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Abstract 

This work is concerned with fractional constrained Hamiltonian systems. Constrained systems with first class 

constraints and second class constraints are studied using fractional Lagrangian, then the Hamiltonian is found in 

fractional form, after that the conjugate momenta are obtained from the fractional Lagrangian, when 1 ; 

the results of fractional technique reduce to those obtained from classical technique. Two illustrative examples 

are used to explain this technique. 
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1. Introduction 

The motion of an object or any system is restricted by many factors. The limitations on the motion of the system 

are called constraints (Goldstein, 1980). The constrained systems have been treated by (Dirac, 1950; Dirac, 

1964), then the constraints have been classified into kinds: first class constraints, and second class constraints. 

Also converting first class constraints into second class constraints was extended by (Faddeev, 1970; Hanson and 

Regge, 1976; Evans, 1991).  

Canonical method has been presented to study the constrained systems by (Guler, 1992). Singular Lagrangian 

with first class constraints and second class constraints are investigated using Hamiltonian formalism (Goldberg, 

1991; Rabei and Guler, 1992). Moreover, constrained systems with second order Lagrangian and higher order 

Lagrangian are quantized using path integral technique (Senjanovic, 1976; Rabei, 1996; Muslih, 2001; Rabei, 

2000). The Hamilton Jacobi formalism has been developed to study constrained systems by (Nawafleh et al., 

2004; Nawafleh et al., 2005), through this formalism the equations of motion are obtained and the action 

function is formulated using Hamilton Jacobi equation, this function able one to obtain the conjugate 

momentum. 

After that, the higher order Lagrangian systems have been developed using Hamilton Jacobi equation, then the 

equations of motion have been obtained and the constrained systems have been quantized using the WKB 

approximation (Muslih, 2002; Rabei et al., 2002; Rabei et al., 2003; Hasan et al., 2004). Fractional calculus and 

fractional derivatives have been used in different areas of classical mechanics, electrodynamic, scaling 

phenomena, astrophysics, potential theory, optics, science, engineering and thermodynamics (Miller, 1993; 

Samko, 1993; Gorenflo, 1997). 

The fractional calculus method for both conservative and nonconservative systems has been developed by Riewe 

(Riewe, 1996; Riewe, 1997). The classical calculus of variations was extended by (Agrawal, 2006) for systems 

containing Riemann- Liouville fractional derivatives. Recently, Euler Lagrange equations for holonomic 

constrained systems with regular Lagrangian have been presented by (Hasan, 2016) using the fractional 

variational problems.  

More recently, as a continuation of the previous works, the fractional Euler Lagrange equations are used by 

(Jarab'ah, 2018; Jarab'ah et al., 2018) to obtain the equations of motion for first order irregular Lagrangian with 

holonomic constraints and second order Lagrangian for nonconservative systems. In this paper we hope to study 

constrained systems for both first and second class constraints using Lagrangians and Hamiltonian formalism, but 

in another technique which is fractional method and at a certain condition which is 1 ; the results of 

fractional technique reduce to those obtained from classical technique. 



http://apr.ccsenet.org Applied Physics Research Vol. 15, No. 2; 2023 

104 

This paper is organized as follows. In section 2, the fractional derivatives are reviewed. In section 3, the fractional 

Euler Lagrange equation and fractional Hamiltonian are discussed. In section 4, this work is illustrated through 

two physical examples. Finally, in section 5, the work closes with some concluding remarks. 

2. Fractional Derivatives 

From Agrawal's work (Agrawal, 2002; Podlubny, 1999) 

The left Riemann – Liouville fractional derivative written as: 
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which is defined as the LRLFD, and the right Riemann – Liouville fractional derivative written as: 
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which is defined as the RRLFD. 

where  represents the Euler's gamma function and   is the order of the derivative such that 1n ˂ n , 

and is not equal to zero. If   is an integer, these derivatives are written as: 

)()( xf
dx

d
xfDxa












                                        (3) 

)()( xf
dx

d
xfDbx












                                       (4) 

The fractional operator, )(xfDxa


can be written as (Igor, 2002). 
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and has the following properties: 
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Re (α) ˂ 0                                      (8) 

 

Theorem: Let f  and g  be two continuous functions on  ba, . Then, for all  bax , , the following 
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3) For m ˃0, )())(( xfxfDD m
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3. Fractional Hamiltonian and Fractional Euler Lagrange Equation 

Using Lagrangian in the following fractional form 

),,,,( 11 tqDqDqDqDLL bttabtta

                                 (13) 

Recalling that, action function for all  bax , , can be defined as follows: 
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The fractional Euler Lagrange equation (Agrawal, 2002) is given by: 
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Thus, if 1  , we find that: 
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d
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and 
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d
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                                              (17) 

And the fractional Euler Lagrange equation reduce to the classical form of the Euler Lagrange equation. 

Where the generalized momenta can be obtained from: 
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Thus, the generalized coordinate q  in fractional form is defined as: 
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Making use that, 
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and 

dt

d
Dt 

1
                                               (23) 

The Hamiltonian depending on the fractional derivatives is written as: 
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4. Illustrative Examples (Nawafleh, 1998) 

An Example with First Class Constraints: 

Let us consider the following Lagrangian 
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Using fractional derivatives equation (25) becomes 
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From equation (26) and by using of equation (18) the conjugate momenta are 
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Thus, in this example we find that, 13 pp   

The fractional Hamiltonian has the standard form using equation (24) 
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Now, substituting equations. (26), (27), (28) and (29) into equation (30), Hamiltonian reads:
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This equation can readily be solved to give  
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An Example with Primary and Secondary Constraints of the Second Class: 

As a second example, let us take the following Lagrangian (Rabei and Guler, 1992): 
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The corresponding fractional Lagrangian is: 
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Making use of equation (34) and equation (18), the momenta can be computed as 
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The usual treatment gives the following momentum 
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From equation (36) and equation (37) one can see that, 
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The fractional Hamiltonian can be expressed as 
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As usual, putting equation. (34), (35), (36) and equation (37) into equation (38), the Hamiltonian takes this form
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Simple manipulations yield 
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5. Conclusions 

In this work fractional constrained systems are studied using fractional Lagrangian and fractional Hamiltonian, 

also two types of constraints are studied: first class constraints and second class constraints. The Lagrangians are 

written in fractional form and then we find the fractional Hamiltonian, then the fractional conjugate momenta 

are obtained from our fractional Lagrangian, when 1 ; the results of fractional technique reduce to those 

obtained from classical technique. In this paper we find the ability of the first class constraints and second class 

constraints to studying using fractional technique. Some physical examples are considered to demonstrate the 

application of the formalism. 

References 

Agrawal, O. P. (2002). Formulation of Euler–Lagrange equations for fractional variational problems. Journal of 

Mathematical Analysis and Applications, 272, 368-379. https://doi.org/10.1016/S0022-247X(02)00180-4 



http://apr.ccsenet.org Applied Physics Research Vol. 15, No. 2; 2023 

108 

Agrawal, O. P. (2006). Fractional variational calculus and the transversality conditions. Journal of Physics A: 

Mathematical and General, 39(33). https://doi.org/10.1088/0305-4470/39/33/008 

Dirac, P. A. M. (1950). Generalized Hamiltonian Dynamics. Canadian Journal of Mathematical Physics, 2, 

129-148. https://doi.org/10.4153/CJM-1950-012-1 

Dirac, P. A. M. (1964). Lectures on Quantum Mechanics. Belfer Graduate School of Science. Yeshiva 

University, New York. 

Evans, J. M. (1991). On Dirac’s Methods for Constrained Systems and Gauge Fixing Conditions with Explicit 

Time Dependence. Physical Letters B., 256(2), 245-250. https://doi.org/10.1016/0370-2693(91)90681-F 

Faddeev, L.D. (1970). The Feynman integral for singular Lagrangians. Theoretical and Mathematical Physics, 1, 

1-13. https://doi.org/10.1007/BF01028566 

Goldberg, J. (1991). On Hamiltonian Systems with First-Class Constraints. Journal of Mathematical Physics, 

32(10), 2739-2743. https://doi.org/10.1063/1.529065 

Goldstein, H. (1980). Classical Mechanics (2nd ed.). Addison-Wesley, Reading-Massachusetts.  

Gorenflo, R., & Mainardi, F. (1997) Fractional Calculus: Integral and Differential Equations of Fractional 

Orders, Fractals and Fractional Calculus in Continuums Mechanics. Springer Verlag, Wien and New York, 

pp. 223-276. https://doi.org/10.1007/978-3-7091-2664-6_5 

Guler, Y. (1992). Canonical Formulation of Singular Systems. Il Nuovo Cimento, 107B, 1389-1395. 

https://doi.org/10.1007/BF02722849 

Hanson, A., Regge, T., & Teitelbon, C. (1976). Constrained Hamiltonian Systems. Accademia Nazionale Dei 

Lincei, Rome, pp. 30-94. 

Hasan, E. H. (2016). Fractional Variational Problems of Euler-Lagrange Equations with Holonomic Constrained 

Systems. Applied Physics Research, 10(5), 223-234. https://doi.org/10.5539/apr.v8n3p60 

Hasan, E., Rabei, E. M., & Ghassib, H. B. (2004). Quantization of Higher-Order Constrained Lagrangian 

Systems Using the WKB Approximation. International Journal of Theoretical Physics, 43(11), 2285-2298. 

https://doi.org/10.1023/B:IJTP.0000049027.45011.37 

Igor, M., Sokolove, J. K., & Blumen, A. (2002). Fractional kinetics. Physics Today, 55(11), 48-54. 

https://doi.org/10.1063/1.1535007 

Jarab'ah, O. (2018). Fractional Euler Lagrange Equations for Irregular Lagrangian with Holonomic Constraints. 

Journal of Modern Physics, 9, 1690-1696. https://doi.org/10.4236/jmp.2018.98105 

Jarab'ah. O., & Nawafleh, K. (2018). Fractional Hamiltonian of Nonconservative Systems with Second Order 

Lagrangian. American Journal of Physics and Applications, 6(4), 85-88. 

https://doi.org/10.11648/j.ajpa.20180604.12 

Miller, K. S., & Ross, B. (1993). An Introduction to the Fractional Integrals and Derivatives- Theory and 

Applications. John Willey and Sons, New York, pp. 80-120. 

Muslih, S. I. (2001). Path Integral Formulation of Constrained Systems with Singular Higher-Order Lagrangians. 

Hadronic Journal, 24, 713-721. 

Muslih, S. I. (2002). Quantization of Singular Systems with Second-Order Lagrangians. Modern Physics Letters A, 

17, 2383-2391. https://doi.org/10.1142/S0217732302009027 

Nawafleh, K. (1998). Constrained Hamiltonian Systems: A Preliminary Study. Unpublished M.Sc. Thesis, The 

University of Jordan, Amman, Jordan. 

Nawafleh, K. I., Rabei, E. M., & Ghassib, H. B. (2004). Hamilton-Jacobi Treatment of Constrained Systems. 

International Journal of Modern Physics A, 19, 347-354. https://doi.org/10.1142/S0217751X04017719 

Nawafleh, K. I., Rabei, E. M., & Ghassib, H. B. (2005). Quantization of Reparametrized Systems Using the 

WKB Method. Turkish Journal of Physics, 29, 151-162.  

Podlubny, I. (1999). Fractional Differential Equations. Academic Press, New York, pp. 97-104. 

Rabei, E. M. (1996). On Hamiltonian Systems with Constraints. Hadronic Journal, 19, 597-605. 

Rabei, E. M. (2000). On the Quantization of Constrained Systems Using Path Integral Techniques. Il Nuovo 

Cimento B, 115(10), 1159-1165.  

https://iopscience.iop.org/journal/0305-4470
https://iopscience.iop.org/journal/0305-4470
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=_jbAxpIAAAAJ&citation_for_view=_jbAxpIAAAAJ:W7OEmFMy1HYC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=_jbAxpIAAAAJ&citation_for_view=_jbAxpIAAAAJ:W7OEmFMy1HYC
https://pubs.aip.org/physicstoday/article/55/11/48/443376


http://apr.ccsenet.org Applied Physics Research Vol. 15, No. 2; 2023 

109 

Rabei, E. M., Nawafleh, K. I., & Ghassib, H. B. (2002). Quantization of Constrained Systems Using the WKB 

Approximation. Physical Review A, 66, 024101. https://doi.org/10.1103/PhysRevA.66.024101 

Rabei, E. N., Nawafleh, K. I., Abdelrahman, Y. S., & Rashed Omari, H. Y. (2003). Hamilton Jacobi Treatment 

of Lagrangian with Linear Velocities. Modern Physics Letters A, 18(23), 1591-1596. 

https://doi.org/10.1142/S0217732303011277 

Rabei, Eqab M., & Guler, Y. (1992). Hamilton-Jacobi Treatment of Second-Class Constraints. Physical Review 

A., 46(6), 3513-3515. https://doi.org/10.1103/PhysRevA.46.3513 

Riewe, F. (1996). Nonconservative Lagrangian and Hamiltonian mechanics. Physical Review E., 53, 1890. 

https://doi.org/10.1103/PhysRevE.53.1890 

Riewe, F. (1997). Mechanics with fractional derivatives. Physical Review E., 55, 3581. 

https://doi.org/10.1103/PhysRevE.55.3581 

Samko, S. G., Kilbas, A. A., & Marichev, O. I. (1993). Fractional Integrals and Derivatives: Theory and 

Applications. Gordon and Breach Science Publishers, Amsterdam, pp. 33-40. 

Senjanovic, P. (1976). Path Integral Quantization of Field Theories with Second-Class Constraints. Annals of 

Physics, 100, 227-261. https://doi.org/10.1016/0003-4916(76)90062-2 

 

 

Copyrights 

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 

license (http://creativecommons.org/licenses/by/4.0/). 


