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Abstract 

This paper examined the Lagrangian theory of a classical scalar field from the perspective of fractional calculus. 

Fractional Lagrangian formulation is extended to classical fields systems with second-order derivatives. This 

formulation is examined within Riemann-Liouville fractional derivatives and examined for one classical field 

example. 
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1. Introduction 

The study of fractional calculus has gained a considerable important and played a significant role in physical 

systems, engineering and applied mathematics, (Samko et al., 1993), starting from Riewe’s work of the 

Hamiltonian formalism (Riewe, 1996). Riewe has developed a formalism using fractional calculus for 

Lagrangian and Hamiltonian formulation. In Riewe’s formalism the Euler’s and Hamilton’s equations of motion 

can be applied for both conservative and non-conservative systems. The generalization of Riewe’s work of 

Lagrangian and Hamiltonian mechanics has been investigated in details in references (Agrawal, 2002; Baleanu 

and Muslih, 2005; Hasan, 2016). 

The fractional variational problem of Lagrange formalism has been investigated by Agrawal approach (Agrawal, 

2002). Agrawal has investigated the Lagrangian formulation using fractional variational problems. Agrawal has 

arrived that the resulting equations are similar to those for variational problems containing integral order 

derivatives. This approach is extended for classical fields with fractional derivatives (Baleanu and Muslih, 2005) 

for obtaining the fractional formalism for first-order Lagrangians. Recently, Agrawal formalism has been 

extended for Lagrangian systems with higher derivatives (Hasan and Asad, 2017; Hasan, 2018), authors have 

investigated the Lagrangian and Hamiltonian analysis for higher-order derivatives systems for discrete regular 

systems with the generalization of Ostrogradski’s formulation within the fractional calculus. 

Now, we will present the basic definitions of fractional derivatives (Agrawal, 2002). 

(i) The left Riemann–Liouville fractional derivative 
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(ii) The right Riemann–Liouville fractional derivative 
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Where Nn , −1n  ˂ n  and  is the Euler gamma function. 

Remark If   is an integer, we can define these derivatives as follows: 
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Now, we define a function f  depending on n variables, 1x , 2x , …, nx  and differentiable. We can consider 

the fractional derivative of order k , 0˂ k  ˂1 in the k-th variable (Samko et al., 1993) 
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We can note that the second term in Eq. (5) represents the Caputo derivative Caputo (1967). 

This work is an intriguing generalization of standard calculus whose actual import in theoretical physics and 

gives new results in fractional calculus with second-order Lagrangians of classical fields systems; therefore, we 

aim to construct the formulation of Euler-Lagrange equations for these systems. Our article paper is organized as 

follows. In section 2, the fractional Euler-Lagrange equation of classical field with second-order derivatives is 

presented. In section 3, one classical field example is examined. The work closes with some concluding remarks 

in section 4. 

2. Fractional Euler –Lagrange Equation of Continuous Systems (Classical Field) 

In this section, we will discuss the Lagrangian theory of a classical scalar field from the perspective of 

Riemann-Liouville fractional derivatives for second-order Lagrangian. 

We will start with the action  
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The first term in eq.7 is a function on . Using a Taylor series in  . Thus, Eq. 7 becomes.  
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Considering Eq. 7, thus, Eq.8 becomes 
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Now, we integrate the second term in Eq. 9 by parts (Samko et al., 1993) and similarly for the third, fourth and 

fifth term. 
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Taking 

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, one can obtain the fractional second-order Euler-Lagrange equations of the form. 
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The interesting point for 1→k , Eq. (12) gives the Lagrangian formalism of classical fields with second 

order (Pimentel, R.G. and Teixeira, 1996).  

3. Example 

We consider a mathematical model of Lagrangian density which has the form 
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The fractional Euler-Lagrange equation of classical field Eq. (12) becomes. 
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One can discuss the fractional Lagrangian formalism of classical fields about possible concrete applications to 

actual physical systems with second-order derivatives. 

4. Conclusion 

We have extended the fractional Lagrangian formulation from discrete systems to continuous systems with 

second-order Lagrangian. The second-order derivatives of the usual Euler-Lagrange equations of motion for 

classical fields have been extended to the fractional Lagrangian of fields. For 1→k  , we obtained the 

Lagrangian formulation for classical fields.  
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