative divergence point in the field of force more. 
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Figure 6. Plot for variable φ1 of 𝐹1
′ = 𝑀√1 − (φ1)2𝑆𝑖𝑛 (

φ1

√1−(φ1)2
) : (𝑀 = 1), *0.9 ≤ φ1 < 1+. The black dot 

expresses φ1 satisfying 𝐹1
′ = 0, and this is negative divergence point in the field of force more. 

 

 

Figure 7. Plot for variable φ1 of 𝐹1
′ = 𝑀√1 − (φ1)2𝑆𝑖𝑛 (

φ1

√1−(φ1)2
) : (𝑀 = 1), *0.988 ≤ φ1 < 1+. The black 

dot expresses φ1 satisfying 𝐹1
′ = 0, and this is negative divergence point in the field of force more. 

 

The value of φ1 satisfying 𝐹1
′ = 0 exists innumerably according to (105). I show this in 

φ1 = 0, √
π

1+π
, √

2π

1+2π
, √

3π

1+3π
, √

4π

1+4π
, √

5π

1+5π
, ⋯.                          (106) 

In Figure 5, Figure 6, Figure 7, Positive divergence point in the field of force exists in (106). I show this in 

φ1 = 0, √
2π

1+2π
, √

4π

1+4π
, ⋯.                                 (107) 

Negative divergence point in the field of force exists in (106). I show this in 
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φ1 = √
π

1+π
, √

3π

1+3π
, √

5π

1+5π
, ⋯.                            (108) 

When binary particle with the same charge is located each as distance φ1. Force 𝐹1
′ which one particle 

receives is obtained as 

𝐹1
′ =

𝑘

(φ1)2                                    (109) 

in consideration of Definision20. I show figure of (109) in Figure 8. 

 

 

Figure 8. Plot for variable φ1 of 𝐹1
′ = −

𝑘

(φ1)2 : (𝑘 = 3), *0 < φ1 < 1+ 

 

I add (109) to (104) and get 

𝐹1
′ = 𝑀√1 − (φ1)2𝑆𝑖𝑛 (

φ1

√1−(φ1)2
) +

𝑘

(φ1)2.                        (110) 

I show figure of (110) in Figure 9, Figure 10. 

 

 

Figure 9. Plot for variable φ1 of 𝐹1
′ = 𝑀√1 − (φ1)2𝑆𝑖𝑛 (

φ1

√1−(φ1)2
) +

𝑘

(φ1)2 : (𝑀 = 938.3, 𝑘 = 3), *0 < φ1 <

1+. The black dot expresses φ1 satisfying 𝐹1
′ = 0, and this is negative divergence point in the field of force 

more. 
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Figure 10. Plot for variable φ1 of 𝐹1
′ = 𝑀√1 − (φ1)2𝑆𝑖𝑛 (

φ1

√1−(φ1)2
) +

𝑘

(φ1)2 : (𝑀 = 938.3, 𝑘 = 3), *0.9 ≤

φ1 < 1+. The black dot expresses φ1 satisfying 𝐹1
′ = 0, and this is negative divergence point in the field of 

force more. 

 

6. Property of the Tensor Satisfying Binary Law 4 

I was not able to report Proposition12 in Property of the tensor satisfying Binary Law 4(Ichidayama, 2023). Thus, 

I report Proposition12 in this article. 

Proposition12 The index which is free index remains free index when Binary Law is satisfied 

Proof. I put a mark in the index which is free index of Definision9 and get 

𝑀μ̅;ν̅ =
∂𝑀μ̅

∂𝑥ν̅ − 𝑀τ
1

2
𝑔ϵτ .

∂𝑔μ̅ϵ

∂𝑥ν̅ +
∂𝑔ν̅ϵ

∂𝑥μ̅ −
∂𝑔μ̅ν̅

∂𝑥ϵ /.                    (111) 

If all coordinate system satisfies Binary Law for (111), I get 

𝑀μ̅;ν̅ =
∂𝑀μ̅

∂𝑥ν̅ − 𝑀ν
1

2
𝑔νν .

∂𝑔μ̅ν

∂𝑥ν̅ +
∂𝑔ν̅ν

∂𝑥μ̅ −
∂𝑔μ̅ν̅

∂𝑥ν /.                   (112) 

Index with the mark of the first terms of the right-hand side of (112) is free index. Thus, I get the conclusion that 

index with the mark of the second terms of the right-hand side of (112) is free index. In other words, "The index 

which is free index remains free index when Binary Law is satisfied" establish. 

7. Discussion 

About Figure 4 

When binary particle with the opposite charge is located each as distance 𝑟1̇. It is decided that I assume binary 

particle with atomic nucleus and electron each. The domain of 𝑟1̇ 𝑖𝑠 *0 < 𝑟1̇ ≤ ∞+ in (97). In other words, the 

field of force exists to infinity. The black dot expresses 𝑟1̇ satisfying 𝐹1
′̇ = 0, and this is negative divergence 

point in the field of force more. And these exist innumerably. Only four points are displayed in Fig.4 here. The 

electron satisfies 𝐹1
′̇ = 0 in 𝑟1̇ of the black dot, and the momentum does not change. When the electron 

satisfies 𝐹1
′̇ ≠ 0 any place other than 𝑟1̇ of the black dot, the momentum changes. If electron moves from 

black dot point only to ±𝑑𝑟1̇ , the direction of force 𝐹1
′̇ ≠ 0 which electron receives intends to be pulled back 

to a black dot. It is thought that the electron continues vibrating in the range of ±𝑑𝑟1̇  for 𝑟1̇ of the black dot. 

As the electron has charge, an electromagnetic wave is caused by vibration. And the electron will stay in 𝑟1̇ of 

the black dot because energy dissipation occurs. 

When it was only (97), the force to act on electron in atom was recognized. I report (95) as force to act on 

electron in atom in this article other than (97). When electron stays in steady orbit in atom, the force that electron 

receives must be zero. Force (97) is denied by existence of force (95). Thus, the force that electron receives can 
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become the zero. In other words, it is interpretability that electron stays in steady orbit in atom. 

About Figure 9, Figure10 

When binary particle with the equal charge is located each as distance φ1. It is decided that I suppose binary 

particle to be proton each. The domain of φ1 is *0 < φ1 ≤ ∞+ in (109). In other words, the field of force 

exists to infinity. In contrast, The domain of φ1 is *0 ≤ φ1 < 1+ in (104). In other words, the outreach of the 

field of force is limited. The black dot expresses φ1 satisfying 𝐹1
′ = 0, and this is negative divergence point in 

the field of force more. And these exist innumerably. Only one points are displayed in Fig.9 here. The proton 

satisfies 𝐹1
′ = 0 in φ1 of the black dot, and the momentum does not change. When the proton satisfies 

𝐹1
′ ≠ 0 any place other than φ1 of the black dot, the momentum changes. If proton moves from black dot 

point only to ±𝑑φ1, the direction of force 𝐹1
′ ≠ 0 which proton receives intends to be pulled back to a black 

dot. It is thought that the proton continues vibrating in the range of ±𝑑φ1 for φ1 of the black dot. As the 

proton has charge, an electromagnetic wave is caused by vibration. And the proton will stay in φ1 of the black 

dot because energy dissipation occurs. 
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