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Abstract
Novel (dark matter) particles, while known to exist, refuse to show up explicitly. Theoretical approaches within the Stan-
dard Model (SM) as for example, looking for the dark photon with Feynman diagrams, in the process γγ −→ e+e , is
still inconclusive (Xu, I. et al., 2022). However, empirical-like methods can give the proof about the existence of dark
matter, see for instance (Clowe, D. et al., 2006). Hence it is reasonable trying to understand as to why ordinary and novel
(dm) particles differ so much from each other. This we wish to do with solutions of the bicubic equation for particle
limiting velocities (Šoln, J., 2014-2022). Once we have the solutions for novel and ordinary particle limiting velocities
from (Šoln, J. 2021.1.2, 2022), we first establish, with the help of evolutionary congruent parameters, ordinary z1 and
novel z2, satisfying z1 ⪯ 1and z2 ⪰ 1,the smooth matching point of equal values for ordinary and novel particles at
z1 = z2 = 1. At this point the limiting velocities and other physical quantities of ordinary and novel particles have
equal values, which can be also characterized by z1× z2 = 1; this, consistent with Discriminants of ordinary and novel
limiting velocity solutions, is extended everywhere, so that z2 = 1/ z1. the novel particle limiting velocity solutions
reveal congruent angle α, contained now in z1 and z2, and as such can also serve as another evolutionary parameter. The
smooth matching point is now α = π/2. If physically equivalent ordinary and novel particles move away from this point
to α ̸= π/2, they will physically be different from each other. In other words, the novel particle is in z2 ⪰ 1 territory, and
the ordinary particle is in z1 ⪯ 1 territory and direct interactions are likely impossible. With this formalism, we investigate
physical differences between ordinary and novel particles, when moving away from α = π/2. In tis article, we largely
are dealing with high energy leptons together with relevant photons with congruent parameter ranges of 0 ≺ α ⪯ π/2,
0 ≺ z1 ⪯ 1,∞≻ z2 ⪰ 1. In fact due to a large interest in photons, here, within this formalism, we evaluate very precisely
limiting velocities for the ordinary and novel photons. From these evaluations, we deduce numerically that congruent an-
gles of novel and ordinary photons are related through the quantum jump α(γN ) = 2α(γ), which is verified also for other
particles. Hence, the general quantum jump between congruent angles of limiting velocities associated with ordinary and
novel particles is α(xN ) = α(x), where x = γ, e, ν, etc. The congruent angle quantum jump connects every ordinary
particle, such as electron e, or neutrino ν,respectively, to novel electron eN and novel neutrino νN . This, definitively is a
rather simple way to identify novel particles. All that one needs is to find them.

Keywords: limiting velocity, energy, congruent parameter, novel, dark matter, particle, quantum jump

1. Introduction

The Standard Model (SM) is based on four stable particles, photon, electron, neutrino and proton. The attempts to
incorporate novel (dm) particles into the SM usually yield nebulous results. Even for ingenious proposals like this one
to look for dark photon with Feynman diagrams in the reaction γγ → e+e (Xu, I. et al., 2022), one does not know
what results to expect. As long as one stays just with the novel (dm) particles, the gravitational studies and empirical like
methods can give the proof of the existence of dark matter (Clowe, D. et al., 2006; Battaglieri, M. et al., 2017; Fillippi,
A. et al., 2022). Hence it is reasonable trying to understand as to why ordinary and novel (dm) particles differ so much
from each other. Namely, when applying the SM to the dark matter, people find that ordinary particles are restricted to
interact with dark matter, as for example, by exclusion limits for dark matter (Romanenko, A. et al., 2023), or constraints
on Sub-GeV Dark matter (Arnquist, I. et al., 2023), and kinetic decoupling from dark matter (LIu. Y, et al., 2023). There
seem to be particular interest in novel (dm) particles that can be seen as replicas of ordinary articles. Good examples are
the Search for Light Dark Photon (Yeong, G-K., et al., 2013) and Tracking Down the Origin of Neutrino Mass (Gehrlein,
J., et al., 2018).

Here we wish to establish through solutions of the bicubic equation for particle limiting velocities (Šoln, J., 2014-2022)
the relationship between ordinary and novel (dm) particles. In this pursuit,the most useful solutions, however, are the
ones from (Šoln, J., 2021.1.2, 2022). which here will be somewhat notational modified. We continue by first, with the
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help of evolutionary congruent parameters ordinary z1 and novel z2 , satisfying z1 ⪯ 1 and z2 ⪰ 1,to establish he smooth
matching point at z1 = z2 = 1 , where the the ordinary and novel particles have equal values in limiting velocities,energies
and the like. The smooth matching point also satisfy z1.z2 = 1, which we extend to everywhere: z1.z2 = 1 → z2 = 1/z1
and which satisfy the discriminant D requirements for ordinary and novel particle limiting velocity solutions. With this,
it appears that only one is needed to keep evolutionary track between the ordinary and novel particles. However, one
may still get entangled between z1 and z2. However, in the novel particle limiting velocity solutions, the new congruent
angle α reveals itself, contained both in z1 and z2. Now the smooth matching point is simply α = π/2.The range of α
is: (0...π/2). Moving α away from π/2, one can see how the properties of ordinary and novel (dm) particle physical
quantities change from each other. Particularly interesting is the possibility that to one ordinary particle there correspond
double novel (dark), particles.

The bicubic equation for particle limiting velocities was derived by upgrading the usual relativistic kinematics in (Šoln,
J., 2014). Here, in order to be specific, we need next to each other the solutions of the bicubic equation for ordinary and
novel particle limiting velocities, denoted for now simply by c:

(
c2

v2

)3

−
(

E

mv2

)2 (
c2

v2

)
+

(
E

mv2

)2

= 0 (1)

where c, E, m, and v2, are respectively, limiting velocity, particle energy, real particle mass and particle velocity squared.
First, by relating the energy E to the real evolutionary congruent parameter z,one can go directly to the solutions of
equation (1) as the discriminant for (1) assumes simpler form (Šoln, J., 2021.1.2-2022):

E =
3
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At this point we designate congruent parameters with kind of particle limiting velocity solutions from (1):

Ordinary particles : D ⪯ 0, z1 ⪯ 1, E =
3
√
3mv2

2z1

Novel(dm) particles : D ⪰ 0, z2 ⪰ 1, E =
3
√
3mv2

2z2
(3)

where from now on, ordinary and novel (dm) have each its own congruent parameter, respectively, z1 and z2 We imme-
diately see that when z1 = z2 = 1 D = 0 and both limiting velocity solutions for ordinary and novel particles shrink
to the same limiting velocity solutions. That is why we call the point z1 = z2 the smooth matching point with veloc-
ity solutions smoothly becoming equal. By looking at D2 one sees that the smooth point can also be characterized by
z1z2 = 1. However, in order to maintain z1 ⪯ 1 and z2 ⪰ 1 we extend for D ≤,≥ 0, : z1.z2 = 1 to everywhere:

Smooth matching point : D = 0, z1z2 = 1;Evertwhere : D ≤,≥ 0, z1z2 = 1, z2 =
1

z1
(4)

As already indicated, the congruent angle α directly follows from the limiting velocity solutions for novel (dm) particles.
Besides, as compared to (Šoln, J., 2019-2022), here we slightly change enumeration of solutions, to make easier their
comparisons. To further facilitate this comparisons, we first give mathematical preliminary. In Section 2 we give, simple
and illustrative examples of dealing with limiting velocities for ordinary and novel particles. They will be very useful when
in Section 3 we start applying this formalism to evaluations of limiting velocities of ordinary and novel massive photons.
Our formalism is unconformable with massless photon which theoretical requires the congruent angle α(γ) = 0. Besides,
both (Itzykson, C. and Zuber, J.-B., 1980 on page 138) and (Lin, H.-L. et al., 2023) point out that from localized fast radio
bursts, the mass of the ordinary photon should be m(γ) ≃ 6× 10−48g ≃ 3× 10−15eV, so that our ordinary photon, with
small mass will have congruent angle α(γ) ≻ 0 which also makes 0 ≺ z1 ⪯ 1 so that energy E in (3) is finite and not
infinite.

2. Next to Each Other the Bicubic Equation Limited Velocity Solutions for Ordinary and Novel (Dark Matter)
Particles

We start with a mathematical preliminary, most of which can be found in (Šoln, J., 2021.1.2, 2022). Namely, the congruent
angle α follows from the novel particle limiting velocity solutions, and here, consistent with (4), we wish to indicate that
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the economical way to write the limiting velocity solutions for both ordinary and novel particles is to emphasize congruent
angle α as an evolutionary parameter:

α = 2 tan−1

(
tan

(
1

2
sin−1 1

z2

)) 1
3

= 2 tan−1

(
tan

(
1

2
sin−1 z1

)) 1
3

, (5.1)

z1(α) =
1

z2(α)
= sin

[
2 tan−1

(
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α

2

)3
]
, (5.2)

z1(α) =
1

z2(α)
=

sin3(α)

4− 3 sin2(α)
. (5.3)

The congruent angle α can be transformed to another angle and the most useful transformation is α → −α This transfor-
mation, in view of (5.3) can change one limiting velocity solution into another, as we shall see shortly.

Next we first write down, the limiting velocity solutions for ordinary particles, both in the usual form (Šoln, J., 2021.1.2,2022)
an in the form emphasizing the congruent angle α :
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≻ 0, (6.1)

c22(α)

v2
= − 3

z1(α)
sin

[
1

3
(π + sin−1 z1(α)

]
≺ 0, (6.2)
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Utilizing relations (5) we rewrite (6.1,2,3) as follows:
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3
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2S(α) =
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[
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(
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)3] (6.8)

Already with ordinary particle solutions (6.1) and (6.2) we see that transforrmation α → −α interchanges (6.1) ⇆(6.2)
as c21(±α) = c22(∓α), while (6.3) and (6.8) remain invariant. c23(−α) = c23(α). The similar things one concludes with
solutions (6.6,7,8) This means that. c3(α) is favored with which to define a photon as the fastest speed particle. The
solutions (6) satisfy the Cardano’s relation : c21(α) + c22(α) + c23(α) = 0 (Šoln, J., 2014-2022).

Now, we continue with writing down the novel (dark matter) particle limiting velocity solutions, with interchanged indices
from (Šoln, J., 2021.1.2-2022), 2 ⇆ 3 :
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The solutions (6.1,2,3) and (7.1,3; 2) are good examples of consistent self-generating evolutionary system, with z1, z2 and
α being evolution parameters. Comparison of solutions (7) with relations (5) changes (7) to:

c21,3(α)

v2
=

3
[
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√
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]
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2
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2
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We can rewrite relations (8.1,2,3,4,5) to better emphasize the dependence on the congruent angle α :
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At this point, we wish to emphasize the number of Cardano’s relations, which follow from (8.1,...,9)
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v2
+
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v2
+
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The importance of these relations (8.10,11,12) comes from the fact that in each group the elements are complement
physically to each other and, as such, can contribute to enclosed physical picture.. For instance, c22(α)/v

2 complements
physically Rc23,1(α)/v

2, by giving maximal real novel particle velocities Similarly c23,1(α)/v
2, c22(α)/v

2 and Ic2,3,1(α)/v
together give unphysical fudge novel particle velocities that will discussed later.

One can easily verify, that these limiting velocity squares are invariant under the transformation α → −α, making the
novel particles more stable than the ordinary ones. Furthermore, the novel (dark matter) particles, as we shall see, appear
in doubles. So we may have more than one novel photon. Next, using relations (5), (6) an (8), we wish to verify the
smooth matching point between the ordinary and novel particle limiting velocity squares at α = π/2 , where one should
notice that there are no imaginary contributions for novel particle limiting velocity squares. Next, in the Tables 1. Through
5, we give simple mathematical examples that as soon as the congruent angle α moved from α = π/2 to α = π/3, the
limiting velocities of ordinary and novel particles move from their equalities to the distinct inequalities.

Table 1. Ordinary particle limiting velocity squares at smooth matching point of z1 = 1, α = π/2:(
c21(α)/v

2 c22(α)/v
2 c23(α)/v

2

1.5 −3 1.5

)
Table 2. Novel particle limiting velocity squares at smooth matching point of z2 = 1, α = π/2 : c21(α)/v

2

= Rc21(α)/v
2 + i0

c22(α)/v
2 c23(α)/v

2

= Rc23(α)/v
2 + i0

1.5 −3 1.5


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Clearly, at the smooth matching point of α = π/2, limiting velocity squares of ordinary and novel particles have the same
values. To show how fast these values diverge away from α/2, we now take α = π/3:

Table 3. Ordinary particle limiting velocity squares at z1 = 0.371, α = π/3 :(
c21(α)/v

2 c22(α)/v
2 c23(α)/v

2

6.436 −7.458 1.022

)
Table 4. Novel (dm) particle limiting velocity squares at z2= 1/ z1 = 2.695, α = π/3 : c21(α)/v

2

= Rc21(α)/v
2 + iIc21(α)/v

2 c22(α)/v
2 c23(α)/v

2

= Rc23(α)/v
2 + iIc23(α)/v

2

0.643 + i0.557 −1.286 0.643− i0.557


It is immediately evident to the large differences in limiting velocities between the matched ordinary and novel particles
as we move away from α = π/2 to α = π/3. Next, we wish to show that the same thing happens with the Global
”pseudo-relativistic” kinetic energies from (2). The ”relativistic”-limiting velocity particle energies will be dealt with
separately.

Table 5. The ordinary and novel particle”pseudo-relativistic” energies as functions of α

E(z1(α)) =
3
√
3mv2

2 (1/z1) , E(z2(α)) =
3
√
3mv2

2 (1/z2) : α : π/2 π/2.25 π/2.3 π/2.5 π/2.75 π/3 π/3.25
1/z1 : 1 1.142 1.198 1.495 2.016 2.694 3.531
1/z2 : 1 0.876 0.835 0.669 0.496 0.371 0.283


3. Evaluation of Limiting Velocities for Ordinary Particles, Each With Established Congruent Angle α, and Novel
Particles Each With Congruent Angle αN , Obtained by Quantum Jump αN = 2α From Matched Ordinary
Particle

Here we shall be dealing with establishing the congruent α angles for ordinary particles as well as αN for matched novel
particles, both in the range of 0 ≺ α, αN ≺ π/2. This by itself is rather restrictive and, from practical point of view, is
imposed by energy expressions in (3); particularly so, that in addition to the emphasis on the congruent angles α andαN

we also have to have knowledge of congruent parameters z1(α), z2(α) and z1(αN ), z2(αN ). For novel matched particle,
this knowledge is important when we are trying to evaluate the velocities of these novel particles as seen by ordinary
particles.

3.1 Details of limiting velocity evaluations of ordinary particles: photon γ, muon neutrino ν and electron e , which will
be matched in next section 3.2 with novel photon γN , muon neutrino νN and electron eN . All the ordinary particles in
consideration here are massive including photon γ. If ordinary photon were massless then to get a reasonable limiting
velocity one would have to have z1 = 0, which according to (3) would make the energy infinite We prefer to take the new
notion that ordinary photon has tiny mass of mγ ≃ 6 × 10−48g = 4.5 × 10−15eV (Lin, H.-L, Tang, L. Zou, R., 2023),
(Itzykson, C. and Zuber, J.-B., 1980 on page 138), The mass of the muon neutrino is mν,µ = 1.01× 10−33g = 0.76eV ,
while of the electron me = 0.68 × 10−27g = 0.51MeV . Of major interest here is of course c23(α(γ))/v

2 ≈ 1. As it
can be seen from (Šoln, J., 2021.1.2-2022), c21(α)/v

2 could, in principle, be also reduced to unity with, very very small
congruent angle α and very small,congruent parameter z1(α) with the help of very powerful computing capabilities. For
now we stick with,the c23(α)/v

2 whose unity is caused by the velocity of light c. We find it to be the most economical to
to deal with c23(α)/v

2, not only for ordinary photon γ, but also for neutrino ν and electron e when trying to connect them
to novel γN ,νN and eN .
We start with the photon γ. First we need to find the best match of congruent angle α(γ) for the photon γwith max-
imal squared limiting velocity c23(α(γ)) This, with ordinary particle limiting velocity solution, either from (6.1,2,3)
or (6.4,5,6,7,8). through trial and error,we find to be α(γ) = 0.617 = 0.393 π/2 with corresponding congruent
parameters z1(0.617) = 0.0646572, z2(0.617) = 15.466181647. Now, specifically, from (6.4) and (6.5) we find
S(α(γ)) = 0.01078854 and C(α(γ)) = 0.8658238531,with which from (6.6,7,8), using this α(γ) = 0.617, we find
additional limiting velocity solutions c21(α(γ)) and c22(α(γ)) accompanying c23(α(γ)). The full expressions of limiting
velocity values are all listed in Table 6.

Table 6. The values of limiting velocities for ordinary photon γ together with the photon congruent parameters

α(γ) = 0.617 z1(α(γ)) = 0.0646572 z2(α(γ)) = 15.466229(
c21(α(γ))/v

2 c22(α(γ))/v
2 c23(α(γ))/v

2

39.672517 −40.673539 1.001145

)
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One can verify the correctness of solutions by adding them: c21(α(γ)//v
2) + c22(α(γ)//v

2) + c23(α(γ)//v
2) = 1.23 ×

10−4 ≈ 0, satisfying the Cardano’s relation (for details, see (Šoln, J., 2014).

Next, with the help from (Šoln, J., 2021.1.2), we do the same thing with muon neutrino ν and electron e of finding
their best fits in limiting velocities within respective squared limiting velocities c23(α(ν, µ)) and c23(α(e))Simply, using
the limiting velocity solution, either from (6.1,2,3) or (6.4,5,6,7,8), through trial and error,we find from the best fit for
maximal c23(α(ν)) that the ordinary muon neutrino congruent angle is α(ν) = 0.6175 = 0.393 π/2 with corresponding
α(ν) = 0.6175 and α(e) = 0.618, respectively. These,with other squared limiting velocities, will be given in Table 7
and Table 8, respectively.

For muon neutrino ν, as for the photon γ case, we are looking for the best value of the congruent angle α(ν) which
gives the best fit for maximal squared limiting velocity c23(α(ν)). Simply, using the limiting velocity solution, either
from (6.1,2,3) or (6.4,5,6,7,8), through trial and error,we find from the best fit for maximal c23(α(ν)) that the ordinary
muon neutrino congruent angle is α(ν) = 0.6175 = 0.393 π/2 which yields the congruent parameters z1(0.6175) =
0.064825, z2(0.6175) = 15.426237. Next, from (6.4) and (6.5) with this α(ν) we find S(α(ν)) = 0.010811 and
C(α(ν)) = 0.865823,with which from (6.6,7,8) we also find c21(α(ν)) and c22(α(ν)). The full values of all limiting
velocities are listed in Table 7.

Table 7. The values of limiting velocities for ordinary muon neutrino ν together with the neutrino congruent parameters

α(ν) = 0.6175 z1(α(ν)) = 0.064825 z2(α(ν)) = 15.426237(
c21(α(ν))/v

2 c22(α(ν))/v
2 c23(α(ν))/v

2

39.568623 −40.569256 1.000632

)
By summing up the limiting velocity solutions from the Table 7: c21(α(ν))/v

2) + c22(α(ν))/v
2) + c23(α(ν))/v

2) =
−5.2796× 10−7 ≈ 0, one sees the Cardano’s relation being well satisfied.

The last in the collection of leptons as the ordinary particles is the electron e. Here we are also looking for congruent angle
α(e) that gives best fit for maximal squared limiting velocity c23(α(e). As shown earlier, with the applications of formal
solutions either from (6.1,2,3) or (6.4,5,6,7,8) through trial and error,we find from the best fit for maximal c23(α(e)) that the
congruent angle is α(e) = 0.618 = 0.3934π/2 with congruent parameters z1(0.618) = 0.06499, z2(0.618) = 15.3864.
.Next, from (6.4) and (6.5) with this α(e) we find S(α(e)) = 0.010839 and C(α(e)) = 0.865821,with which from
(6.6,7,8) we also find c21(α(e)) and c22(α(e)). The full values of all limiting velocities are listed in Table 8.

Table 8. The values of limiting velocities for ordinary electron e together with the electron congruent parameters

α(e) = 0.618 z1(α(e)) = 0.06499 z2(α(ν)) = 15.3864(
c21(α(e))/v

2 c22(α(e))/v
2 c23(α(e))/v

2

39.465565 −40.569256 1.000646

)
By summing up the limiting velocity solutions from the Table 8: c21(α(e))/v

2) + c22(α(e))/v
2) + c23(α(e))/v

2) =
−2.3338× 10−7 ≈ 0, one sees again that the Cardano’s relation being well satisfied.

3.2 Details of novel particles limiting velocity evaluations for photon γN , neutrino νN , electron eN .With every congruent
angle quantum jump: α =⇒ αN = 2α, the evaluations of limiting velocities for novel particles: photon γN , novel muon
neutrino νN and novel electron eN will automatically chose the maximal squared limiting velocity values for Rc21,3(αN )
and c22(αN ). This is quite different from the ordinary particle cases. The novel particle limiting velocity solutions consist
of real and imaginary parts, as can be seen from relations (8.1,2,3,4,5) and (8.6,7,8,9). The real parts of limiting velocity
solutions for novel particles follow either from (8.2,3) or directly from (8.7) and (8.9). The imaginary parts follow from
(8.2) and (8.9). Relations (8.8) and (8.9) relate imaginary parts to real parts of solutions. The suggestion is to first
evaluate real parts as imaginary parts are numerically expressible in terms of real parts. One should be aware that for
matched ordinary and novel particles,despite the quantum jump, both,ordinary congruent α and novel congruent αN

should independently assume π/2 value in order to assume equal physical values at matching point π/2.

We start with the novel photon γN . The quantum jump from ordinary γ congruent angle α(γ) = 0.617 to novel photon γN

congruent angle, yields the value of α(γN ) = 2×0.617, = 1.234, or α(γN ) = 0.7856 π/2.The corresponding congruent
parameters are: z1(1.234) = 0.632726889), z2(1.234) = 1.579098573. With these congruent parameters, either from
relations (8.1,2.3.4.5) or directly from (8.6,7,8,9), we evaluate R(α(γN ))c23,1/v

2, c22(α(γN ))/v2, I(α(γN ))c23,1/v
2 and

c23,1(α(γN ))/v2. Their values are given in Table 9.
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Table 9. The values of limiting velocities for novel photon γN together with the congruent parameters

α(γN ) = 1.234, z1(α(γN )) = 0.632726889), z2(α(γN )) = 1.579098573.(
R(α(γN ))c23,1/v

2 c22(α(γN ))/v2 I(α(γN ))c23,1/v
2 c23,1(α(γN ))/v2

1.0065 −2 ∓0.572 1.0065∓ i0.572

)
We can make different limiting velocity sums, each of them satisfying Cardano’s relation of zero value: (a):2R(α(γN ))c3,1
2/v2 + c22(α(γN ))/v2 ≈ 0 ,(b): I(α(γN ))c23/v

2 + I(α(γN ))c21/v
2 ≈ 0 and (c): c23(α(γN ))/v2 + c21(α(γN ))/v2 +

c22(α(γN ))/v2 ≈ 0. For example, the importance of relation (a) is in the fact that these three velocities in it are real and
measurable.

As we see from the Table 9, R(α(γN ))c23,1 ≈ v2 ≊ c2((γN ), is the maximum real physical squared velocity of the novel
photon γN . What we do not know is: What is its numerical value? We can find this value from the point of view of
ordinary particles. Namely, since α(γN ) = 0.7856 π/2 is smaller than π/2, we may for this endeavor force γN to be
ordinary-like particle and then from (6.3) or (6.8) to evaluate

c23(α(γN ))

Rc23,1(α(γN ))
=

c2

c2(α(γN ))
=

6S ((α(γN ))

z1(α((γN ))
=

6× 0.113302996

0.632726889
= 1.0744252825, (9.1)

c2((α(γN )) = 0.9307301459 c2 ⪯ c2 (9.2)

It is gratifying that the Special Theory of Relativity is not violated. In fact, c2(γN ) is practically the same as c2. However,
we still should take into account the imaginary part in the complete solution c23,1(α(γN ))/v2 = 1.0065∓i0.572 as shown
n Table 9. Hence, starting from c2((α(γN )), we introduce the fudge maximum velocity squared c2f (γN ) from which, after
taking absolute value we deduce average fudge velocity squared ≺ c2f ((γN ) ≻= 1.07224 c2 as detailed in (9.3) to (9.6):

c23(α(γN ))

c23,1(α(γN ))
=

c2

c2(γN )(1∓ i
√
3 cosα(γN )

=
c2

c2(γN )(1∓ i0.572)
(9.3)

c23(α(γN ))

c23,1(α(γN ))
=

c2

c2f ((γN )
: c2f ((γN ) = c2((γN )(1∓ i0.572) (9.4)[

c2f (γN )
]2

= c4((γN ) [1∓ i0.572]
2
= 0.93073014592c4 × 1.3272 = 1.149698c4 (9.5)

≺ c2f ((γN ) ≻ = 1.07224 c2 (9.6)

Surprisingly, this average fudge maximal velocity ≺ c2f ((γN ) ≻ barely violates Special Theory of Relativity, even being
unphysical.

Next on the agenda is the novel neutrino νN . The quantum jump from ordinary ν congruent angle α(ν) = 0.6175 to
novel neutrino νN congruent angle, yields the value of α(νN ) = 2 × 0.6175, = 1.235, or α(νN ) = 0.7862 π/2.
The corresponding congruent parameters are: z1(1.235) = 0.63483, z2(1.235) = 1.57523. These congruent parameters
when applied either to relations (8.1,2.3.4.5), or directly to (8.6,7,8,9), will evaluate R(α(νN ))c23,1/v

2, c22(α(νN ))/v2,
I(α(νN ))c23,1/v

2 and c23,1(α(νN ))/v2. Their values are given in Table 10:

Table 10. The values of limiting velocities for novel neutrino νN together with the congruent parameters

α(νN ) = 1.235, z1(α(νN )) = 0.63483, z2(α(νN )) = 1.57523.(
R(α(νN ))c23,1/v

2 c22(α(νN ))/v2 I(α(νN ))c23,1/v
2 c23,1(α(νN ))/v2

1.0086 −2.01 ∓0.571 1.0086∓ i0.571

)

Again, as we see from the Table 10, R(α(νN ))c23,1 ≈ v2 = c2(νN ), the maximum real physical squared velocity of
the novel neutrino νN . What is its numerical value? As before for γN , we can find this value from the point of view
of ordinary particles. Since α(νN ) = 0.7862 π/2 is smaller than π/2, so for this endeavor we may force νN to be
ordinary-like particle. Then from (6.3) or (6.8) evaluate

c23(α(νN ))

Rc23,1(α(νN ))
=

c2

c2(α(νN ))
=

6S ((α(νN ))

z1(α(νN ))
=

0.68178022.

0.634831
= 1.0739556602, (9.7)

c2((α(νN )) = 0.93113713821 c2 ⪯ c2 (9.8)
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Again, It is gratifying that the Special Theory of Relativity is not violated. as c2((ανN )) is practically the same as c2.
However, we still take into account the imaginary part in the complete solution c23,1(α(νN ))/v2 = 1.0086 ∓ i0.571 as
shown in Table 10. Hence, starting from c2((α(νN )), we introduce the fudge maximum velocity squared c2f ((νN )) from
which, after taking absolute value, we deduce average fudge velocity squared ≺ c2f ((νN ) ≻ as indicated in (9.11,12):

c23(α(νN ))

c23,1((α(νN ))
=

c2

Rc23,1(νN )(1∓ i
√
3 cosα(νN )

=
c2

c2(νN )(1∓ i0.571)
(9.9)

c23(α(νN ))

c23,1((α(νN ))
=

c2

c2f (νN )
: c2f (νN ) = c2((νN )(1∓ i0.571) (9.10)[

c2f ((νN )
]2

= c4(νN ) [1∓ i0.571]
2
= 0.931137138212c4 × 1.33 = 1.1531c4 (9.11)

≺ c2f ((νN ) ≻ = 1.074 c2 (9.12)

This average fudge maximal velocity ≺ c2f ((νN ) ≻ barely violates Special Theory of Relativity, although it is again
unphysical.

Next on the agenda is the novel electron eN . The quantum jump from ordinary e congruent angle α(e) = 0.618 to
novel electron eN congruent angle, yields the value of α(eN ) = 2 × 0.618, = 1.236, or α(eN ) = 0.7869 π/2. The
corresponding congruent parameters are z1(1.236) = 0.63639, z2(1.236) = 1.571364. These congruent parameters
when applied either to relations (8.1,2,3,4,5), or directly to (8.6,7,8,9), will evaluate R(α(eN ))c23,1/v

2, c22(α(eN ))/v2,
I(α(eN ))c23,1/v

2 and c23,1(α(eN ))/v2. Their values are given in Table 11.

Table 11. The values of limiting velocities for electron eN . with the congruent parameters

α(eN ) = 1.236, z1(α(eN )) = 0.63639, z2(α(eN )) = 1.571364. :(
R(α(eN ))c23,1/v

2 c22(α(eN ))/v2 I(α(eN ))c23,1/v
2 c23,1(α(eN ))/v2

1.0107 −2.0214 ∓0.5731 1.0107∓ i0.5731

)
From Table 11, we have that R(α(eN ))c23,1 ≈ v2 = c2(eN ) the maximum real physical squared velocity of the novel
electron eN . What What is its numerical value? Since α(eN ) = 0.393431 π/2 is smaller than π/2, we may force eN to
be ordinary-like particle for finding this numerical value. Then from (6.3) or (6.8) we have

c23(α(eN ))

Rc23,1(α(νN ))
=

c2

c2(α(eN ))
=

6S ((α(eN ))

z1(α(eN ))
=

0.6837465134.

0.6363897949
= 1.0744146417, (9.13)

c2((α(eN )) = 0.930739363731811 c2 ⪯ c2 (9.14)

We see again that there is no violation of Special Theory of Relativity, as c2(eN ) is practically the same as c2. We wish to
take into account the imaginary part in the complete solution c23,1(α(eN ))/v2 = 1.0107∓ i0.5731 as shown in Table 11.
Hence, starting from c2((α(νN )), we introduce the fudge maximum velocity squared c2f ((νN )) from which, after taking
absolute value, we deduce average fudge velocity squared ≺ c2f ((νN ) ≻ as indicated in (9.18):

c23(α(eN ))

c23,1((α(eN ))
=

c2

Rc23,1(eN )(1∓ i
√
3 cosα(eN )

=
c2

c2((eN )(1.0107∓ i0.5731)
, (9.15)

c23(α(eN ))

c23,1((α(eN ))
=

c2

c2f (eN )
: c2f ((eN ) = c2((eN )(1∓ i0.5731) (9.16)[

c2f (eN )
]2

= c4(eN ) [1∓ i0.5731]
2
= 1.150798502121c4 (9.17)[

c2f (eN )
]2

= ≺ c2f ((νN ) ≻2 , ≺ c2f ((νN ) ≻= 1.07275276841 c2. (9.18)

Surprisingly, although being unphysical, the average eN fudge maximal square velocity ≺ c2f ((νN ) ≻ barely violates
Special Theory of Relativity.

Based on the ordinary and novel particle maximum velocity evaluations, we assume the velocity of light c to be the
maximum possible velocity in the Universe. Hopefully, this analysis of the matched ordinary and novel particles should
be helpful for pursuing novel particles detections, even if novel particles are all dark mater particles.
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4. Additional Remarks, Discussion and Conclusion

We, as yet, do not know the masses of novel leptons γN , νN and eN as opposed to the ordinary leptons γ, ν and e whose
masses are known quite well, as shown at the beginning of 3.1. Never the less, due to the fact that the congruent angle of
a novel particle αN is obtained by quantum jump from an ordinary particle congruent angel α, αN = 2α, which allows
qualitative observation the difference between energies of ordinary and novel particle.

As an example, we make comparison between energies of ordinary photon γ and novel photon γN at their maximal
velocities, which we take to be c for either of them. With parameters from Table 6, for ordinary photon γ. and Table 9.
for novel photon γN , we evaluate:

E(γ, c) =
3
√
3mγc

2

2z1(α(γ))
=

3
√
3

2× 0.0646572
mγc

2 = 40.18mγc
2, (10.1)

E(γN , c) =
3
√
3mγN

c2

2z2(α(γN ))
=

3
√
3z1(α(γN ))

2
mγN

c2 =
3
√
3× 0.632726889

2
mγN

c2 = 1.644mγN
c2 (10.2)

In the case of ordinary photon γ and novel photon γN , the energies at the maximal velocity c show noticeable difference
when expressed in terms of their masses. Of course to know how big their difference is we would have to know the value
of mγN

versus mγ. If for example, it happens that the total energies are equal: E(γN , c) = E(γ, c), then one easily
sees their mass energy values through mγN

c2 ≈ 24mγc
2 Of occurs,in general, with trial and error through comparison of

different physical quantities of γ and γN , one might be able to determine the relationship between their masses.

Novel (dark) photon is taking more and more place in the literature discussions. The reason being that the ordinary photon
plays a central role in the so called Standard Model. So, the ”natural” thing is to simply add another novel (dark) photon to
the Standard Model. For example, in ”Search for Light Dark Photon in Forward Experiments at the LHC”, (Yeong, G.-K.
at al., 2023) propose to tackle the search for new dark photon by extending the standard model (SM) with the additional
U(1) gauge field which with another U(1) gauge field, after proper redefinitions yield the massless electromagnetic photon
gauge field Aµ and massive dark photon gauge field A′

µ. This new dark photon is actually, in our description an ordinary
particle and the experimental results should be able to tell weather it is necessary.

In conclusion, we may say that ordinary and novel particles once they leave the smooth point of α = π/2 actually retain
still some,connection. The proof is the quantum jump of ordinary, particle α to novel particle αN = 2α, when away
from π/2. The further pursuit should utilize the effects of α-quantum jump on other limiting velocities besides of c23
to Rc23,1which here,was emphasized in order to solidly establish footing for ordinary and novel photons. Further worth
probably should be to deal extensively with calculating the inertial scaling factors with energies and inertial masses from
bicubic equation limiting velocity solutions for ordinary and novel particles as shown in (Šoln, J., 2022).

If the novel particles were to be discovered that would not be the end of it.
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Šoln, J. (2017). Connecting dark matter particles with the primary, obscure and normal particles through implicit causality.
Applied Physics Research, 9(3), 1.
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