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Abstract

Evolution of fundamental mathematical tools (such as trigonometric functions sin(α) and cos(α)) has inherent repercu-
sions on how we solve problems in applied physics. Recently published extended or gamma sine function sin∗(α, γ)
and cosine function cos∗(α, γ) — along with their upgraded identity angle sum and subtraction rules sin∗(A ± B, γ) and
cos∗(A ± B, γ) — have enabled a new approach on how to tackle practical problems using mathematics (a published ex-
ample is the energy-coupled mass-spring oscilatory system). The usefullness of a theory is measured by both the insight
it generates, and the solution it produces, when applied to physical problems with pertinent applications. Its acceptance
amongst peers depends on the availability of such examples, as way-showers of how the theory can be applied in prac-
tice, and how useful results can be derived by employing it in similar or related examples/problems. This article has the
purpose of providing this bridge between the above theories and its application in some common scientific fields. Several
exercises are solved employing these new formulae, and new potential applications are identified that cover various topics
in physics such as civil engineering (i.e., measuring distances in bridges), aerospace and aeronautics (i.e., turbine veloc-
ity triangles and optimum orbital deployment for a satellite constellation) and telecommunications (i.e., antenna array
beamforming and steering, as well as new modulations based on quadrature phase-shift keying). These problems (and
solutions) are designed to indicate the usefullness of these new expanded functions, and can become practical classroom
exercises applicable to both academic and professional environments.

Keywords: gamma, trigonometry, applied, physics, exercises

Ever since sailors aligned quadrants with stars to guide themselves through the perils of the oceans, the need to project
angles into distances (and vice versa) has been an inevitability for humanity in its endeavor for territorial and technological
expansion. In modern times, this need still exists and is again present during the navigation of the SpaceX Dragon “Axiom-
1” capsule as it made its final approach (with its four astronauts) into the International Space Station on April 9th, 2022.
Trigonometric functions such as sin(α) and cos(α) are tools used to determine side lengths of a right triangle resulting
from the orthogonal projection of the hypotenuse about a given internal reference angle α. Being inherently connected to
the Pythagoras theorem, they only function encompassed in right-angle triangles (or in triangles where one of its internal
angles is γ = 90 degrees). If the internal angle changes to γ = 120 degrees, what would these functions look like (Figure
1)? The projected lengths of the hypotenuse given by the traditional sine and cosine would change — this time dependent
on both angles α and γ — or simply put, into sin∗(α, γ) and cos∗(α, γ) [where the asterisk sign * implies that they are
different from the original sine and cosine]. A typical approach to finding the side lengths and angles of a scalene triangle
is to subdivide it into two right triangles and employ trigonometric operations. The resorting to orthogonality to solve a
non-orthogonal problem is not an organic approach, and a more direct trigonometric and mathematical path is desired.
If a mathematician or scientist is faced with a problem where he/she needs to know the (normalized) sides of a scalene
triangle based on its angles, then the functions sin(α) and cos(α) [valid only for right triangles] need to be replaced by
more generic expressions, herein termed the gamma or extended sine and cosine functions — denoted as sin∗(α, γ) and
cos∗(α, γ), respectively.
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Figure 1. Extending the notion of sine and cosine functions into scalene triangles (Teia 2022c)

These functions and rules fall within the domain of non-orthogonal or gamma trigonometry. They expand the usefulness of
application of the already existing trigonometric functions in a variety of scientific fields, ranging from orbital mechanics
(Curtis, 2010), electronics (Rawlins, 2000), chemistry (Howard, 2018) and design (Parisher, 2012). Both the Pythagoras’
theorem and trigonometry (in general) form part of most secondary education curricula around the world, including
in the American, Canadian and Australian Curriculum (Reys 2007, Canadian Ministry of Education 2020, Australian
Curriculum n.d.), which makes this paper of interest to both students and professionals.

1. Hypothesis

It is the hypothesis of this study that generalization of fundamental trigonometric functions should enable both a new
understanding of, and a new way of solving advanced physical problems (dependent on trigonometric relations), such as
those found in civil engineering, aerospace & aeronautic and telecommunications.

2. Theory

Gamma trigonometry is a new field of mathematics that expands classical trigonometric functions from an orthogonal
environment (i.e., the common axes system are at right-angles or γ = 90 deg) into a non-orthogonal or oblique environ-
ment (i.e., the system axes are at any angle to each other or γ , 90 deg) [Teia 2021a-2023]. The Law of Cosines [Eq.(1)]
is a broad expression that relates the lengths of the three sides x, y and z of any triangle (Maor 2007, Pickover 2012),
which not only covers the particular case of the Pythagoras theorem x2 + y2 = z2 (where orthogonality defines the internal
reference angle as γ = π/2 possible values of γ that result in angle and distance relation within a scalene triangle.

z2 = y2 + x2 − 2xy cos(γ) (1)

The particular case of the Pythagoras theorem is satisfied by replacing γ = 90 deg, x = cos(α), y = sin(α) and z = 1.
Similarly, it was proven in (Teia, 2021c) that the general case of the Law of Cosines is fulfilled by the extended expressions
(defined below), implying a scalene triangle with sides x, y and z (as in Figure 1). It was further proven that the expressions
for the extended (or also called gamma) sine function sin∗(α, γ) and cosine function cos∗(α, γ) applicable to scalene
triangles (Figure 1) [where the extended hypotenuse is normalized (i.e., z = 1)] are given as

y = sin∗(α, γ) =
sin(α)
sin(γ)

(2)

x = cos∗(α, γ) = cos(α) +
sin(α)
sin(γ)

sin(α) =
sin(α + γ)

sin(γ)
(3)

In trigonometry, the angle sum and difference identity rules establish a link between additive or subtractive operations in
angles with its impact on the lengths of their respective right triangles, and are commonly defined as
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sin(A ± B) = sin(A) cos(B) ± cos(A) sin(B) (4)
cos(A ± B) = cos(A) cos(B) ∓ sin(A) sin(B) (5)

This is only applicable to a triangle with an obtuse angle γ = 90 deg — i.e. a right-angled triangle. In a recent publication
(Teia, 2022d), the definition of these rules has been extended to encompass scalene triangles, which accommodate a
broader application including scalene triangles with any obtuse angle. For the summing of angles of the identity rule
(where α = A + B)[Figure 2a], these were proven to be

sin∗(A + B, γ) = sin∗(A, γ) cos∗(B, γ) + cos∗(A, π − γ) sin∗(B, γ) (6)
cos∗(A + B, γ) = cos∗(A, γ) cos∗(B, γ) − sin∗(A, π − γ) sin∗(B, γ) (7)

Figure 2. An angle (a) summation and (b) subtraction within a scalene triangle and associated projections [11]

For the angle difference identity rule (where α = A − B)[Figure 2b], these were proven to be

sin∗(A − B, γ) = sin∗(A, γ) cos∗(B, γ) − cos∗(A − π + 2γ, π − γ) sin∗(B, γ) (8)
cos∗(A − B, γ) = cos∗(A, γ) cos∗(B, γ) + sin∗(A − π + 2γ, π − γ) sin∗(B, γ) (9)

Note that Figure 2a and 2b are practically the same, except that the scalene triangle △ABC is upwards in Figure 2a (adding
angle B to A), and it is downwards in Figure 2b (subtracting angle B from A). This article focuses on the application of
these equations; further details on their proofs can be found in the respective publication (Teia 2022c, Teia 2022d).
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3. Exercises & Possibilities

There are several domains in physics that require classical (orthogonal, i.e., sine and cosine functions assume with γ = 90
deg) trigonometry to solve. The point of this article is to solve equivalent problems that fall beyond orthogonality,
requiring the extended sine and cosine functions — i.e., Eq.(2-3) — and their identity rules — i.e., Eq.(6-9)— which
have a broad application to scalene triangles, much in the same manner as conventional sine and cosine functions are
applicable to right triangles (hence enabling a scientist or mathematician the possibility to, when the orthogonal condition
fails, to replace the conventional sine and cosine by their extended versions immediately and effortlessly — culminating in
a more flexible mathematical solution). Moreover, the new extended trigonometric functions open doors for possibilities
of expanding scientific fields in which they (the functions) are the foundations. Some possibilities will be presented and
discussed briefly. Exercises are marked as (E) while possibilities are marked as (P). In order to assist the confirmation of
the solutions of the following gamma trigonometric problems, the open-source program Geogebra (Feng, 2013) can be
used to draw the involved scalene triangles, as well as, in determining their lengths and angles.

4. Civil Engineering

4.1 Inclined Bridge (E)

Problem. A suspension bridge has a series of main suspension cables connecting the horizontal road deck (through which
the automobiles transit) to the vertical tower, making an angle γ = 90 deg (Figure 3). The main suspension cables transmit
tension forces and connect from anchors (i.e., concrete blocks at shore — located out of the photo to the left beyond point
A) at each of their ends to the top of the intermediate towers (Pipinato, 2021). The two connection points A and B have an
original average diagonal cable length of 2km, where the cables are not completely stretched, making an angle of α = 30
degrees with the horizontal. Over the years, the foundations yielded and the tip of the tower at point B is now a half a
degree inclined in the direction away from the cables (the change of inclination from B to B’ was measured at point C by
an engineer with a theodolite). How much have the cables stretched due to the inclination?

Figure 3. Assessment in a suspension bridge of cable elongation due to inclination of the tower

Solution. The horizontal projection AC is assumed unchanged by the inclination. Hence, this is the starting point, as it is
common to both cases straight △ABC and inclined △AB′C. At the beginning, we have a right triangle, hence the relation
applies straightforward

AC = AB cos(α) = 2 cos(30) = 1.732km (10)

However, the inclination changes the right triangle (∠ACB ≡ γ = 90 deg) to a scalene triangle ( with an angle change
to ∠ACB′ ≡ γ′ = 90 + 0.5 = 90.5 deg), hence sine and cosine no longer apply directly. The extended versions given
by Eq.(2) and Eq.(3) are applied in this case. The diagonal of the scalene triangle is given directly by the horizontal
projection AC of the longest side AB´ giving
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AB′ =
AC

sin(α+γ′)
sin(γ′)

=
1.732

sin(30+90.5)
sin(90.5)

= 2.010km (11)

Therefore, the inclination of half a degree by the tower has stretched the main suspension cables by 10 meters.

4.2 Measuring Distances (E)

Problem. Imagine that civil engineers with theodolites devices (as in Figure 4a) are placed at either side of a river (at
points A and B), and wish to measure their distance to a location on the bridge (at point C), which is inaccessible due to
constructions (as in Figure 4b). Theodolites devices measure (among other things) vertical and horizontal angles between
two visual reference points with great accuracy (Topcon Corporation, 2016). The difficulty, in this case, is that Point C
is located on the bridge and directly over water, so it is not possible to measure the horizontal positions of point A and
B to point C, and neither the height. However, the engineers can measure the distance between them, resulting in 200m.
Engineer A rotates the theodolite from point B to C and measures a vertical angular distance of 38 degrees, while engineer
B does the same from point A to C and measures 24 degrees. What are the distances of both engineers to point C on the
bridge? What is the height from point C to the horizontal line connecting engineer A to B? And if the same line AB is
inclined by ϵ = 10 degrees (α and β remaining the same), what is the height of point C to line AB?

Figure 4. Finding distances from the shores to a point on an inaccessible bridge

Solution. The angle γ = ∠ACB formed by the two theodolites at point C is 180-38-24=118 degrees. The distance of the
first engineer A to point C on the bridge is given by the direct application of the extended cosine function as

AC = 200 cos∗(38, 118) = 200
[
sin(38 + 118)

sin(118)

]
= 92.1m (12)

On the other hand, the distance of the second engineer B to point C on the bridge is given by direct application of the
extended sine function as

BC = 200 sin∗(38, 118) = 200
[

sin(38)
sin(118)

]
= 139.5m (13)

Knowing the distance and angle from A to C, it is simply a matter of applying conventional sine function to obtain the
vertical projection in the right triangle △AOC as

CO = 92.1 sin(38) = 56.7m (14)

If the line AB were to be inclined, making an angle ϵ = 10 degrees to the horizontal (here we assumed it is inclined to
the left, as per Figure 5) — α = 38 degrees and β = 24 degrees remain the same — then the height of point C to line AB
is (whilst remembering that the obtuse angle ∠BO′C of triangle △BO′C in now 90 + ϵ = 100 degrees) given by the direct
application of the extended sine function, as
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CO′ = BC sin∗(β, 100) = 139.5
[

sin(24)
sin(100)

]
= 57.6m (15)

Note that the added inclination (of 10 degrees) between the two theodolites A and B increased the vertical distance of
point C to the line AB by almost 1 meter.

Figure 5. Finding distances from the shores to a point on an inaccessible bridge

5. Aerospace & Aeronautics

5.1 Turbine Velocity Triangles (E)

Problem. Velocity vector diagrams are tools used by aerospace and aeronautics engineers to design and understand the
loading of a turbine stage on an aircraft engine (Figure 6a) (Haselbach & Taylor, 2013). It links the magnitude and
direction of air velocity vectors (both absolute VABS and relative VREL at the vane exit to rotor exit) with blade tangential
speed U (Figure 6b). Imagine that the flow exiting a row of stator vanes has been measured to be 250 m/s at an absolute
angle to the engine axis of θ = 70 deg. The engineer selects a rotational speed for the rotor of 7,000 rpm. The mean blade
diameter is 0.5m. What is the relative velocity VREL seen by the rotor as the flow enters it (i.e., at the vane exit and rotor
inlet plane)?

Figure 6. Velocity vector diagram for a turbine rotor blade in a turbofan engine

Solution. The analysis revolves around the scalene triangle △ABC. At the stator exit plane, the air absolute velocity vector
VABS makes an angle with the blade speed vector U of ∠ACB ≡ α = 180 − 90 − 70 = 20 deg. The rotational speed 7,000
rpm is converted to mean blade tangential velocity U as

U =
7000

60
∗ 2πD = 157.1m/s (16)

Finding the angle γ ≡ ∠ABC

VABS cos∗(α, γ) = VABS

[
cos(α) +

cos(γ)
sin(γ)

sin(α)
]

(17)

which, by replacing the values above, results in
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U = 157.1 = 250
[

cos(20) +
1

tan γ
sin(20)

]
(18)

That re-arranged gives

tan(γ) =
sin(20)

157.1
250 − cos(20)

= −1.098 (19)

Note that, computing the arctangent of angle γ gives -47.7 degrees. Since we know that the angle γ needs to be obtuse,
we add 180 degrees to give γ = 132.3 degrees (the tangent is the same for both angles). To find the relative velocity VREL,
one simply applies the sin∗(α, γ) expression (i.e., project side AC onto AB), which gives

VREL = VABS sin∗(20, 132.3) = 250
[

sin(20)
sin(132.3)

]
= 115.6m/s (20)

If the absolute angle of VABS to the engine axis θ is in fact 2 degrees more than anticipated, what is the new relative
velocity VREL (use the angle difference identity rule)?

The new angle is θ = 70 + 2 = 72 deg, which based on the internal angle sum of the triangle △ADC, gives a angle
α = 180 − 90 − 72 = 20 − 2 = 18 deg. For the same mean blade tangential velocity U, the obtuse angle of triangle △ABC
becomes

tan(γ) =
sin(20 − 2)

157.1
250 − cos(20 − 2)

= 0.7358 (21)

As before the resulting obtuse angle is γ = 136.2 deg. To find the relative velocity VREL, one applies the angle difference
identity rule for sin∗(A − B, γ) [given by Eq.(8)]

VREL = VABS sin∗(20 − 2, 136.2) = 157.1
[

sin∗(20 − 2, 136.2)
]

(22)

which expands to

sin∗(20 − 2, 136.2) = sin∗(20, 136.2) cos∗(2, 136.2) − cos∗(2 − 180 + 2 × 136.2, 180 − 136.2) sin∗(2, 136.2) (23)

By applying the extended sine and cosine functions given by Eq.(2) and Eq.(3), the end result is VREL = 104.4m/s. The
two degree increase of the inlet absolute angle represents a reduction of the perceived relative velocity for the rotor of
approximately 11m/s.

5.2 Aircraft Flight Path (E)

Problem. Two engineers placed theodolites (height 1.7m) at a distance of 400m apart over a runway to record the flight
path of aircraft taking off. One aircraft departs and climbs directly over them. As it crosses the sky, the engineers measure
at either side the vertical angle for different synchronized times. The usage of electro-optical system to track the position
of aircraft is common in the world of aviation (Wuhan Huazhiyang Technology Corporation, 2020). The result are a
succession of scalene triangles, as illustrated in Figure 7 (with the recorded angles presented on the right). What is the
distance of the aircraft to each of the points A and B in the ground? Subsequently, what is the height of the aircraft at the
different points in time (with respect to the theodolites measuring position)?
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Figure 7. Measurement of aircraft flight trajectory during climb

Solution. Drawing lines from the three elements — engineers A, B and the aircraft — created a series of scalene triangles
that change based on the time of flight of the aircraft. Using the three ground angles for both α and β measured with the
theodolites, the third internal angle γ of each scalene triangle was computed to be 116 degrees for T1, 109 degrees for T2
and 79 degrees for T3. The solution for each aircraft position with associated time is computed directly from the extended
formula. For time T1, the distance from engineer A to the aircraft is

AT1 = 400 cos∗(19, 116) = 400
[
sin(19 + 116)

sin(116)

]
= 191.3m (24)

and the distance to engineer B is

BT1 = 400 sin∗(19, 116) = 400
[

sin(19)
sin(116)

]
= 144.9m (25)

and the aircraft is at a vertical distance of

h1 = 314.7.9 sin(19) = 102.5m (26)

For time T2, the aircraft is at a distance from engineer A of

AT2 = 400 cos∗(32, 109) = 400
[ sin(32 + 109)

sin(109)

]
= 224.2m (27)

and a distance from engineer B of

BT2 = 400 sin∗(32, 109) = 400
[ sin(32)
sin(109)

]
= 266.2m (28)

while the aircraft is at a vertical distance of

h2 = 224.2 sin(32) = 141.1m (29)

For time T3, the distance from engineer A to the aircraft is

AT3 = 400 cos∗(73, 79) = 400
[ sin(73 + 79)

sin(79)

]
= 191.3m (30)

and the distance from engineer B is
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BT3 = 400 sin∗(73, 79) = 400
[ sin(73)
sin(79)

]
= 389.7m (31)

and the aircraft is at a height of

h3 = 191.3 sin(73) = 182.9m (32)

Now, if the aircraft projects a shadow on the ground at an angle of 20 degrees to the vertical, what is the distance from
engineer A to the projection at point O (Figure 8)? If the reading of the theodolite at A increases by an angle of dα = 10
degrees as the aircraft climbs (here, we assume that the aircraft rotation or flight path is such that its relative distance to
point A remains the same, i.e. AT2 = AT ′2), what is the new distance from engineer at point A to the new shadow at point
O’ (use the angle sum identity rule)?

Figure 8. Measurement of the shadow location of the aircraft

The angle from the horizontal to the projected direction of the shadow is ∠AOT2 ≡ γ = 90 + 20 = 110 deg. For position
T2, the extended cosine function gives directly the answer for the distance from point A to the projected shadow on the
ground to be

AO = AT2 cos∗(32, 110) = 224.2
[
sin(32 + 110)

sin(110)

]
= 146.9m (33)

The fact that the relative distance of the aircraft does not change with respect to point A means that, as the aircraft rotates
in its climb, the distance AT2 = AT ′2 = 224.2m (in Figure 8) remains fixed. The extended angle sum identity rule [given
by Eq.(7)] is used here to determine the new distance from engineer at point A to the new shadow at point O’. With the
rotation, the original angle A ≡ α2 = 32 deg becomes A+B = α2 +dα = 32+10 = 42 deg. The new horizontal projection
of the shadow becomes thus

AO′ = AT ′2 cos∗(A + B, γ) (34)

The projected direction of the shadow is still ∠AOT ′2 ≡ γ = 110 deg (as the Sun’s rays are assumed parallel when they
arrive at Earth). Expanding the above using Eq.(7) gives

AO′ = 224.2
[

cos∗(32, 110) cos∗(10, 110) − sin∗(32, 180 − 110) sin∗(10, 110)
]
= (35)

= 224.2
[
sin(32 + 110)

sin(110)
sin(10 + 110)

sin(110)
−

sin(32)
sin(180 − 110)

sin(10)
sin(110)

]
= 112m

That is, the shadow moved from 146.9m to a distance from engineer A of 112m meters, a total distance covered of 34.9m.
The advantage of Eq.(7) becomes evident when considering dα as a variable (possibly part of a larger equation). Imagine
that you would like to know where the shadow was (for both positions) for a different time of the day (say when the Sun
was at an angle to the vertical of 10 deg, instead of 20 deg). Then, it is only required to re-apply the above equations,
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updating with the new Sun incidence angle of γ = 90 + 10 = 100 degrees (here it is assumed that the aircraft flight path
would remain the same).

5.3 Satellite Constellation Orbit (E)

Problem. Imagine three GPS satellites trailing each other on the same orbit. It is assumed that they operate best at a
given (normalized) relative position to each other (as shown in Figure 9). It is worth noting that this is an abstraction, as
in reality such a constellation of properly geometrically-spaced GPS satellites orbiting the Earth typically has 24 satellites
disposed in a 3D configuration (Moorefield Jr., 2020) — so this is a very simplified example. Here, each satellite has an
optical sensor onboard that measures the satellite´s angle between the others two. What angles do the sensors of all three
need to measure to guarantee that they are flying at the target (normalized) orbital distance to each other?

Figure 9. Satellite constellation flying in a specific target formatio

Solution. Since the sum of the internal angles of a triangle is 180 degrees, all is required is to know two of them. This
implies the need of two equations to solve two variables. The first equation results from the cosine projection of the
longest side of the scalene triangle as

BC = 0.61 = sin∗(α, γ) =
sin(α)
sin(γ)

(36)

which re-arranged gives

sin(γ) =
sin(α)
0.61

(37)

Similarly, the cosine projection of the longest side of the scalene triangles gives

AB = 0.43 = cos∗(α, γ) = cos(α) +
sin(α)
sin(γ)

cos(γ) (38)

By replacing the above result in

0.43 = cos(α) +
sin(α)

sin(α)
0.61

cos(γ) (39)

that simplifies to
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cos(γ) =
0.43 − cos(α)

0.61
(40)

Replacing Eq.(37) and Eq.(40) into the identity rule sin2(γ) + cos2(γ) = 1 results in

( sin(α)
0.61

)2
+

(0.43
0.61

−
cos(α)
0.61

)2
= 1 (41)

Expanding results in

( sin(α)
0.61

)2
+

(0.43
0.61

)2
− 2

(0.43
0.61

)(cos(α)
0.61

)
+

(cos(α)
0.61

)2
= 1 (42)

Placing the denominator to the right side simplifies this to

sin2(α) + 0.432 − 2(0.43) cos(α) + cos2(α) = 0.612 (43)

which reduces further to

1 + 0.432 − 2(0.43)cos(α) = 0.612 (44)

resulting in an expression for cos(α) as

cos(α) =
1 + 0.432 − 0.612

2(0.43)
(45)

Note that, computing the arcsine of angle γ gives 32.39 degrees which is in the first quadrant. Since we know that the
angle γ needs to be obtuse, we are interested in the value in the second quadrant of 147.61 degrees which has the same
value of sine. The third angle β then becomes

β = 180 − α − γ = 180 − 19.07 − 147.61 = 13.32 (46)

Therefore, in order for the satellites to fly at the target normalized distance to each other (as per values shown in Figure 9),
the angular sensor in satellite A needs to measure 19.07 degrees (between satellite B and C), the one in satellite B needs
to measure 147.61 degrees (between satellite A and C) and satellite C needs to read 13.32 degrees (between satellite A
and B).

6. Telecommunications

6.1 Antenna Array Beamforming and Steering (P)

Possibility. Imagine an antenna array composed of sensing elements uniformly spaced in a line. Beamforming is a process
by which an interference pattern between the radiated or received signals of all the antenna elements allows the array to
acquire directivity in reception/emission, by forming a high gain lobe (in which it is most sensitive to transmissions)
located at the center of the array, and perpendicular to the array’s axis (Liu & Weiss, 2010). This process involves the
use of sine functions and trigonometry, and hence we will expand further into its workings. When two antenna elements
are spaced by distance d (Figure 10a), and angled by α to the incoming transmitted wave front (each successive antenna
elements will record the same wave with a delay), where this lag is trigonometrically governed by a right-angled triangle
inherently governed by the Pythagoras theorem. This forms the basis for the processing required to calculate the array’s
gain sensitivity to direction or beamforming. If X(t) is the signal received by the antenna element 0 (Figure 10a), then
antenna element 1 receives the same signal (as element 0) with a time delay τ, expressed mathematically as

X1(t) � X(t − τ) with τ =
d
c

sin(α) (47)

The gain of an array is typically computed from the summation of all signals, and is used to construct the array radiation
pattern, quantifying its directivity. For these two particular elements, the time delay τ occurs due to the waves angle of
arrival α— i.e. the extra distance BC that the EM waves need to cover due to the inclination α of the antenna array —
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Figure 10. Time delay in reception of EM wave in a linear antenna array governed by (a) right and (b) scalene triangles

thus forming with the distance d = BA in between elements a right triangle △ABC, where c is the speed of light in the
medium air (close to that in vacuum), and d is the distance between successive elements. Beam steering is a process that
provides the ability to change the direction of an incoming or outgoing beam on a uniform linear antenna array, and it
is achieved by introducing an arbitrary time delay ∆t between each subsequent pair of antenna elements. This alters the
signal received/emitted by element 1 into

X1(t) � X(t − τ − ∆t) with τ′ =
δ

c
sin∗(α, γ) (48)

In reality, this time delay ∆t can be interpreted as a distortion in the trigonometric relation between the distances com-
posing the right triangle △ABC. Geometrically, the time delay ∆t is translated into an added distance, transforming BC
(Figure 10a) into BC′ (Figure 10b). This consequentially transforms the right triangle △ABC (Figure 10a) into the sca-
lene triangle △ABC′ (Figure 10b). The new time delay τ′ in Eq.(48) indicates that τ′(α, γ) accounts for the two delay
components: (1) delay between successive elements due to array inclination and element spacing — the original τ [this is
governed by angle α and forms the right triangle △ABC], and (2) the fictitious delay introduced mathematically resulting
in the artificial elongation/reduction of the wave travel distance (that compounds with the array elements) [the alteration
of angle γ morphs the right triangle into a scalene triangle; the difference of the base of the two defines this delay]. Thus,
the extended sine function enables the signal mathematical expression to change to

X1(t) � X
(
t − τ′(α, γ)

)
with τ′(α, γ) =

δ

c

[
sin(α)
sin(γ)

]
(49)

where sin(α) governs the directivity of the antenna array [via the control of angle α], and sin(γ) governs the direction of
the emitted/received signal [via the angle γ]. Hence, both the influence of τ and ∆t can be modeled within one expression,
and controlled via two angles α and γ. Since the fundamental operating principle of beamforming is the same between
2D and 3D, by legacy the application of the proposed modification (of the mathematical modelling using the extended
sine function) could be extended to three dimensional beamforming.

6.2 Enhancing Data Aerial Transmission (P)

Possibility. Binary digital modulation techniques (used in modern wireless data transmission) are simple in concept, but
are not efficient in terms of their spectral density. Augmentation of spectral efficiency (i.e., boost transmission bit rate
without affecting bandwidth requirements) is commonly achieved via the adoption of quaternary signaling schemes, like
quadrature phase-shift keying (QPSK) (Grami, 2016). In QPSK, the number of bits that are combined are 2 so this makes
four phase shifts posssible. Quaternary signaling schemes embed information in carrier phase modifications, while at the
same time keeping the carrier amplitude and frequency the same. Digital signals Q and I are used to modulate a carrier
wave by altering its phase in four possible ways (i.e., 45, 135, 225 and 315 degrees), each representing a symbol (Figure
11a). The in-phase signal I is along the x-axis in Figure 11a, and is represented in magenta in Figure 11b. The quadrature
signal Q is along the y-axis in Figure 15a, and is represented in blue in Figure 11b. In an orthogonal system of axis,
the x-axis is at 90 degrees to the y-axis, which means that the in-phase signal I is phase shifted by 90 degrees from the
quadrature signal Q. The novelty introduced by the extended sine and cosine functions is in the ability to change the angle
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between the system’s axis (other than γ = 90 deg), providing the potential to increase the keys available by having two
(or more) interchangeable system of axis in operation. The digital QPSK modulated signal is given by the equation

S (t) = AC

{[
sin(ϕ) sin(α)

]
Q
+

[
cos(ϕ) cos(α)

]
I

}
(50)

Figure 11. Quadrature Phase Shift Keying Modulation [QPSK]: (a) symbols possible and (b) phasing of carrier wave

where angle ϕ controls the normalized amplitude of the carrier signals Q and I — such that when they add up, the carrier
is perceived to undergo a phase shift (i.e. ϕ =45, 135, 225 or 315 deg) — and angle α = 2π fct governs the oscillation of
the carrier and modulated waves with time. The amplitude of the signal is given as Ac =

√
2E/T , where E = P × T (i.e.,

power times time interval) is the energy content in a bit duration. In other words, changing ϕ offsets in Figure 11b the
dashed line horizontally back and forth. The coefficients that enable the carrier to shift by the above desired phases are
given in Table 1.

Table 1. Coefficients of modulated signal for γ = 90 deg

ϕ (deg) - binary mQ(t) = sin(ϕ) mI(t) = cos(ϕ)
45 - (0)00

√
2/2

√
2/2

135 - (0)01
√

2/2 −
√

2/2
225 - (0)10 −

√
2/2 −

√
2/2

315 - (0)11
√

2/2 −
√

2/2

Until now, the phase distance between the carrier wave Q and I was fixed to 90 degrees, as sine and cosines are governed by
the dynamics of a right-angled triangle. With the extended sine and cosines functions, this phase distance can be modified
to an arbitrary value given by the angle γ. Since the system axes are now no longer static (frozen in orthogonal mode),
this approach is hereby termed the Dynamic-Axis Quadrature Phase Shift Keying Modulation or DA-QPSK Modulation.
Replacing the sine and cosine by their extended functions in Eq.(2) and Eq.(3), allows the x-axis to be at virtually any
angle γ to the y-axis, which means that the in-phase signal I is phase shifted by angle γ from the quadrature signal Q.
Digital signals Q and I are used to modulate a carrier wave by altering its phase in four possible ways (i.e., 45, 135, 225
and 315 degrees), each representing a symbol (Figure 11a). Figure 12a shows that by altering the angle between the two
axes (in this case, to γ = 120 degrees) allows the creation of additional four phases (i.e., 30, 120, 210 and 300 degrees)
or symbols different from Figure 11a. Note that these phase angles are associated with a system of axis (i.e., γ = 120
degrees) different from the orthogonal (i.e., γ = 90 degrees), and thus a 120 degrees has different meaning in either system
of axes. For the case where γ = 120 degrees, the in-phase signal I has a 120 degree phase shift from the quadrature signal
Q (Figure 12b). The amplitude modulations of the quadrature signal Q and in-phase signal I produce the phase-shifting of
the wave produced by their sum (dashed red in Figure 12b for ϕ = 30 deg implying symbol 100) — of the same frequency
and amplitude as the carriers — is given as follows

S (t, γ, ϕ) =
[
sin∗(ϕ, γ) sin∗(α, γ)

]
Q
+

[
cos∗(ϕ, γ) cos∗(α, γ)

]
I

(51)

where ϕ is the phase shift of the modulated signal with respect to Q, and controls via the extended sine and cosine
coefficients the amplitudes of both Q and I such that the their sum is always constant. Note that the generalized Eq.(51)
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Figure 12. Dynamic-Axis Quadrature Phase Shift Keying Modulation [DA-QPSK]: (a) symbols and (b) phases of carrier

encompasses the particular cases of Figure 11 where γ = 90 deg and Figure 12 where γ = 120 deg. In both cases it
produces a wave, same as the carrier, except it has a phase offset. Equation (51) can be written in a more compact manner
as

S (t, γ, ϕ) =
[
m∗Q(t) sin∗(α, γ)

]
Q
+

[
m∗I (t) cos∗(α, γ)

]
I

(52)

where the extended m∗Q(t) and m∗I (t) functions are determined by expanding using Eq.(2) and Eq.(3) as

m∗Q(t) = sin∗(ϕ, γ) =
sin(ϕ)
sin(γ)

; m∗I (t) = cos∗(ϕ, γ) =
sin(ϕ + γ)

sin(γ)
(53)

For the particular case of an orthogonal axis system (γ = 90 deg), the above functions reduce back to the original versions
m∗Q(t, 90) = sin(ϕ) and m∗I (t, 90) = cos(ϕ). As an example of its application, let us conceive a change in the angle formed
between the y-axis for Q and x-axis for I to the particular case of γ = 120 degrees. In such a case, the extended function
m∗Q(t) becomes

m∗Q(t) = sin∗(ϕ, 120) =
sin(ϕ)

sin(120)
=

2
√

3
sin(ϕ) (54)

and the extended function m∗I (t) becomes

m∗I (t) = cos∗(ϕ, 120) =
sin(ϕ + 120)

sin(120)
=

2
√

3

{
sin(ϕ)

(
−

1
2

)
+ cos(ϕ)

√
3

2

}
(55)

which re-arranged further simplifies to

m∗I (t) = −
1
√

3
sin(ϕ) + cos(ϕ) (56)

For the particular case of γ = 120 deg, the signal expression in Eq.(51) transforms to

S (t, 120, ϕ) =
[{

2
√

3
sin(ϕ)

}
sin∗(α, 120)

]
Q

+

[{
−

1
√

3
sin(ϕ) + cos(ϕ)

}
cos∗(α, 120)

]
I

(57)

Consider the case of the symbol 100 (in the first quadrant, where ϕ = 30 deg). Then the function m∗Q(t) [given by Eq.(54)]
becomes the fractional number

m∗Q(t) = sin∗(30, 120) =
2
√

3
sin(30) =

2
√

3

(
1
2

)
=

√
3

3
(58)
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Similarly, the function m∗I (t) [given by Eq.(56)] becomes also a fractional number

m∗I (t) = −
1
√

3
sin(30) + cos(30) = −

1
√

3

(
1
2

)
+

√
3

2
=

√
3

3
(59)

Thus, the coefficients that enable the carrier to shift by the above desired phases (i.e., 30, 120, 210 and 300 degrees) can
be computed using the same approach as above, resulting in Table 2.

Table 2. Coefficients of modulated signal for γ = 120 deg

ϕ (deg) - binary m∗Q(t) m∗I (t)
30 - (1)00

√
3/3

√
3/3

120 - (1)01 1 −1
210 - (1)10 −

√
3/3 −

√
3/3

300 - (1)11 −1 1

Figure 13 shows an example of the conceptual block diagram of the transmitter that could produce the Dynamic-Axis
QPSK modulation. The new key difference between DA-QPSK and classical QPSK modulation is highlighted with a red
box, representing the ability to alter the phase between the Q and I carrier waves beyond the customary 90 degrees — a
choice that is controlled by the binary status of the first of the 3 Bits via an additional switch. Hence, in DA-QPSK, the
number of bits that are combined are 3 so this makes for eight phase shifts possible (an improvement from QPSK, where
only four are available).

Figure 13. Transmitter block diagram for the Dynamic-Axis QPSK modulation

The reception and interpretation of the signal implies, for each phase change determine what is the magnitude. If it is
an angle multiple of 90/2=45 degrees, then the first digit is 0. Likewise, if it is a multiple of 120/2=60 degrees, then the
first digit is 1. So, the first digit is determined by the resulting factorization of the phase. Second, the other two digits
are determine by the magnitude of the phase, and is located in the axes plus circle diagram in the same manner as for
QPSK modulation. The only difference here, is that if the first bit is 1, then the 120 degree system of axis is used, and the
location in the diagram will change [according to Eq.(54)].

7. Conclusion

Problem solving in physics is directly dependent on the level of sofistication of available mathematical tools. The Pythago-
ras theorem, and its dependent sine and cosine functions, have been mathematical pilars that have enabled the solution of
a variety of physical problems, ranging from simplistic mass-spring oscilatory system to quantum resonators. General-
ization of trigonometry involving the replacement of the Pythagoras theorem (the exception) by the Law of Cosines (the
rule), results in a new set of extended or gamma sine and cosine functions, which have already been proven and published.
These new mathematical formulae open doors for a fresh approach to tackle problems in physics, and enable a depeer
insight into the trigonometric relations within physical problems for a variety of fields:
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• Civil Engineering: The impact of a slight rotation of a tower in a suspension bridge on the stretching of its cables
is assessed simply by using one formula. Measuring distances to an inacessible bridge over a river using two
engineers with theodolites is accomplished by carefull application of the new extended or gamma trigonometric
functions.

• Aerospace & Aeronautics: Turbine velocity triangles are a fundamental trigonometric tool often adopted when
designing turbine stages (stator plus rotor), as they provide both absolute (with respect to the stator) and relative
(with respect to the rotor) air speed, for any given turbine rotational speed. Impact of slight variations of inlet angle
on speed is also computed to get an indication on how one affects the other, particularly useful since rotor turbine
inlet conditions in reality always vary with respect to target design conditions. Moreover, a study is conducted on a
simplified GPS satellite constelation, where the extended or gamma trigonometry functions are used in conjunction
with optical sensors installed in each satellite, to determine if all satellites are at the hypothetical predefined opti-
mum orbital position. Finally, the flight path of an aircraft during take-off can be tracked via two engineers with
theodolites, and carefull application of the gamma trigonometric functions, to determine how high it is from the
ground at each given point in time.

• Telecommunications: A couple of improvement possibilities are presented: one with respect to antenna array
beamforming and steering, namely in the mathematical construct used to describe the signal received based on the
antenna dimensions and angle of incoming waves (i.e., the linear dimensions are replaced by angles that control the
beamforming and steering effects); the second with respect to enhancing data aerial transmission (e.g., quadrature
phase-shift keying or QPSK), namely by introducing a new means to control the carrier wave such that a series of
new four phase shifts are possible (other than the original), allowing for the transmission to increase to three bits per
signal (an increase from two bits per signal in the classical QPSK). This effetively increases the transmission bit rate
without affecting bandwidth requirements. The newly derived modulation technique is herein termed the dynamic-
carrier quadrature phase-shift keying or DC-QPSK, due to the added flexibility in the dynamics of the carrier
wave. The geometry and mathematics of wave propagation — here presented in the field of telecommunications
(i.e., electromagnetic wave propagation in space) — is shared to some degree by acoustics (i.e., pressure wave
propagation in air), and thus similar problems in acoustics could be addressed using the new gamma trigonometric
functions (e.g., beamforming techniques applied in a linear array of microphones to track noise sources).

Applications in many other subjects involving trigonometry are also possible, like for instance in mechanical oscilatory
systems, electrical motors and generators (looking at the analysis of phase diagrams), antenna arrays (how mobile phone
signals behaves as it rotates around antenna array), mechanical systems such as cranes and complex machines (for compu-
tation of stress distributions and deflections, for example), relativistic theory and the time dialation effect, electronics such
as the new energy-coupled RLC circuit (looking at voltage and current behaviour under dynamic oscilatory conditions for
when capacitance and inductance ffects are coupled — to be further discussed in a future publication), etc. The aim of this
article is to given an impression on how these more flexible and advanced gamma trigonometric functions (because the
gamma sine and cosine functions incorporate the variation of two angles α and γ in a scalene triangle, versus just the one
angle α in a right-triangle for the classical sine and cosine) can be applied in practice, and by similarity be employed, be
employed in other scientific fields and physical contexts. The present limitation of this research derives from the fact that
it is so new, and all the ramifications to various different scientific fields are yet to be explored. Essentially, the extended
(or gamma) sine and cosine functions replace the role of the traditional sine and consine versions in all the fields were
these trigonometric functions are employed. They open doors to the expansion of the above pool of exercises to a vast
number of other topics, like for example biology, architecture, informatics, electronics, not to mention the implication on
hyperbolic trigonometry and modern geometry. It is therefore, both wanted and expected, that follow-on articles apply
these mathematical tools to other avenues of physical and mathematical research, with the findings ideally being published
in this journal, and preferably in a fashion complementary to this article.
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